当前位置:文档之家› 水体自净的程度指标

水体自净的程度指标

水体自净的程度指标
水体自净的程度指标

水体自净程度的指标

背景资料

各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。

有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。

表6-1 水体中三氮检出的环境化学意义

NH3—N NO2—N NO3—N 三氮检出的环境化学意义- - - 清洁水

+ - - 表示水体受到新近污染

+ + - 水体受到污染不久,且正在分解中

- + - 污染物已正在分解,但未完全自净

- + + 污染物已基本分解完全,但未自净

- - + 污染物已无机化,水体已基本自净

+ - + 有新的污染,在此前的污染物已基本自净

+ + + 以前受到污染,正在自净过程,且又有新的污染物

一、实验目的

1. 掌握测定三氮的基本原理和方法。

2. 了解测定三氮对环境化学研究的作用和意义。

二、仪器

(1) 玻璃蒸馏装置。

(2) 分光光度计。

(3) 电炉:220V/1KW。

(4) 比色管:50mL。

(5) 移液管:1mL、2mL、5mL,10mL,25mL。容量瓶:250mL。

三、实验步骤

(一)氨氮的测定——纳氏试剂比色法

1. 原理

氨与纳氏试剂反应可生成黄色的络合物,其色度与氨的含量成正比,可在425nm波长下比色测定,检出限为0.02μg/mL。如水样污染严重,需在pH为7.4的磷酸盐缓冲溶液中预蒸馏分离。

2. 试剂

(1) 不含氨的蒸馏水:水样稀释及试剂配制均用无氨蒸馏水。配制方法包括蒸馏法(每升蒸馏水中加入0.1mL浓硫酸,进行重蒸馏,流出物接受于玻璃容器中)和离子交换法(让蒸馏水通过强酸型阳离子交换树脂来制备较大量的无氨水)。

(2) 磷酸盐缓冲溶液(pH为7.4):称14.3g 磷酸二氢钾和68.8g磷酸氢二钾,溶于水中并稀释至1L。配制后用pH计测定其pH值,并用磷酸二氢钾或磷酸氢二钾调至pH为7.4。

(3) 吸收液:2%硼酸或0.01mol/L 硫酸。

①2%硼酸溶液:溶解20g硼酸于水中,稀释至1L。

②0.01mol/L硫酸:量取20mL0.5mol/L的硫酸,用水稀释至1L。

(4) 纳氏试剂:称取5g碘化钾,溶于5mL水中,分别加入少量氯化汞(HgCl2)溶液(2.5 gHgCl2溶于40mL水中,必要时可微热溶解),不断搅拌至微有朱红色沉淀为止。冷却后加入氢氧化钾溶液(15g氢氧化钾溶于30mL水中),充分冷却,加水稀释至100mL。静置一天,取上层清液贮于塑料瓶中,盖紧瓶盖,可保存数月。

(5) 酒石酸钾钠溶液:称取50g 酒石酸钾钠(KNaC4H4O6·4H2O)溶于水中,加热煮沸以驱除氨,冷却后稀释至100mL。

(6) 氨标准溶液:称取3.819 g无水氯化铵(NH4Cl)(预先在100℃干燥至衡重),溶于水中,转入1000mL容量瓶中,稀释至刻度,即配得1.00mg/NH3-N/mL 的标准储备液。取此溶液1.00mL稀释至100mL,即为10μg NH3-N/mL的标溶液。

较清洁水样可直接测定,如水样受污染一般按下列步骤进行。

(1) 水样蒸馏:为保证蒸馏装置不含氨,须先在蒸馏瓶中加200mL无氨水,加10mL磷酸盐缓冲溶液、几粒玻璃珠,加热蒸馏至流出液中不含氨为止(用纳氏试剂检验),冷却。然后将此蒸馏瓶中的蒸馏液倾出(但仍留下玻璃珠),量取水样200mL,放入此蒸馏瓶中(如预先试验水样含氨量较大,则取适量的水样,用无氨水稀释至200mL,然后加入10mL磷酸盐缓冲液)。另准备一只250mL的容量瓶,移入50 mL吸收液(吸收液为0.01 mol/L硫酸或2%硼酸溶液),然后将导管末端浸入吸收液中,加热蒸馏,蒸馏速度为每分钟6~8mL,至少收集150mL馏出液,蒸馏至最后1~2min时,把容量瓶放低,使吸收液的液面脱离冷凝管出口,再蒸馏几分钟以洗净冷凝管和导管,用无氨水稀释至250mL,混匀,以备比色测定。

(2) 测定:如为较清洁的水样,直接取50mL澄清水样置于50mL比色管中。一般水样则取用上述方法蒸馏出的水样50mL,置于50mL比色管中。若氨氮含量太高可酌情取适量水样用无氨水稀释至50mL。

另取8支50mL比色管,分别加入铵标准溶液(含氨氮10μg/mL)0.00、0.50、1.00、2.00、3.00、5.00、7.00、10.00mL,加无氨水稀释至刻度。

在上述各比色管中,分别加入1.0mL酒石酸钾钠,摇匀,再加1.5mL纳氏试剂,摇匀放置10min,用1cm比色管,在波长425nm处,以试剂空白为参比测定吸光度,绘制标准曲线,并从标准曲线上查得水样中氨氮的含量(μg/mL)。

(二)亚硝酸盐氮的测定—盐酸萘乙二胺比色法

1. 原理

在pH 2.0~2.5时,水中亚硝酸盐与对氨基苯磺酸生成重氮盐,再与盐酸萘乙二胺偶联生成红色染料,最大吸收波长为543nm,其色度深浅与亚硝酸盐含量成正比,可用比色法测定,检出限为0.005μg/mL,测定上限为0.1μg/mL。

