当前位置:文档之家› 斐波那契数列与股市时间窗

斐波那契数列与股市时间窗

斐波那契数列与股市时间窗
斐波那契数列与股市时间窗

斐波那契数列与股市时间窗

一、斐波那契数列

几个世纪前,意大利数学家斐波那契发现了一组对世界产生深远影响的神奇数字。这组数字为0、1、1、2、3、5、8、13、21、34、55、89……

这组数字存在着许多神奇而有趣的规律,其中的规律直到今天还在被源源不断地挖掘出来。

1、从第三个数字开始,后一个数字都等于前两个数字之和。如2+3=5,3+5=8,34+55=89……

2、随着数列项数的增加,每一个数字与后一个数字的比值无限接近于0.618。如2/3=0.666,5/8=0.625,21/34=0.6176,34/55=0.6181,55/89=0.6179……

二、黄金分割在各领域的广泛运用

由斐波那契数列引发的0.618是个神奇的数字,它具有严格的

比例性、艺术性、和谐性,蕴藏着很深的美学价值。

世界著名建筑如巴黎圣母院、巴黎埃菲尔铁塔、埃及金字塔等均能从它们身上找到0.618的影子。名画、摄影、雕塑等作品的主题都在画的0.618处。报幕员站在舞台的0.618处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的0.618位置,人的膝盖是从脚底到肚脐眼长度的0.618。战争中0.618的运用也是无所不在,小到兵器的制造、中到排兵布阵、大到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。

三、斐波那契及黄金分割在股市中的应用

斐波那契数列与黄金分割在各个领域无所不在,作为万事万物中的一部分,它们在股市中也有着广泛的应用。

斐波那契数列在把握股市变盘点方面有着独特的功效。

如从上市首日或重要高低点往后数,第8、21、34、55等斐氏天数经常成为重要的变盘点,而软件中的斐波那契时间窗在把握股市变盘点方面有着独特的效果:从某个重要点位开始,费波那契时间窗的竖线所到的位置常常成为重要的变盘点。

1、从上市首日开始计算

从半年K线看,从上市开始的第8、13、21、34个交易日均为市场重要的变盘点,尤其是01年6月的高点以及07年10月的最高点均恰好落在斐氏时间窗上。(图一)

从月线看,斐波那契时间窗能有效地预测出1998年5月以及2002年12月的重要变盘点。(图二)

从日线看,斐波那契时间窗能有效预测出97年4月、01年6月、08年1月的重要变盘点。将鼠标放在最后一根竖线上,可显示下一个费氏时间窗在2389个交易日出现,离我们太远。(图三)

2、从重要变盘点开始。

我们可以以历史上已经被证实过的重要高低点为费氏时间窗的起点。如从2001年6月14日的高点2245点开始,对准这一天点斐波那契时间窗,可捕捉到01年10月24日、2002年6月7日、2003年1月6日、05年7月19日、08年1月22日的变盘点。(图四)

3、从焦点开始

焦点,是指从不同起点开始的费氏时间窗都能同时证明这是一个变盘点。通过大量的研究,总结出了历史上的重要的几个时间焦点,从这些点开始计算的费氏时间窗将会有更好的效果。

96年855点

97年1510点

01年2245点

05年7月1004点

07年2月5日2610点

以在历史上被证明过的焦点为起点,所计算出的斐波那契的变盘点成功率会更高。斐波那契时间窗使用注意事项:

1、操作完成以后要点解。

2、在直接数天数的过程中,起点那天应该计为零,第二天计为1,然后依次往后数。

四、其它时间窗在股市中的表现

除了斐波那契时间窗外,股市中还存在着其它一些重要的时间窗。如从月K线中的21个月周期,周线中的166周周期,以及日线中的32个交易日周期。

月线:

91年5月至92年11月为19个月

92年11月至94年7月为21个月

94年7月至96年1月为19个月

96年1月至97年9月为21个月

97年9月至99年5月为21个月

99年5月至01年2月为22个月

02年1月至03年11月为23个月

03年11月至05年6月为20个月

05年6月至07年2月为21个月

07年2月至08年10月为21个月(图五)

