当前位置:文档之家› 高考物理动能定理的综合应用专项训练及答案

高考物理动能定理的综合应用专项训练及答案

高考物理动能定理的综合应用专项训练及答案
高考物理动能定理的综合应用专项训练及答案

高考物理动能定理的综合应用专项训练及答案

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

(1)求滑块与斜面间的动摩擦因数μ;

(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;

(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】

试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -

μmgcos37°

2sin 37R

?

=0-0 解得:μ=0.375

⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①

在C 点时,根据牛顿第二定律有:mg +N =2C

v m R

② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°

2sin 37R ?=2

12

C mv -

2

012

mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3

⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④

在竖直方向的位移为:y =

2

12

gt ⑤ 根据图中几何关系有:tan37°=

2R y

x

-⑥ 由④⑤⑥式联立解得:t =0.2s

考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距

离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(2

10/g m s =)

【答案】15N 【解析】 设撤去力

前物块的位移为

,撤去力

时物块的速度为,物块受到的滑动摩擦力

对撤去力后物块滑动过程应用动量定理得

由运动学公式得

对物块运动的全过程应用动能定理

由以上各式得 代入数据解得

思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题

试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.

3.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:

(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;

(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】

(1)小球离开台面到达A 点的过程做平抛运动,故有

0 3m/s tan y v v θ

=

=

= 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为

2

01 4.5J 2

p E mv =

=; (2)小球在A 处的速度为

5m/s cos A v v θ

=

= 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得

221111sin cos 22

C A mgL mgL mv mv θμθ-=

- 解得

10m/s C v ==;

(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;

那么对小球能通过最高点时,在最高点应用牛顿第二定律可得

2

1v mg m R

≤;

对小球从C 到最高点应用机械能守恒可得

221115

2222

C mv mgR mv mgR =+≥ 解得

2

02m 5C

v R g

<≤=;

对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得

2

12

C mv mgh mgR =≤ 解得

2=5m 2C v R g

≥;

故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;

4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.

⑴求物块由A点运动到C点的时间;

⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;

⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m

【解析】

试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1

代入数据解得,t 1=3s.

所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,

物块在传送带上匀速运动到C,

所以物块由A到C的时间:t=t1+t2=3s+1s=4s

(2)斜面上由根据动能定理.

解得v=4m/s<6m/s,

设物块在传送带先做匀加速运动达v0,运动位移为x,则:,

x=5m<6m

所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动

s=v 0t0,H=

解得 s=6m.

(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0

①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:

解得h3=1.8m

②当离传送带高度为h4时物块进入传送带后一直匀减速运动,

h4=9.0m

所以当离传送带高度在1.8m~9.0m的范围内均能满足要求

即1.8m≤h≤9.0m

5.如图甲所示,带斜面的足够长木板P,质量M=3kg。静止在水平地面上,其右侧靠竖直

θ?、两者平滑对接。t=0时,质量m=1kg、可视墙壁,倾斜面BC与水平面AB的夹角=37

为质点的滑块Q从顶点C由静止开始下滑,图乙所示为Q在0~6s内的速率v随时间t变化的部分图线。已知P与Q间的动摩擦因数是P与地面间的动摩擦因数的5倍,sin37°=0.6,

cos37°=0.8,g 取10m/s 2。求:

(1)木板P 与地面间的动摩擦因数; (2)t =8s 时,木板P 与滑块Q 的速度大小;

(3)0~8s 内,滑块Q 与木板P 之间因摩擦而产生的热量。 【答案】(1)20.03μ=;(2)0.6m/s P Q v v ==;(3)54.72J Q ?= 【解析】 【分析】 【详解】

(1)0~2s 内,P 因墙壁存在而不动,Q 沿着BC 下滑,2s 末的速度为v 1=10m/s ,设P 、Q 间动摩擦因数为μ1,P 与地面间的动摩擦因数为μ2; 对Q ,由v t -图像有