(1) 不含亚硝酸盐的蒸馏水:蒸馏水中加入少量高锰酸钾晶体,使呈红色,再加氢氧化钡(或氢氧化钙),使呈碱性,重蒸馏。弃去50mL初馏液,收集中间70%的无锰部分。也可于每升蒸馏水中加入1mL浓硫酸和0.2mL硫酸锰溶液(每100mL蒸馏水中含有36.4g MnSO4·H2O),及1~3mL0.04%高锰酸钾溶液使呈红色,然后重蒸馏。

(2) 亚硝酸盐标准储备液:称取1.232g 亚硝酸钠溶于水中,加入1mL氯仿,稀释至1000mL 。此溶液每毫升含亚硝酸盐氮约为0.25mg。由于亚硝酸盐氮在湿空气中易被氧化,所以储备液需标定。

标定方法:吸取50.00mL 0.050mol/L高锰酸钾溶液,加5mL浓硫酸及50.00mL亚硝酸钠储备液于300mL具塞锥型瓶中(加亚硝酸钠贮备液时需将吸管插入高锰酸钾溶液液面以下)混合均匀,置于水浴中加热至70~80℃,按每次10.00mL的量加入足够的0.050 mol/L草酸钠标准溶液,使高锰酸钾溶液褪色并过量,记录草酸钠标准溶液用量(V2);再高锰酸钾溶液滴定过量的草酸钠到溶液呈微红色,记录高锰酸钾溶液用量(V1)。用50mL不含亚硝酸盐的水代替亚硝酸钠贮备液,如上操作,用草酸钠标准溶液标定高锰酸钾溶的浓度,按下式计算高锰酸钾溶液浓度(mol/L):ρ1/5KMnO4=0.0500*V4/V3

按下式计算亚硝酸盐氮标准储备液的浓度:

ρ亚硝酸盐氮=(V1*ρ1/5KMnO4-0.0500*V2)*7.00*1000/50.00

式中,ρ1/5KMnO4是经标定的高锰酸钾标准溶液的浓度,mol/L;V1是滴定标准储备液时,加入高锰酸钾标准溶液总量,mL;V2是滴定亚硝酸盐氮标准储备液时,加入草酸钠标准溶液总量,mL;V3是滴定水时,加入高锰酸钾标准溶液总量,mL;V4是滴定水时,加入草酸钠标准溶液总量,mL;7.00是亚硝酸盐氮(1/2 N)的摩尔质量,g/mol;50.00是亚硝酸盐标准储备液取用量,mL;0.0500是草酸钠标准溶液浓度(1/2 Na2C2O4,0.0500mol/L)。

(3) 亚硝酸盐使用液:临用时将标准贮备液配制成每毫升含1.0μg的亚硝酸盐氮的标准使用液。

(4) 草酸钠标准溶液(1/2 Na2C2O4,0.0500mol/L):称取3.350g 经105℃干燥2h的优级纯无水草酸钠溶于水中,转入1000mL容量瓶中加水稀释至刻度。

(5) 高锰酸钾溶液(1/5KMnO4,0.050mol/L):溶解1.6 g 高锰酸钾于约1.2L 水中,煮沸0.5h至1h,使体积减小至1000mL左右,放置过夜,用G3号熔结玻璃漏斗过滤后,滤液贮于棕色试剂瓶中,用上述草酸钠标准溶液标定其准确浓度。

(6) 氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al (SO4)2·12H2O]于1 L水中,加热到60℃,在不断搅拌下慢慢加入55mL 浓氨水,放置约1h,转入试剂瓶内,用水反复洗涤沉淀,至洗液中不含氨、氯化物、硝酸盐和亚硝酸盐为止。澄清后,把上层清液尽量全部倾出,只留浓的悬浮物,最后加100mL水。使用前应振荡均匀。

(7) 盐酸萘乙二胺显色剂:50mL冰醋酸与900mL水混合,加入5.0g对氨基苯磺酸,加热使其全部溶解,再加入0.05g盐酸萘乙二胺,搅拌溶解后用水稀释至1L。溶液无色,贮存于棕色瓶中,在冰箱中保存可稳定一个月(当有颜色时应重新配制)。

3. 步骤

(1) 水样如有颜色和悬浮物,可在每100mL水样中加入2mL 氢氧化铝悬浮液,搅拌后,静置过滤,弃去25mL初滤液。

(2) 取50.00mL澄清水样于50mL比色管中(如亚硝酸盐氮含量高,可酌情少取水样,用无亚硝酸盐蒸馏水稀释至刻度)。

(3)移取1.20mL标定好的0.2238mg/mL的亚硝酸盐氮使用液于250mL的容量瓶,蒸馏水定容至标线,即可得浓度为1.07ug/mL的亚硝酸盐氮标准溶液。

(4) 取7支50mL比色管,分别加入含亚硝酸盐氮1μg/mL的标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00mL,用水稀释至刻度。

在上述各比色管中分别加入2mL显色剂,20 min后在540nm处,用2cm 比色皿,以试剂空白作参比测定其吸光度,绘制标准曲线。从标准曲线上查得水样中亚硝酸盐氮的含量(μg/mL)。