由此可发现,大盘月K线中的重要低点之间的时间在21前后两个月之内,而21也是重要的斐波那契数列之一。

周线:

1991年5月17日104点至1994年7月29日325点 167周1991年11月20日386点至1996年2月9日518点 167周1996年1月19日512点至1999年5月12日1047点167周1996年9月13日752点至1999年12月30日1341点 167周2005年6月10日998点至2008年9月19日1802点166周

2002年2月1日1339点至2005年6月10日998点167周

(图六)

日线:

2007年10月16日至2007年11月28日 32

2007年11月28日至2008年1月14日 32

2008年1月14日至2008年3月4日 32

2008年3月4日至2008年4月22日35

2008年4月22日至2008年6月6日 32

2008年6月6日至2008年7月22日32

2008年7月22日至2008年9月3日 32

2008年9月3日至08年10月24日 32(图七)

四、二十四节气变盘点

二十四节气所对应的日期常成为股市中的重要变盘点。二十四节气对应的每年的日期不固定,但每年差别在一两天左右。上半年主要集中在6号及21号,下半年主要集中在8号及23号,综合来看,8号及22号前后出现变盘的概率最高。如近期比较重要的节气为小雪----2008年11月22日、大雪----2008年12月7日。

附2009年24节气时间表:

立春:2009年02月03日(农历01月09日)星期二

雨水:2009年02月18日(农历01月24日)星期三

惊蛰:2009年03月05日(农历02月09日)星期四

春分:2009年03月20日 (农历02月24日)星期五

清明:2009年04月04日(农历03月09日)星期六

谷雨:2009年04月20日(农历03月25日)星期一立夏:2009年05月05日(农历04月11日)星期二小满:2009年05月21日(农历04月27日)星期四芒种:2009年06月05日(农历05月13日)星期五夏至:2009年06月21日(农历05月29日)星期天小暑:2009年07月07日(农历闰05月15日)星期二大暑:2009年07月23日 (农历06月02日) 星期四立秋:2009年08月07日 (农历06月17日) 星期五处暑:2009年08月23日 (农历07月04日) 星期天白露:2009年09月07日 (农历07月19日) 星期一秋分:2009年09月23日 (农历08月05日) 星期三寒露:2009年10月08日 (农历08月20日) 星期四霜降:2009年10月23日 (农历09月06日) 星期五立冬:2009年11月07日 (农历09月21日) 星期六小雪:2009年11月22日 (农历10月06日) 星期天大雪:2009年12月07日 (农历10月21日) 星期一冬至:2009年12月22日 (农历11月07日) 星期二小寒:2009年01月05日 (农历12月10日) 星期一

大寒:2009年01月20日 (农历12月25日) 星期二

立春:2010年02月04日 (农历12月21日) 星期四

五、大盘重要底部的短线变盘点

经过对97年之后的几乎所有中期底部的统计可发现,大量的变

盘点集中在周二与周一,其中又以周一最为明显。

97年9月23日周二 99年12月27日周一98年8月18日周二 2001年10月22日周一99年2月8日周一 2002年1月22日周二99年5月17日周一 2003年1月6日周一2003年11月13日周一 2005年6月6日周一

斐波那契数列和他的平方数

转来转去,又转会斐波那契数列了。

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议! 这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:。其中表示正方形的面积,表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。 爬梯子问题(斐波那契数列应用) 1.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法? 这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法. 既:楼梯的级数:12345678... 上楼梯的走法:124713244481... 这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

斐波那契数列教案(六年级数学下册)