21 4.8m/s a =

由牛顿第二定律有

11sin 37cos37mg mg ma μ?-?=

联立求解得

10.15μ=,1

20.035

μμ=

=

(2)2s 后,Q 滑到AB 上,因12()mg m M g μμ>+,故P 、Q 相对滑动,且Q 减速、P 加速,设加速度大小分别是a 2、a 3,Q 从B 滑动AB 上到P 、Q 共速所用的时间为t 0 对Q 有

12mg ma μ=

对P 有

123()mg m M g Ma μμ-+=

共速时

12030v a t a t -=

解得

a 2=1.5m/s 2、a 3=0.1m/s 2、6t s =

故在t =8s 时,P 和Q 共速

30.6m /s p v a t ==

(3)0~2s 内,根据v -t 图像中面积的含义,Q 在BC 上发生的位移

x 1=9.6m

2~8s 内,Q 发生的位移

12030.6m 2

Q

v v x t +=

=

P 发生的位移

30 1.8m 2

P

v x t =

= 0~8s 内,Q 与木板P 之间因摩擦而产生的热量

11123cos37()Q mgx mg x x μμ?=+-o

代入数据得

54.72J Q ?=

6.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的

1

4

圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:

(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H

(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】

(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =

(2)物体由A 点到C 点,根据动能定理得:2

102

BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =

(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+

所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】

本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.

7.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板的总质量m =60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2. 求:

(1)人从斜坡上滑下的加速度为多大?

(2)若由于场地的限制,水平滑道的最大距离BC 为L =20.0m ,则人在斜坡上滑下的距离AB 应不超过多少?

【答案】(1)2.0 m/s 2; (2)50m 【解析】 【分析】

(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.

(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB 的最大长度. 【详解】

(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:

a 1=3737

mgsin mgcos m

μ?-?

=gsin37°-μgcos37°=6-0.5×8m/s 2=2m/s 2.

(2)在水平面上做匀减速运动的加速度大小为:a 2=μg =5m /s 2,

根据速度位移公式得,B 点的速度为:222520/102/B v a L m s m s ??===. 根据速度位移公式得:21200

5024

B AB v L m m a ===. 【点睛】

本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.

8.有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动,AB 的长度为2m ,物体和AB 间动摩擦因素为μ1=0.1,BC 无限长,物体和BC 间动摩擦因素为23

6

μ=, 求:

(1)物体第一次到达B 点的速度;

(2)通过计算说明最后停在水平面上的位置距B 点的距离. 【答案】(1)23/s v m =(2)2m 【解析】 【分析】

由题中“有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动”可知,本题考查动能定理和能量守恒定律,根据对物体运动状态的分析结合能量变化可分析本题. 【详解】

(1)据题意,当物体从A 运动到B 点过程中,有:

2211122

AB B A mgs mv mv μ-=

- 带入数据求得:

=23m /s B v

(2)物体冲上斜面后,有:

2

21-cos30sin 302

BC BC B mg x mg x mv μ-=-o o

解得:

0.8BC x m =

则有:

2

211-2cos302

BC B mg x mgx mv μμ-=-o

解得:

2x m =

即物体又回到了A 点.

9.城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为半径R =130m 的圆弧形的立交桥AB ,横跨在水平路面上,桥高h =10m 。可以认为桥的两端A 、B 与水平路面的连接处是平滑的。一辆小汽车的质量m =1000kg ,始终以额定功率P =20KW 从A 端由静止开始行驶,经t =15s 到达桥顶,不计车受到的摩擦阻力(g 取10m /s 2)。求 (1)小汽车冲上桥顶时的速度是多大; (2)小汽车在桥顶处对桥面的压力的大小。

【答案】(1)20m/s ;(2)6923N ; 【解析】 【详解】

(1)小汽车从A 点运动到桥顶,设其在桥顶速度为v ,对其由动能定理得:

21

2

pt mgh mv -=

443221015101

1002

1v ??-???=

解得:

v =20m/s ;

(2)在最高点由牛顿第二定律有

2

v mg N m R

-=

432020

1010130

N ?-?