(三)硝酸盐氮的测定—二磺酸酚比色法

1.原理

浓硫酸与酚作用生成二磺酸酚,在无水条件下二磺酸酚与硝酸盐作用生成二磺酸硝基酚,二磺酸硝基酚在碱性溶液中发生分子重排生成黄色化合物,最大吸收波长在410nm处,利用其色度和硝酸盐含量成正比,可进行比色测定。少量的氯化物即能引起硝酸盐的损失,使结果偏低。可加硫酸银,使其形成氯化银沉淀,过滤去除,以消除氯化物的干扰,(允许氯离子存在的最高浓度为10μg/mL,超过此浓度就要干扰测定)。亚硝酸盐氮含量超过0.2 μg/mL时,将使结果偏高,可用高锰酸钾将亚硝酸盐氧化成硝酸盐,再从测定结果中减去亚硝酸盐的含量。本法的检出限为0.02μg/mL硝酸盐氮,检测上限为2.0μg/mL。

2.试剂

(1) 二磺酸酚试剂:称取15g精制苯酚,置于250mL三角烧瓶中,加入100mL 浓硫酸,瓶上放一个漏斗,置沸水浴内加热6h,试剂应为浅棕色稠液,保存于棕色瓶内。

(2) 硝酸盐标准储备液:称取0.7218g分析纯硝酸钾(经105℃烘4 h),溶于水中,转入1000mL容量瓶中,用水稀释至刻度。此溶液含硝酸盐氮100μg/mL。如加入2mL氯仿保存,溶液可稳定半年以上。

(3) 硝酸盐标准溶液:准确移取100mL硝酸盐标准储备液,置于蒸发皿中,在水浴上蒸干,然后加入4.0mL二磺酸酚,用玻棒磨擦蒸发皿内壁,静置10min,加入少量蒸馏水,移入500mL容量瓶中,用蒸馏水稀释至标线,即为20μ

gNO3-N/mL 的标准溶液(相当于88.54μg NO3-)。

(4) 硫酸银溶液:称取4.4g硫酸银,溶于水中,稀释至1L,于棕色瓶中避光保存。此溶液1.0mL相当于1.0mg 氯(Cl-)。

(5) 高锰酸钾溶液(1/5KMnO4,0.100 mol/L):称取0.3g高锰酸钾,溶于蒸馏水中,并稀释至1L。

(6) 乙二胺四乙酸二钠溶液:称取50g乙二胺四乙酸二钠,用20mL蒸馏水调成糊状,然后加入60mL浓氨水,充分混合,使之溶解。

(7) 碳酸钠溶液(1/2Na2CO3,0.100mol/L):称取5.3g无水碳酸钠,溶于1L 水中。实验用水预先要加高锰酸钾重蒸馏,或用去离子水。

3. 步骤

(1) 标准曲线的绘制:分别吸取硝酸盐氮标准溶液0.00、1.00、2.00、4.00、10.00、15.00、40.00mL于50mL比色管中,加入1.0mL1mol/L的盐酸溶液,用蒸馏水稀释至刻度,摇匀。用1mL比色皿,以试剂空白作参比,于波长220nm

处测定吸光度A220,然后在275nm处测其吸光度A275

,则A NO3-

-N

=A220-2A275。

(2) 样品的测定

水样的测定:取水样40.00mL至50mL比色管,加入1mol/L盐酸溶液,再用水样定容,摇匀,测吸光度。根据标准曲线,计算出水样中硝酸盐氮的含量(μg/mL)。

四、数据处理

绘制NH3-N、NO2--N、NO3--N的浓度与吸光度的工作曲线,根据工作曲线和样品吸光度,计算水样中“三氮”的含量;并比较水样中“三氮”的含量,评价水体的自净程度。

1、亚硝酸盐氮的测定

在50mL比色管中加入0.5mL含亚硝酸盐氮 1.07ug/mL的标准溶液其浓度=0.5·1.07/50=0.01ug/mL,因此,其标线浓度分别为0、0.01、0.02、0.04、0.06、0.09、0.11ug/mL,其标线如下:

水样A=0.064 扣除空白后A=0.06 则C=0.043ug/mL

2、氨氮的测定

在50mL比色管中加入1mL铵标准溶液(含氨氮10μg/mL)0.50mL

其浓度=10·0.50/50=0.1ug/mL,因此,标线浓度分别为0、0.1、0.2、0.4、0.6、1.0、1.4、2.0ug/mL,其标线如下:

水样吸光度A=0.020扣除空白A=020-011=0.009求得C=0.09ug/mL。

2、硝酸盐氮的测定

在50mL比色管中加入1.00mL硝酸盐氮标准溶液(10ug/mL)

其浓度=1.00·10/49=0.20ug/mL,因此其标线浓度分别为0.20、0.40、0.80、2.00、3.00、8.00ug/mL,其标线如下:

水样吸光度A220=0.3218 ,0.3240 A275=0.1132

水样吸光度平均值=(0.3218+0.3240)/2=0.3229

A较=A220-2A275=0.3229-2*0.1132=0.0965

则其硝氮浓度C=0.26ug/mL

五、实验结论

由实验测得水样中氨氮浓度为0.09ug/mL,亚硝氮浓度为0.04ug/mL,硝氮浓度为0.26g/mL。

水体自净程度分析:由实验结果知道所测水样中氨氮的含量比较低,亚硝氮含量

相对较低,而硝氮含量相对较高。因此水样近期有新的污染,

在此前的污染物已基本自净。

分析:1、在实际测量中,标准曲线系列及水样的显色时间都略有不同,对结果有一定影响。

2、由于硝酸盐氮的标准曲线系列不是由同一个人配制的,影响曲线的线

性。

3、水样在蒸馏的时候,有一小段时间,上面的接管处没有接好,致使有

些蒸汽溢出,会对结果有一定影响。

六、注意事项

1、随着水不断蒸馏下来,液面不断上升,应调节升降台,不断降低锥形瓶,导

管末端浸没一小段即可,以免倒吸。

2、实验中的标准使用液应摇匀后再使用,加入显色剂后也需摇匀后在静置显色。

3、显色时间应控制好,并尽量保证标准系列测定的显色时间差不多一致。

4、测氨氮时,刚开始蒸馏时,将电炉开到最大,使快速沸腾,开始蒸馏;而关

掉电炉前,一定先将吸收液的液面脱离冷凝管末端出口,以免出现倒吸,而且溶液需冷却后再标定。

5、移液时移取同一试剂或标定应为同一操作,从而避免人为误差。

6、用分光光度计测量时,需要润洗充分,器壁也应用擦镜纸擦净。

七、思考题

1. 如何通过测定三氮的含量来评价水体的“自净”程度?如水体中仅含有NO3--N,而NH4+和NO2-未检出,说明水体“自净”作用进行到什么阶段?如水体中既有大量NH3-N,又有大量NO3--N,水体污染和“自净”状况又如何?

答:(1)由于生活污水中含氮有机物受微生物作用分解成氨氮,而且焦化、合成氨等工业废水和农田排水中的氮含量也主要以氨氮形式存在,因此水中氨氮的存在可指示近期是否有新的污染物出现。

亚硝氮是氮循环的中间产物,因此水中亚硝氮可指示水体中的污染物已被分解,但并未被分解完全,即为自净完全。

硝酸盐是在有氧环境中最稳定的含氮化合物,也是含氮有机化合物经无机化作用最终阶段的分解产物。因此,水中的硝酸氮可指示污染物被分解彻底即被无机化,自净完全

综述所述,根据水中的三氮的含量就可以综合判断水体自净情况。

(2)如水体中仅含有NO3--N,而NH4+和NO2-未检出,说明污染物已无机化,水体已基本自净。如水体中既有大量NH3-N,又有大量NO3—N,则说明有新的污染,在此前的污染已基本自净

2. 用纳氏比色法测定氨氮时主要有哪些干扰,如何消除?

答:由于脂肪胺,芳香胺,丙酮,醇类和有机氯胺类等有机化合物,以及铁,锰,镁和硫等无机离子,会造成水的异色或浑浊而影响比色。为此,需对水样进行絮凝沉淀过滤或蒸馏预处理。可在酸性条件下加热去除易挥发的还原性干扰物质。对于金属离子的干扰,可加入适量的掩蔽剂加以消除。

3. 在三氮测定时,要求蒸馏水不含NH3、NO2-、NO3-,如何检验?

答:将蒸馏水用纳氏试剂比色法测其吸光度,若其吸光度十分小,则说明蒸馏水不含氨氮。同理,将蒸馏水分别用盐酸萘乙二胺比色法和紫外分光光度法测定,其吸光度(紫外需校正)十分小,则说明蒸馏水中也不含亚硝氮和硝氮。

4. 在蒸馏比色测定氨氮时,为什么要调节水样的pH在7.4作用?pH偏高或偏低对测定结果有何影响?

答:(1)纳氏试剂分光光度法测定氨氮时,样品溶液的pH值对其吸光度影响很大,进而影响着分析结果,在一定条件下,显色后样品溶液的吸光度随其pH值的增大而增大,当pH值>12.59时,吸光度趋于稳定,而且如果水样的酸度过大,pH 值偏小,水样测定时加入纳氏试剂后,水样成酸性,则不会出现黄棕色络合物而出现不显色或出现红色沉淀这种异常现象,用分光光度计测试其结果时显示为零

强氧化性物会将亚硝酸盐氧化成硝酸盐,浓度不断下降从而干扰测定。

消除:每100mL水样中加入2mL氢氧化铝悬浮液,搅拌后,静置过滤,弃去25mL初滤液。再在向水中加入过量的草酸钠溶液(即再向水中加入一滴低浓度高锰酸钾溶液,颜色立即退去)。

第一章 水质与水体自净 2教案

第一篇水质净化与水污染控制工程 引言 目前,水污染是环境污染问题中最为迫在眉睫的严重事件,直接威胁到工农业生产甚至人类的生存。因此,水环境工程学的发展最为各国重视,技术发展也最为迅速,可以说,它带动了其他各项技术的迅猛发展,使各学科发展成为一个科学整体。在我国,环境专业的高等教育中,水质净化与水污染治理是最为重要的教学内容。 问题的引入 ●水质如何净化,借助何种力量? ●净化到何种程度? ●水污染治理的技术是否有针对性?可有万能的水处理技术? ●水处理技术有哪几种? 第1篇教学内容: 水的物理化学处理方法★ 水的生物化学处理方法★ 水的深度处理与回用 第1章水质与水体自净(2学时) 本章教学内容: 水循环与水污染,水质指标,废水的成分与性质,水体自净,水处理的基本方法本章教学要求: (1)了解地球水资源状况,了解常用的水质标准,掌握常用的水质指标; (2)掌握水体自净的原理,了解水环境容量;掌握水和废水处理的基本原则和基本方法。本章教学重点: 水污染的分类、水质指标、水体自净、水处理的基本原则与方法 本章习题:P611, 19, 20, 22 1.1水环境 1.1.1 地球的水循环 我们生活的地球表面积的大约3/4都是水域,陆地面积仅占1/4左右,分布在欧亚大陆、非洲、北美洲、南美洲、澳洲等主要陆地和无数岛屿上。因此,水环境是我们生存环境中最重要的组成部分,研究水环境的意义也就不言而喻了。 地球上水的总量为1.386 x 109 km3,这一庞大的数字说明,水是地球及其丰富的自然资源。水能够以气态、固态和液态这三种基本形态存在于自然界之中,形成了地球水圈(Global hydrosphere),其储量分布情况如表1.1所示。

水体自净程度的指标.