《斐波那契数列》教学设计 教学内容:第65页阅读资料“斐波那契数列”。 教学目标:1、使学生认识“斐波那契数列”及其部分特性。 2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力。 3、培养积极的数学阅读习惯,形成积极的数学情感。 教学过程: 一、故事引入,提出问题 很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一个举世闻名的数学家。这一年到底发生了什么呢?他用一道数学题清楚的告诉了我们,请看大屏幕: 假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1、请学生读题,分析、理解题意。 你觉得题目中哪句话的意思很重要,需要提醒大家注意呢? 重点理解:①一对大兔生过一对小兔后,下个月会接着生,无死亡; ②小兔一个月后长成大兔,以后一直是大兔。 2、模拟兔子生长过程 ⑴请同学们讨论,你想了解哪些问题?如何解决?(这一年当中,兔子的数量到底是怎样增长的?)我们来模拟一下,好不好? ⑵师生共同参与模拟过程,记录数据。 1月—4月,由教师带领学生体会兔子变化过程。 ⑶引导发现规律,小组合作完成剩下月份的推导 ⑷汇报交流,解决问题。 二、合作探究,解决问题 1、刚才大家表现得很踊跃。下面我们就来研究这个著名的数学问题, 它就是这个数列:1,1,2,3,5,8,13,21,…… 2、观察前后数的关系,从这个数列中你发现了什么规律? ①学生举手汇报,说出规律:前两个数之和等于第三个数。 ②若一个数列,首两项等于 1,而从第三项起,每一项是前两项之和,则称该数列 为斐波那契数列。 三、应用新知,练习巩固 根据你发现的规律填空

黄金分割与斐波那契数列

第八讲 黄金分割与斐波那契数列 一、 黄金分割 1. 黄金分割的概念 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字。 德国天文学家开普勒(J.Kepler )曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。前者如黄金,后者如珍珠。” 所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法: A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less. 分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。 关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。德国天文学家开普勒称之为神圣分割。当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们常说的比例方法。 其实有关“黄金分割”,中国也有记载。虽然没有古希腊的早,但它是中国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 2. 黄金分割的尺规作图 设线段为AB 。作BD ⊥AB ,且 ,连AD 。以D 为圆心,DB 为半径作圆弧,交AB BD 2 1

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

小学奥数 斐波那契数列典型例题

拓展目标: 一:周期问题的解决方法 (1)找出排列规律,确定排列周期。 (2)确定排列周期后,用总数除以周期。 ①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个 ②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1: (1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,1829 ÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少? 这个数列的周期是3,16351 ÷=???,所以第16个数是1.二:斐波那契数列 斐波那契是 的有关兔子的问题:

假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 斐波那契数列(兔子数列) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … 你看出是什么规律:。【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】 【巩固】 (1)2,2,4,6,10,16,(),() (2)34,21,13,8,5,(),2,() 例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?

【解析】120÷3=40 2004÷3=668 【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数? 例2:(10秒钟算出结果!) (1)1+1+2+3+5+8+13+21+34+55= (2)1+2+3+5+8+13+21+34+55+89= 数学家发现:连续10个斐波那契数之和,必定等于第7个数的11 倍! 巩固:34+55+89+144+233+377+610+987+1597+2584== 例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … (1)这列数中第2013个数的个位数字是几? 分析:相加,只管个位,发现60个数一循环

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

以斐波那契数列为背景的试题探究-教学考试(高考数学).docx

以斐波那契数列为背景的试题探究 一、斐波那契数列 斐波那契,公元13 世纪意大利数学家,他在自己的著作《算盘书》中记载着这样一个 “兔子繁殖问题” :假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小 兔子两个月后就具有繁殖能力。假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子? 斐波那契在研究时,发现有这样一个数列的数学模型:1,1,2,3,5,8,13,21,34,, 其中从第三个数起,每一个数都等于它前面两个数的和,亦即数列a n满足: a1 1,a2 1, 且 a1 1,a21, a n 2a n 1a n n 3 . 这个数列就是著名的“斐波那契数列”,而这个数列 中的每一项称为“斐波那契数” . 11n 1 n 事实上,斐波那契数列a n的通项公式为 a n 55 ,其神奇522 之处在于通项公式中含有无理数,但它的每一项又都不是无理数. 如何在高考试题中考查斐波那契数列呢? 二、以斐波那契数列为背景命制试题 1.以斐波那契数列的概念为背景命制试题 【例1】意大利数学家斐波那契在1202 年出版的一书里提出了这样一个问题:一对兔子被饲养到第二个月进入成年,第三个月生产一对小兔,以后每个月生产一对小兔,所生产的小兔能全部存 活并且也是第二个月成年,第三个月生产一对小兔,以后每个月生产一对小兔,那么,这样下去到年底,应有多少对兔子?此问题的 程序框图如下,空白处应填写() Q S Q S S Q S F A.F S B.S F C.F S D.Q S 【解析】斐波那契数列总有a n 2a n 1a n ,a11,a21,根据程序框图分析可知,正确答 案为 B. 【例 2 】设,是方程 x2x 1 0 的两个根,数列a n中满足