= 解得

N =6923N

根据牛顿第三定律知小汽车在桥顶时对桥的压力N ′=N =6923N ;

10.如图所示,在E =103 V/m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R =40 cm ,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q =10-4 C 的小滑块质量m =10 g ,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5 m 的M 处,g 取10 m/s 2,求:

(1)小滑块从M 点到Q 点电场力做的功

(2)要使小滑块恰能运动到半圆形轨道的最高点Q ,则小滑块应以多大的初速度v 0向左运动?

(3)这样运动的小滑块通过P点时对轨道的压力是多大?【答案】(1) - 0.08J(2) 7 m/s(3)0.6 N

【解析】

【分析】

【详解】

(1)W=-qE·2R W= - 0.08J

(2)设小滑块到达Q点时速度为v,

由牛顿第二定律得mg+qE=m

2 v R

小滑块从开始运动至到达Q点过程中,由动能定理得

-mg·2R-qE·2R-μ(mg+qE)x=1

2

mv2-

1

2

mv

联立方程组,解得:v0=7m/s.

(3)设小滑块到达P点时速度为v′,则从开始运动至到达P点过程中,由动能定理得

-(mg+qE)R-μ(qE+mg)x=1

2

mv′2-

1

2

mv

又在P点时,由牛顿第二定律得F N=m

2 v R

代入数据,解得:F N=0.6N

由牛顿第三定律得,小滑块通过P点时对轨道的压力F N′=F N=0.6N.

【点睛】

(1)根据电场力做功的公式求出电场力所做的功;

(2)根据小滑块在Q点受的力求出在Q点的速度,根据动能定理求出滑块的初速度;(3)根据动能定理求出滑块到达P点的速度,由牛顿第二定律求出滑块对轨道的压力,由牛顿第三定律得,小滑块通过P点时对轨道的压力.

11.如图所示,倾斜轨道在B点有一小圆弧与圆轨道相接,一质量为m=0.1kg的物体,从倾斜轨道A处由静止开始下滑,经过B点后到达圆轨道的最高点C时,对轨道的压力恰好与物体重力相等.已知倾斜部分有摩擦,圆轨道是光滑的,A点的高度H=2m,圆轨道半径R=0.4m,g取10m/s2,试求:

(1)画出物体在C点的受力与运动分析图,并求出物体到达C点时的速度大小;

(2)物体到B点时的速度大小(用运动学公式求不给分);

(3)物体从A到B的过程中克服阻力所做的功.

【答案】(1)22m/s (3)26m/s (3)0.8J 【解析】 【分析】 【详解】

(1)物体在C 点的受力与运动分析图所示:

在C 点由圆周运动的的知识可得:

2

c v mg mg m R

+=

解得:c 22100.4m/s 22m/s v Rg ==??= (2)物体由B 到C 的过程,由动能定理可得:

22c B 11222

mg R mv mv -=

-g 解得:B 26m/s v =

(3)从A 到B 的过程,由动能定理可得:

2

f B 12

mgH W mv -=

解得:f 0.8J W =

12.一辆质量m =2×103kg 的小轿车沿平直路面运动,发动机的额定功率P =80kW ,运动时受到的阻力大小为f =2×103N .试求: (1)小轿车最大速度的大小;

(2)小轿车由v 0=10m/s 的速度开始以额定功率运动60s 前进的距离(汽车最后的速度已经达到最大).