实验七水体自净程度的指标 各种形态氮的相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中含氮类化合物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮(NH4+-N);亚硝酸盐中的氮称为亚硝酸盐氮(NO2--N);硝酸盐中的氮称为硝酸盐氮(NO3--N)。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表7-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。 表7-1 水体中三氮检出的环境化学意义 NH3-N NO2--N NO3--N 三氮检出的环境化学意义 清洁水 + - - 表示水体受到新近污染 + + - 水体受到污染不久,且正在分解中 - + - 污染物已分解,但未完全自净 - + + 污染物已基本分解完全,但未自净 - - + 污染物已无机化,水体已基本自净 + - + 有新的污染,在此前的污染已基本自净 + + + 以前受到污染,正在自净过程,且又有新 的污染

水体的自净作用及自净过程.

水体的自净作用及自净过程 自然环境包括水环境对污染物质都具有一定的承受能力,即所谓环境容量。水体能够在其环境容量的范围内,经过水体的物理、化学和生物的作用,使排入污染物质的浓度和毒性随时间的推移,在向下游流动的过程中自然降低,称之为水体的自净作用。也可简单地说,水体受到污染后,靠自然能力逐渐变洁的过程称为水体的自净。 水体的自净过程很复杂,按其机理划分有: (1)物理过程。其中包括稀释、混合、扩散、挥发、沉淀等过程。水体中的污染物质在这一系列的作用下,其浓度得以降低。稀释和混合作用是水环境中极普遍的现象,又是比较复杂的一项过程,它在水体自净中起着重要的作用。 (2)化学及物理化学过程。污染物质通过氧化、还原、吸附、凝聚、中和等反应使其浓度降低。 (3)生物化学过程。污染物质中的有机物,由于水体中微生物的代谢活动而被分解、氧化并转化为无害、稳定的无机物,从而使浓度降低。 总之,水体的自净作用包含着十分广泛的内容,任何水体的自净作用又常是相互交织在一起的,物理过程、化学和物化过程及生物化学过程常常是同时同地产生,相互影响,其中常以生物自净过程为主,生物体在水体自净作用中是最活跃、最积极的因素。例如:河流对污染物的净化过程大致如下:当污染物质排入河流后,首先被流水混合、稀释扩散,比水重的粒子即沉降堆集在河床上;接着可氧化的物质被水中的氧所氧化;有机物质通过水中微生物的作用进行生物化学的氧化分解还原成无机物质;与此同时,河流表面又不断地从大气获得氧气,补充水中被消耗掉的溶解氧;阳光可以杀死病原微生物;…。这样经过一段时间,河水流到一定距离后就恢复到原来的“清洁”状态。水的自净能力与水体的水量、流速等因素有关。水量大、流速快,水的自净能力就强。但是,水对有机氯农药、合成洗涤剂、多氯联苯等物质以及其它难于降解的有机化合物、重金属、放射性物质等的自净能力是及其有限的。

什么是水体自净

第七章 1、什么是水体自净?怎样理解水环境容量?怎样理解水污染的概念? (1)水体能够在其环境容量的范围以内,通过物理、化学、生物的作用,使排入的污染物质 的浓度和毒性随着时间的推移在向下游流动的过程中自然降低,称为水体的自净作用。 (2)自然环境包括水环境对污染物质都具有一定的承受能力,既所谓的环境容量。 (3)水污染是指排入水体的污染物在数量上超过该物质在水体中的本底含量和水体的环境 容量,从而导致了水体的物理特征、化学特征和生物特征发生不良变化,破坏了水中固有的生态系统,破坏了水体的功能及其在经济发展和人民生活中的作用。 2、水体的主要污染物及其危害? (1)点污染源:生活污水和工业废水。(2)面污染源(3危害:引起急性或慢性中毒、致癌作用、发生以水为媒介的传染病、间接影响。 3、水体的主要污染物有那些?污水的水质指标包括那些内容? (1)悬浮物、耗氧有机物、植物性营养物、重金属、难降解有机物、酸碱污染、石油类、放射性物质、热污染、病原体。 4、水污染防治对策有那些?效果如何? (1)“防”,污染源的控制、,减少污染物的排放 (2)“治”,废水无害化 (3)“管”,管理控制对策 5、污水处理技术包括那些类型 废水的物理处理法、废水的化学处理法、废水的生物处理法 6、大气污染源有哪几种?主要污染物有那些? (1)生活污染源、工业污染源、交通污染源 (2)颗粒污染物、气态污染物 7、在大气污染治理中,对颗粒物的治理方式有那些? 可以通过改变燃料结构、改进燃烧方式、安装除尘装置 8、治理气态污染物的主要方式有那些?