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

(完整版)斐波那契数列、走台阶问题

走台阶问题 如: 总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步,问走完这100级台阶总共有多少种走法? 解析: 这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两 级,f(2)=2。如果有大于2级的n级台阶,那么假如第一次跳一级台阶,剩下还有n-1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n- 1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案f(n)=f(n-1)+f(n+2) 斐波那契数列 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:F(n)=F(n-1)+F(n-2) 递推数列显然这是一个线性。 数学定义: 递归斐波纳契数列以如下被以的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 由兔子生殖问题引出、生物 (计算科学)

特性: 这个数列从第3项开始,每一项都等于前两项之和。 特别指出:第1项是0,第2项是第一个1。 代码: public class Test { static final int s = 100; //自定义的台阶数 static int compute(int stair){ if ( stair <= 0){ return0; } if (stair == 1){ return1; } if (stair == 2){ return2; } return compute(stair-1) + compute(stair-2); //return 递归进行计算 --->递归思想进行数据计算处理 在斐波那契数列中后一项的值等于前两项的和 } public static void main(String args[]) { System.out.println("共有" + compute(s) + "种走法"); } } return compute(stair-1) + compute(stair-2); 在return子句中调用调用compute函数 由斐波那契数列特性得到最后的值 分值拆分

斐波那契数列中的数学美

最美丽的数列------斐波那挈数列 数学科学院宋博文1100500163 在原理课上,我们了解了斐波那挈数列,在课余生活中,我再读小说<达芬奇密码>时,提到了斐波那挈数列,它是被一个艺术家当作线索留给他人的,当时不知道他为什么被艺术家这么看重,以至于可以上升到生命的高度,因此我对斐波那挈数列产生了浓厚的兴趣,所以我结合了老师上课讲的东西,以及自己课下的了解,对斐波那挈数列有了一些认识,现在总结在这里,展示自己学到了什么. 在课上老师讲了斐波那挈数列是由意大利数学家,斐波那挈发明的.当时他是用一个形象的故事为例子而引入的斐波那挈数列. 兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....) 因此斐波那挈数列又叫做兔子数列,我想这个例子真的让我感到数学源于生活,生活的需要是我们不段地通过现象发现数学问题,而不是为了学习而学习,我想斐波那挈不可能真的是通过兔子来发现的这个问题,但他是伟大的数学家,他想告诉我们这种数学问题的本质. 回到正体,提到了斐波那挈的伟大,现在我们在了解一下斐波那挈,我再课下了解到他竟叫做列昂纳多斐波那挈,与列昂纳多达芬奇,并被誉为比萨的列昂纳多.我想数学家有艺术家的称号,并不是一件简单的事. 直观的讲斐波那挈数列1、1、2、3、5、8、13、21、……从第三项开始,每一项都等于前两项之和,有趣的是这样的完全是自然数的数列,竟然可以用无理数来表达的,我记得老师当时好像讲过这一点但是当时好像并不太在意这一点,因为觉得这没什么,但是当我了解到,随着数列项的增加,前一项与后一项之比愈来愈逼近黄金分割的数值0.618时我却是被震惊到了,因为数学可以表达美,我想这是我们不得不赞叹的地方,当数学创造了好多的奇迹时,我想可能会很少人注意到我们数学本质是可以回归到自然的,这样的事例还有很多, 在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的

2019年高考数学数列小题练习集(一)