【答案】(1)40m/s (2)1650m 【解析】 【详解】

(1)设小轿车运动的最大速度的大小为m v ,当车子达到最大速度时, 有=F f 牵 根据公式m P fv = 解得v m =40m/s

(2)根据题意和动能定理得:2211=

22

W mv mv -合末初

则有:22m 011=

22

Pt fs mv mv -- 解得小轿车60s 内前进的距离为s =1650m

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

【物理】动能定理的综合应用练习及解析

【物理】动能定理的综合应用练习及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量 1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平 飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道 (DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道 的半径1R m =,60DOE ∠=o ,37.EOF ∠=o 小物块运动到F 点后,冲上足够长的斜面 FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o , cos370.8=o ,取2 10/.g m s =不计空气阻力.求: (1)弹簧最初具有的弹性势能; (2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小; (3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小. 【答案】()11 ?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】 (1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o = 设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2 = 代入数据联立解得:p E 1.25J =; ()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有: () 22E D 11mgR 1cos60mv mv 22 -= -o 设在E 点,圆轨道对小物块的支持力为N ,则有:2 E v N mg R -= 代入数据解得:E v 25m /s =,N 30N = 由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ; ()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

动能定理的综合应用(含答案)

动能定理的综合应用 1.如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出(g取10m/s2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2.如图所示,质量为m=5kg的摆球从图中A位置由静止开始摆下,当小球摆 至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L=1.6m,OA与OB的夹角为60o,C为悬点O正下方地面上一点,OC间的距离 h=4.8m,若不计空气阻力及一切能量损耗,g=10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小 A

3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。转动中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水平距离。(取g =10m/s 2 ) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。取g=10m/s 2 则: (1)试通过计算判断小球能否滑到B 点? (2)若小球能通过B 点,求此时它对轨道的压力为多大。

动能和动能定理复习_专题训练

动能定理专题 题型1:弄清求变力做功的几种方法 等值法 1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

微元法(不推荐,但希望同学们知道这种方法) 2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( ) A、 0J B、20πJ C 、10J D、20J. 平均力法 3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少? 动能定理求变力做功法 4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长 L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

机械能守恒定律求变力做功法 5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。 题型2:弄清滑轮系统拉力做功的计算方法 图8 F1 F2 6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( ) A.100J B.150J C.200J D.条件不足,无法确定 V0 S0 α P 图11 题型3:应用动能定理简解多过程题型。 7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块

二项式定理各种题型解题技巧

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1 2n n C -,12n n C +同时

【物理】物理动能定理的综合应用练习题及答案

【物理】物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释 放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求: (1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小. 【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】 (1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理 mgR -W f = 12mv 2 W f =1.5J (2)由牛顿第二定律可知: 2 N v F mg m R -= 解得: 4.5N F N = (3)小球离开圆弧后做平抛运动根据动能定理可知: 22111 m m 22 mgh v v =- 解得: 152m/s v = 2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹

簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求: (1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小; (3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】 (1)小球离开台面到达A 点的过程做平抛运动,故有 02 3m/s tan y v gh v θ = = = 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为 2 01 4.5J 2 p E mv = =; (2)小球在A 处的速度为 5m/s cos A v v θ = = 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得 221111sin cos 22 C A mgL mgL mv mv θμθ-= - 解得 ()212sin cos 10m/s C A v v gL θμθ=+-=; (3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径; 那么对小球能通过最高点时,在最高点应用牛顿第二定律可得 2 1v mg m R ≤; 对小球从C 到最高点应用机械能守恒可得 221115 2222 C mv mgR mv mgR =+≥ 解得