SO2和NO X的治理、汽车尾气的治理 9、汽车尾气污染与气态污染物的异同?常用的治理方式有那些? 10、全球气候变暖的主要因素是什么?其主要的危害是什么? 主要是CO2的增加。主要危害:危害自然生态系统、威胁人类的食品供应和居住环境。 11、酸雨的主要类型是哪些?它产生的原因与主要危害是什么? (1)主要有硫酸型酸雨和硝酸型酸雨 (2)主要是工业排放大量的二氧化硫和氮氧化物。危害有:危害生态系统、对森林造成危害、对植物的影响、对建筑物的影响、对人身体健康的影响。 12、臭氧层破坏的主要因素是什么?臭氧层空洞的存在会带来什么后果? (1)主要是人造化工制品氟氯烃和哈龙污染大气的结果。 (2)打乱自然界中的食物链和食物网,导致生物物种灭绝,产生粮食危机,还会使全球变暖,影响人类的居住环境。 13、固体废物的定义是什么?它具有什么样的特性? (1)是指在社会生产、流通、和消费等一系列活动中产生的,在一定时间和地点无法利用而被丢弃的污染环境的固体半固体废弃物质。 (2)污染土壤、污染水体、污染大气、影响环境卫生和景观 14、固体废物的污染途径与水、气污染有什么不同? 15、什么是固体废物的综合防治原则?如何处理它们之间的关系? 减量化、资源化、无害化 16、一般的固体废物处理处置技术有那些?它与最终处置技术是否一样? 预处理、固化处理、热化学处理、生物处理技术 最终处理包括陆地处理和海洋处理 17、什么是危险废物?如何理解《巴塞尔公约》与危险废物之间的关系?

水污染常规分析指标

水污染常规分析指标是什么? 水污染常规分析指标主要有: (1)臭味,是判断水质优劣的感官指标之一,清洁水是无臭的,受到污染后才产生臭味。 (2)水温,是水体一项物理指标。水体水温升高.表明受到新污染源的污染。 (3)浑浊度.地面水浑浊主要是泥土、有机物、微生物等物质造成的。浑浊度升高表明水体受到胶体物质污染。我国规定饮用水的浑浊度不得超过5度。 (4)pH值,是水中氢离子活度的负对数,pH值为7表示水为中性,大于7 的水呈碱性,小于7的水呈酸性。清洁天然水的pH值为6.5—8.5,PH值异常,表示水体受到酸碱性的污染。 (5)电导率,是测定水中盐类含量的一个相对指标。溶解在水中的各种盐类都是以离子状态存在的,因此具有导电性,所以导电率的大小反映出水中可溶性盐类含量的多少。 (6)溶解性固体.主要是溶于水中的盐类,也包括溶于水中的有机物、能穿透过滤器的胶体和微生物,因此溶解性固体的大小反映上述物质溶于水中的多少。 (7)悬浮性固体,包括不溶于水的淤泥、粘土、有机物、微生物等细微物质。悬浮物的直径一般在2mm以下。它是造成水质浑浊的主要来源,是衡量水体污染程度的指标之一。 (8)总氮,是水中台有机氯、氨氮、亚硝酸盐氮和硝酸盐氯的总量,简称总氮,主要反映水体受污染的程度。 (9)总有机碳(TCO).是指溶解于水中的有机物总量,折合成碳计算。总有机碳含量是反映废水中有机物总量,是水体污染程度的重要指标。

(10)溶解氧(DO),是评价水体自净能力的指标。溶解氧含量较高,表示水体自净能力强;反之表示水体中污染物不易被氧化分解,此时厌氧性菌类就会大量繁殖,使水质变臭。 (11)生化需氧量或生化耗氧量(一般指五日生化学需氧量)BOD,水中有机物在微生物作用下,进行生物氧化,从而消耗了水中的氧。因此生化需氧量的大小能反映水体中有机物质含量的多少、说明水体受有机物污染的程度。 (12)化学需氧量(COD),是指用化学氧化剂氧化水中需氧污染物质时所消耗的氧量,主要反映水体受有机物污染的程度。COD数值越大,说明水体受污染越严重。 (13)细菌总数,反映水体受到生物性污染的程度。细菌总数增多表示水体的污染状况恶化。 (14)大肠菌群,是表示水体受人畜粪便污染的程度。大肠菌群越高,水体污染越重。我国生活饮用水水质卫生标准规定大肠菌指数每升水不得大于3个。 什么叫化学需氧量(COD)? 所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KMnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中

水体自净作用

《景区环境影响评价》,石强等,化学工业出版社,北京,2005.7,第一版 水体中的污染物在没有人工净化的措施的情况下,其浓度随着时间和空间的推移而逐渐降低,逐渐恢复原有水质的过程即成为水的自净。实际上,水体自净可以看作是污染物在水中的迁移、转化和衰减变化的过程。 从机制方面讲可以将水体自净分为物理自净、化学自净、生物自净三类。他们往往是同时发生而又相互影响的。 1,物理自净 物理自净作用主要指的是污染物在水体中的混合稀释和自然沉淀过程。沉淀作用指的是排入水体的污染物中含有微小的颗粒,如颗粒态的重金属、虫卵等由于流速较小而逐渐沉入水底。污染物沉淀对水质来说是净化,但对底泥来说则污染物反而增加。混合稀释作用只能降低水中污染物的浓度,不能减少其总量。水体的混合稀释作用主要由紊动扩散作用、推流作用和离散作用引起。 2,化学自净 氧化还原反应是水体化学净化的重要作用。流动的水流通过水面波浪不断将大气中的氧气溶入,氧化其中的污染物,如某些重金属离子可因氧化而生成难溶物(如铁、锰等)而沉降析出;硫化物可氧化为硫代硫酸盐而被净化。还原作用对水体净化也有作用,但这类反应多在微生物作用下进行。因天然水体接近中性,左右酸碱反应在水体中的作用不大。天然水体中含有各种各样的胶体,如硅、铝、铁等的氢氧化物、黏土颗粒和腐殖质等,由于有些微粒具有较大的表面积,另有一些物质本身就是凝聚剂,这就是天然水体所具有的混凝沉淀做用,从而使有些污染物随着这些作用从水中去除。 3,生物自净 生物自净的基本过程是水中微生物(尤其是细菌)在溶解氧充分的情况下,将一部分有机污染物当作食饵耗掉,将另一部分有机污染物氧化分解成无害的简单无机物。影响生物作用的关键是:溶解氧的含量、有机污染物的性质、浓度以及微生物的种类、数量等。生物自净的快慢与有机污染物的数量和性质有关。