2019年高考数学数列小题练习集(一) 1.已知数列{a n }的前n 项和为S n (S n ≠0),且满足111 40(2),4 n n n a S S n a -+=≥=,则下列说法正确的是( ) A.数列{a n }的前n 项和为S n =4n B. 数列{a n }的通项公式为1 4(1) n a n n =+ C.数列{a n }为递增数列 D. 数列1 { }n S 为递增数列 2.已知数列{}n a 满足: 11a =,12n n n a a a += +* ()n N ∈.若()1121n n b n a λ+??=-?+ ??? *()n N ∈,1b λ=-,且数列{} n b 是单调递增数列,则实数λ的取值范围是( ) A. 23 λ> B. 3 2 λ> C. 3 2 λ< D. 23 λ< 3.已知等比数列{z n }中,11z =,2z x yi =+,yi x z +-=3(其中i 为虚数单位, x y R ∈、,且y >0),则数列{z n }的前2019项的和为( ) A .i 2 321+ B . i 2 321- C .i 31- D .i 31+ 4.等比数列{a n }的前n 项和3n n S t =+,则3t a +的值为 A. 1 B.-1 C. 17 D. 18 5.设函数()2cos f x x x =-,{}n a 是公差为8π 的等差数列, 125()()()5f a f a f a π++???+=,则2315[()]f a a a -= A .0 B . 2 116 π C .2 18 π D . 2 1316 π 6.已知数列{a n }的前n 项和为S n ,且满足1221,1n n a a S a +===-,则下列命题错误的是 A .21n n n a a a ++=+ B .13599100a a a a a +++ +=

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班 莫少勇 指导教师 孙丽英 摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci 数列 黄金数 优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一. F ibonacci 数列的由来 Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1F 1,F Z)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……, 这串数列的特点是:其中任一个数都是前两数之和。 这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。 它的通项是F n =51[(25 1+)n+1-(251-)n+1 ],由法国数学家比内(Binet )求出的。 二.Fibonacci 数列的内涵 (1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。 证法一:

高考数学压轴专题2020-2021备战高考《数列》难题汇编

【最新】数学《数列》试卷含答案 一、选择题 1.已知单调递增的等比数列{}n a 中,2616a a ?=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2 12 4 n -- B .1 12 2 n -- C .21n - D .122n +- 【答案】B 【解析】 【分析】 由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】 由题意,等比数列{}n a 中,2616a a ?=,3510a a +=, 根据等比数列的性质,可得3516a a ?=,3510a a +=, 所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q > 可得214128 a q a q ?=?=?,解得11,22a q ==, 所以数列{}n a 的前n 项和 11(12) 122122 n n n S --==- -. 故选:B . 【点睛】 本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力. 2.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数 列,则4 2 S S ( ) A .3 B .9 C .10 D .13 【答案】C 【解析】 【分析】 设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得2 60,0q q q --=>,解得q ,

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班莫少勇指导教师孙丽英 摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci数列黄金数优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一.Fibonacci数列的由来 Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,

而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1 F 1,F Z)n 2,(n F F F 102-n 1-n n

斐波那契提出的问题

斐波那契是欧洲中世纪颇具影响的数学家,公元1170年生于意大利的比萨,早年曾就读于阿尔及尔东部的小港布日,后来又以商人的身份游历了埃及、希腊、叙利亚等地,掌握了当时较为先进的阿拉伯算术、代数和古希腊的数学成果,经过整理研究和发展之后,把它们介绍到欧洲。公元1202年,斐波那契的传世之作《算法之术》出版。在这部名著中,斐波那契提出了以下饶有趣味的问题:假定一对刚出生的小兔一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。问一对刚出生的兔子,一年内能繁殖成多少对兔子?图 1 逐月推算,我们可以得到数列:1,1,2,3,5,8,13,21,34,55,89,144,233。这个数列后来便以斐波那契的名字命名。数列中的每一项,则称为“斐波那契数”。第十三位的斐波那契数,即为一对刚出生的小兔,一年内所能繁殖成的兔子的对数。这个数字等于233。从斐波那契数的构造明显看出:斐被那契数列从第三项起,每项都等于前面两项的和。假定第n项斐波那契数为,于是我们有:通过以上关系式,我们可以一步一个脚印地算出任意,不过,当n很大时,推算是很费事的。我们必须找到更为科学的计算方法。为此,我们在以下一列数中去导求满足关系式的解答。解上述q的一元二次方程得: [!--empirenews.page--] 。据此,设,并结合,可确定α,β,从而可以求出:以上公式是法国数学家比内首先求得的,通称比内公式。令人惊奇的是,比内公式中的是用无理数的幂表示的,然而它所得的结果却是整数。读者不信,可以找几个n的值代进去试试看!斐波那契数列有许多奇妙的性质,其中有一个性质是这样的:有兴趣的读者,不难自行证明上述等式。斐波那契数列的上述性质,常被用来构造一些极为有趣的智力游戏。例如,美国《科学美国人》杂志就曾刊载过一则故事:一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!这真是不可思议的事!亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢?斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔(如图4),例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。