高考物理专题复习 动能 动能定理练习题

2008高考物理专题复习 动能 动能定理练习题 考点:动能.做功与动能改变的关系(能力级别:Ⅰ) 1.动能 (1)定义:物体由于运动而具有的能量叫做动能. (2)计算公式:221mv E k = .国际单位:焦耳(J). (3)说明: ①动能只有大小,没有方向,是个标量.计算公式中v 是物体具有的速率.动能恒为正值. ②动能是状态量,动能的变化(增量)是过程量. ③动能具有相对性,其值与参考系的选取有关.一般取地面为参考系. 【例题】位于我国新疆境内的塔克拉玛干沙漠,气候干燥,风力强劲,是利用风力发电的绝世佳境.设该地强风的风速v =20m/s,空气密度ρ=1.3kg/m 3,如果把通过横截面积为s=20m 2的风的动能全部转化为电能,则电功率的大小为多少?(取一位有效数字). 〖解析〗时间t 内吹到风力发电机上的风的质量为 vts m ρ= 这些风的动能为 22 1mv E k = 由于风的动能全部转化为电能,所以发电机的发电功率为 W s v t E P k 531012 1?≈== ρ 2.做功与动能改变的关系 动能定理 (1)内容:外力对物体做的总功等于物体动能的变化.即:合外力做的功等于物体动能的变化. (2)表达式: 12k k E E W -=合 或k E W ?=合 (3)对动能定理的理解: ①合W 是所有外力对物体做的总功,等于所有外力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…….特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功. ②因动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关,一般以地球为参考系. ③不论做什么运动形式,受力如何,动能定理总是适用的. ④做功的过程是能量转化的过程,动能定理中的等号“=”的意义是一种因果联系的数值上相等的符号, 它并不意谓着“功就是动能的增量”,也不意谓着“功转变成动能”,而意谓着“合外力的功是物体动能变化的原因,合外力对物体做多少功物体的动能就变化多少”. ⑤合W >0时,E k2>E k1,物体的动能增加; 合W <0时,E k2

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

(完整版)排列组合二项式定理新课

20.1.1 排列的概念 【教学目标】 1.了解排列、排列数的定义;掌握排列数公式及推导方法; 2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。 3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。 【教学重难点】 教学重点:排列的定义、排列数公式及其应用 教学难点:排列数公式的推导 【教学课时】 二课时 【教学过程】 合作探究一:排列的定义 我们看下面的问题 (1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里 (2)从10名学生中选2名学生做正副班长; (3)从10名学生中选2名学生干部; 上述问题中哪个是排列问题?为什么? 概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同) 按照一定的顺序 .....排成一列,叫做从n个不同元素中取出m个元素的一个排列 ....。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二排列数的定义及公式 3、排列数:从n个不同元素中,任取m(m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导

探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n * ∈≤ 即学即练: 1.计算 (1)4 10A ;(2)25A ;(3)3355A A ÷ 2.已知101095m A =???L ,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( ) A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C 典型例题 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。 解:略 点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。 变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的 排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中,m =n 全排列数:(1)(2)21!n n A n n n n =--?=L (叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)4 4A (3))!1(-?n n 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3 355A A ÷有怎样的关系? 那么,这个结果有没有一般性呢? 排列数公式的另一种形式:

(完整版)动能定理和机械能守恒定律的综合应用.docx

第 15 讲动能定理和机械能守恒定律的综合应用4、如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮, 、如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ =0.2 ,杆的竖直部一条细绳将物块 A 和 B 连接, A 的质量为 4m, B 的质量为 m,开始时将 B 按在地面上不动,然后 1 分光滑 . 两部分各套有质量均为 1 kg 的小球 A 和 B,A、B 球间用细绳相连 . 此时 A、B 均处于静止放开手,让 A 沿斜面下滑而 B 上升,物块 A 与斜面间无摩擦,设当 A 状态,已知: OA=3 m,OB=4 m.若 A 球在水平拉力 F 的作用下向右缓慢地移动 1 m(取 g=10 m/s2) , 沿斜面下滑 x 距离后,细绳突然断了,求物块 B 上升的最大高度 H. 那么 (1)该过程中拉力 F 做功多少? (2)若用 20 N 的恒力拉 A 球向右移动 1 m 时, A 的速度达 到了 2 m/s ,则此过程中产生的内能为多少? 、如图所示,跨过定滑轮的轻绳两端的物体 A 和 B 的质量分别为 M和 m,物体 A 在水平面上 .A由 A、 B,直角尺的顶点 O 2、如图所示,质量分别为 2m 和 3m 的两个小球固定在一根直角尺的两端 5 静止释放,当 B 沿竖直方向下落 h 时,测得 A 沿水平面运动的速度为 v ,这时细绳与水平面的夹角 处有光滑的固定转动轴 .AO、BO 的长分别为 2L 和 L.开始时直角尺的AO 部分处于水平位置而 B 在 O 为θ,试分析计算 B 下降 h 过程中, A 克服地面摩擦力做的功 .( 滑轮的质量和摩擦均不计 ) 的正下方 .让该系统由静止开始自由转动,求: (1)当 A 到达最低点时, A 小球的速度大小v; (2)开始转动后 B 球可能达到的最大高度h。 3、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在 B 点与圆弧相切, 圆弧半径为R. 一个质量为m的物体 ( 可以看做质点 ) 从直轨道上的P 点由静止释放,结果它能在两 轨道间做往返运动. 已知 P 点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ. 求: (1)物体做往返运动的整个过程中在AB轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力; 、一质量为 1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s,下列说法中错误的6 (3)为使物体能顺利到达圆弧轨道的最高点D,释放点距 B 点的是( g 是 10m/s 2)() 距离 L′应满足什么条件? A.提升过程中手对物体做功 12JB.提升过程中合外力对物体做功12J - 1 -