浅析河流水体自净能力

浅析河流水体自净能力 摘要:分析了河流自净过程,并综述了影响水体自净能力的因素,主要包括:污染物质种类与性质、水体性质、水生生物、水中的溶解氧、其他环境因素;同时还阐述了河水体自净能力定性分析,主要包括物理自净能力、化学自净能力和生物自净能力。 关键词:水体污染自净能力 河流作为最终的陆源污染物排放途径,具有一定的自然净化功能。它可以通过稀释、降解、转化和运移,使一部分污染物无害化或降低负荷,对保护陆地生态环境和减少人类治污压力有积极作用。如何正确地评价河流的自净能力,合理地制定排污方案,对水资源和水环境保护有重要意义。 一、影响水体自净能力的因素 水体自净是一个比较复杂的过程[1],影响自净能力的因素很多且相互联系,这些因素主要有以下几个方面: 1.污染物质种类与性质 有些污染物质易于分解,有的则难于分解。有的易受微生物分解,有的不易微生物分解,有的在好氧条件下易分解,有的在厌氧条件下易分解。例如合成洗涤剂、有机农药(DDT、六六六)、多氯联苯等合成有机化合物,化学稳定性极高,在自然界需要十年以上时间才能完成分解,可以成为环境中长期存在的污染物质,它们可以随着水的循环过程在地球上蔓延、积累。 2.水体性质 水体水温、流量、流速、含沙量都对水体自净作用有很多影响。流量大、流速高易于稀释扩散。含沙浓度与污染物质有一定关系。 3.水生生物 水生生物的种类和数量与自净有密切关系,能分解污染物的微生物多,则自净速度快。 4.水中的溶解氧 水中溶解氧含量与自净作用关系密切,水体的自净过程也就是复氧过程[2]。水体在未纳污以前,河内溶解氧是充足的,当受到污染后,由于有机物聚增,好氧分解剧烈,耗氧超过溶氧,河水中溶解氧降低。如果水体复氧速度较快,水质将会较快由坏变好。水中氧的补给受到水面和大气之间条件影响,如水面形态,水流方式、大气与水中的氧气分压,大气与水体的水温等。 5.其他环境因素 太阳光照条件也是一个影响因素,紫外线能使水中污染物迅速分解,太阳光可以促使浮游植物与水生植物光合作用,改变溶解氧条件。不同的底质影响底栖生物的种类与数量,从而影响污染物质的分解。 水体的自净作用常以生物自净过程为主,生物体在水体自净作用中是最活跃、最积极的因素。但是,水对有机氯农药、合成洗涤剂、多氯联苯等物质以及其它难于降解的有机化合物、重金属、放射性物质等的自净能力是极有限的。 二、河流水体自净能力定性分析 1.物理自净能力 物理自净是指污染物在水体中通过混合、稀释、扩散、挥发、沉淀等作用,使水体得到一定程度净化的过程。物理自净能力的强弱取决于污染物自身的物理

污水处理常用指标定义 (1)

污水常用指标含义: 1、PH值 一般来讲,PH值测量就是用来确定某种溶液的酸碱度。在水中加入酸,水的酸度便会提高,而PH值降低;在水中加入碱,水的碱度便会提高,而PH值升高。PH值是用来表示酸碱度的单位。2、化学需氧量(COD) 化学需氧量(COD)指在一定条件下,水中的有机物与强氧化剂重铬酸钾作用时所消耗的氧的量。用重铬酸钾作为氧化剂时,水中的有机物几乎可以全部被氧化,这时氧消耗量即称化学需氧量,简称COD。化学需氧量的优点是能够更精确地表示污水中有机物的含量,并且测定时间短,不受水质的限制。缺点是不能像BOD那样表示出微生物氧化的有机物量。另外还有部分无机物也被氧化,并非全部代表有机物含量。COD通常以每升水所消耗氧的量来表示,单位为mg/L。 3、生物化学需氧量(BOD) 生物化学需氧量(BOD)是一个反映水中可生物降解的含碳有机物的含量及排到水体后所产生的耗氧影响指标。它指在有氧的条件下,由于微生物的活动,将水中的有机物氧化分解所消耗的氧的量,称生化需氧量(Biochemical Oxygen Demand),简称BOD。BOD越高,表示污水中可生物降解的有机物越多。通常是指在20温度下,经5天培养后所消耗的溶解氧的量,用BOD5表示,BOD5 常用来表示可被微生物分解的有机物的含量。单位为mg/L。 4、溶解氧(DO) 溶解氧是指溶解在水里氧的量,通常记作DO,用每升水里氧气的毫克数表示。水中溶解氧的多少是衡量水体自净能力的一个指标。它跟空气里氧的分压、大气压、水温和水质有密切的关系。在20℃、100kPa下,纯水里大约溶解氧9mg/L。有些有机化合物在好氧菌作用下发生生物降解,要消耗水里的溶解氧。当水中的溶解氧值降到5mg/L时,一些鱼类的呼吸就发生困难。水里的溶解氧由于空气里氧气的溶入及绿色水生植物的光合作用会不断得到补充。但当水体受到有机物污染,耗氧严重,溶解氧得不到及时补充,水体中的厌氧菌就会很快繁殖,有机物因腐败而使水体变 黑、发臭。 5、悬浮物(SS) 水中未溶解的非胶态的固体物质,在条件适宜时可以沉淀。悬浮固体分为有机性和无机性两类,反映污水汇入水体后将发生的淤积情况,其含量的单位为mg/L。因悬浮固体在污水中肉眼可见,