使用fork()调用计算Fibonacci数列

实验二Linux 进程创建 实验目的 ?加深对进程概念的理解 ?练习使用fork()系统调用创建进程 ?练习Linux操作系统下C程序设计 实验准备知识 1. fork()函数:创建一个新进程. ?调用格式: #include #include int fork(); ?返回值: 正确返回时,等于0表示创建子进程,从子进程返回的ID值;大于0表示从父进程返回的子进程的进程ID值。 错误返回时,等于-1表示创建失败 实验内容:使用fork()调用计算Fibonacci数列 ?Fibonacci数列是0,1,1,2,3,5,8…….通常表示为:fib0=0, fib1=1,fib n=fib n-1+fib n-2 ?写一个C程序,使用fork()系统调用产生一个子进程来计算 Fibonacci数列,序列通过命令行显示。例如,如果参数为5,Fibonacci数列的前5个数字将在子进程中被输出。 ?因为父进程和子进程拥有各自的数据拷贝,所以需要由子进程

输出。在退出程序之前,父进程调用wait()等待子进程完成。 要求提供必要的错误检测以保证在命令行传递的参数是非负数. 实验程序: #include #include #include #include int main(int argc, char* argv[]) { pid_t pid; int i; int f0,f1,f2; f0=0; f1=1; if(argv[1]<0) { fprintf(stderr,"request a nun-negative number"); } pid=fork(); //printf("pid = %d ",pid); if(pid<0) { fprintf(stderr,"fork failed"); exit(-1); } else if(pid==0) { printf("argv[1] = %d\n",atoi(argv[1])); printf("0 1 "); for(i=2; i<=atoi(argv[1]);i++) { f2=f0+f1; f0=f1; f1=f2; printf("%d ",f2); }

高考数学题型全归纳:斐波那契数列(含答案)

斐波那契数列 每一对兔子过了出生第一个月之后,每个月生一对小兔子。现把一对初生小兔子放在屋内,问一年后屋内有多少对兔子? 先不在这里考虑兔子能否长大,或是某些月份没有生小兔子一类的问题,完全只由数学角度去考虑这问题,意大利数学家斐波那契(Fibonacci)解了这个题目,其内容大约是这样的:在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。如此推算下去,我们便发现一个规律: 不难发现,每个月成熟兔子的数目是上个月的兔子总数,而初生兔子的数目是上个月成熟兔子的数目,也即是两个月前的兔子总数,因此每个月的兔子总数刚好是上个月和两个月前的的兔子总数之和。由此可得每个月的兔子总数是 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 23, 377...,由此可知一年后有 377 对兔子。 若把上述数列继续写下去,得到的数列便称为斐波那契数列,数列中每个数便是前两个数之和,而数列的最初两个数都是 1。若果设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13... 则成立这个关系式:当 n 大于 1,Fn+2=Fn+1+ Fn,而 F0=F1=1。下面是一个古怪的式子: (1) Fn看似是无理数,但当 n 是非负整数时,Fn都是整数,而且组成斐波那契数列,因为F0=F1=1,并且Fn+2=Fn+1+ Fn,这可用数学归纳法来证明。 利用斐波那契数列解决兔子数目的问题似乎没有甚么用途,因为不能保证兔子真的每月只生

相关主题
文本预览
相关文档 最新文档