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能定理的综合应用

动能定理的综合应用 1. 如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道 的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑 块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出2 (g取10m/s)?求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2?如图所示,质量为m= 5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L = 1.6m , OA与0B的夹角为60o, C为悬点O正下方地面上一点,OC间的距离 h = 4.8m,若不计空气阻力及一切能量损耗,g= 10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小

3、(14分)如图所示,一个人用一根长1m只能承受46N拉力的绳子,拴着一个 质量为1kg的小球,在竖直平面内作圆周运动,已知圆心O离地面h = 6m。转动 中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水 平距离。(取g = 10m/s2) J / 4. 在光滑的水平面桌上有质量为m=0.2kg的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧 原来处于静止状态,具有弹性势能E P=10.6J,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为 为R=0.625m的竖直放置的光滑半圆形轨道。取g=10m/s2则: (1) 试通过计算判断小球能否滑到B点? (2) 若小球能通过B点,求此时它对轨道的压力为多大。

人教版高一物理动能定理专题练习题

动能定理练习 例1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 例3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 : C .两物块速度变化相等 D .水平拉力对两物块做功相等 例5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 例6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 例7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D . 例8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) ~ A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 例9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 例10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 例11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J \ 例12.(多选)一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度为2m/s ,则下列说法中正确的是( ) A .手对物体做功12J B .合外力对物体做功12J C .合外力对物体做功2J D .物体克服重力做功10J 例13.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N 的水平拉力后,A 和B 一起前进了4m ,如图1所示。在这个过程中B 对A 做 的功等于( ) A .4J B .12J C .0 D .-4J — 图1

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

[专题分类]2020高三物理一轮复习练习卷:动能定理

动能定理 题型一 动能定理的理解 【例1】 (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( ) A .小于拉力所做的功 B .等于拉力所做的功 C .等于克服摩擦力所做的功 D .大于克服摩擦力所做的功 【变式】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是( ) A .合外力为零,则合外力做功一定为零 B .合外力做功为零,则合外力一定为零 C .合外力做功越多,则动能一定越大 D .动能不变,则物体合外力一定为零 题型二 动能定理在直线运动中的应用 【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A 点由静止释放滑下,最终停在水平轨道上的B 点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A 、B 两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为( ) A .tan θ B .tan α C .tan(θ+α) D .tan(θ-α) 【变式1】如图所示,质量为m 的小球,从离地面H 高处从静止开始释放,落到地面后继续陷入泥中h 深 度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确( ) A .小球落地时动能等于mgH B .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能 C .整个过程中小球克服阻力做的功等于mg (H +h ) D .小球在泥土中受到的平均阻力为mg (1+H h ) 【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

相关主题
文本预览
相关文档 最新文档