(完整版)习题水质与水体自净

第一章水质与水体自净 1-1名词解释 水污染:水体因接受过多的污染物而导致水体的物理特征、化学特征和生物特征发生不良变化,破坏了水中固有的生态系统,破坏了水体的功能及其在经济发展和人民生活中的作用,该状态为“水体污染”。 水质:水与其中所含的杂质共同表现出来的物理学、化学和生物学的综合特性。 水质指标:水中杂质的种类、成分和数量,是判断水质的具体衡量标准。 水质标准:由国家或政府部门正式颁布的有关水质的统一规定。 水环境容量:一定水体在规定的环境目标下所能容纳污染物质的最大负荷量。 水体自净:进入水体的污染物通过物理、化学和生物等方面的作用,使污染物的浓度逐渐降低,经过一段时间后,水体将恢复到受污染前的状态。这一现象为“水体自净作用”。 水体污染物:凡使水体的水质、生物质、底泥质量恶化的各种物质均称为“水体污染物”。 COD:在一定严格的条件下,水中各种有机物与外加的强氧化作用时所消耗的氧化剂量。 BOD:在水体中有氧的条件下,微生物氧化分解单位体积水中有机物所消耗的溶解氧量。 总固体:水中所有残渣的总和。(在一定温度下,将水样蒸发至干时所残余的固体物质总量。) 1-2试区别悬浮固体和可沉固体,区别悬浮固体和浑浊度。它们的测定结果一般如何表示? 如果对水样进行过滤操作,将滤渣在103~105℃下烘干后的重量就是悬浮固体,结果以mg/L计。 而可沉固体是指将1L水样在一锥形玻璃筒内静置1h后所沉下的悬浮物质数量,结果用mL/L来表示。 浑浊度是指水中不溶解物质对光线透过时所产生的阻碍程度。一般来说,水中的不溶解物质越多,浑浊度也越高,但两者之间并没有固定的定量关系。因为浑浊度是一种光学效应,它的大小不仅与不溶解物质的数量、浓度有关,而且还与这些不溶解物质的颗粒尺寸、形状和折射指数等性质有关。将蒸馏水中含有1mg/L的SiO2称为1个浑浊度单位或1度。由此测得的浑浊度称为杰克逊浊度单位(JTU)。 1-3取某水样250mL置于空重为54.342 6 g的古氏坩埚中,经过滤、105℃烘干、冷却后称其质量为54.3998 g,再移至600℃炉内灼烧,冷却后称其质量为54.362 2 g。试求此水样的悬浮固体和挥发性悬浮固体量。 解:悬浮固体228.8mg/L;挥发性悬浮固体量150.4mg/L。 1-6取某水样100ml,加酚酞指示剂,用0.100 0 mol/L HCl溶液滴定至终点消耗盐酸溶液1.40 ml。另取此水样100 ml,以甲基橙作指示剂,用此盐酸溶液滴定至终点用去6.60 ml。试计算此水样的总碱度及各致碱阴离子的含量(结果以mmol/L计)。 解:总碱度6.60mmol/L(酚酞碱度1.40mmol/L); [OH-]0mmol/L;[HCO3-]1.4mmol/L;[CO32-]3.8mmol/L。 1-7取水样100 ml 用0.100 0 mol/L HCl溶液测其碱度。现以酚酞作指示剂,消耗了HCl溶液0.20 ml,接着再加甲基橙作指示剂,又消耗了3.40 ml。试求该水样的总碱度和各种致碱阴离子的含量(结果以mmol/L 计) 解:总碱度3.60mmol/L(酚酞碱度0.20mmol/L);

水体自净的程度指标

水体自净程度的指标 背景资料 各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。

表6-1 水体中三氮检出的环境化学意义 NH3—N NO2—N NO3—N 三氮检出的环境化学意义- - - 清洁水 + - - 表示水体受到新近污染 + + - 水体受到污染不久,且正在分解中 - + - 污染物已正在分解,但未完全自净 - + + 污染物已基本分解完全,但未自净 - - + 污染物已无机化,水体已基本自净 + - + 有新的污染,在此前的污染物已基本自净 + + + 以前受到污染,正在自净过程,且又有新的污染物 一、实验目的 1. 掌握测定三氮的基本原理和方法。 2. 了解测定三氮对环境化学研究的作用和意义。 二、仪器 (1) 玻璃蒸馏装置。 (2) 分光光度计。 (3) 电炉:220V/1KW。 (4) 比色管:50mL。 (5) 移液管:1mL、2mL、5mL,10mL,25mL。容量瓶:250mL。 三、实验步骤 (一)氨氮的测定——纳氏试剂比色法 1. 原理

水的自净能力

水的自净能力 一、简介: 污染物投入水体后,使水环境受到污染。污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。 污染物投入水体后,使水环境受到污染。污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。 有机的自净过程,一般分为三个阶段。第一阶段是易被氧化的有机物所进行的化学氧化分解。该阶段在污染物进入水体以后数小时之内即可完成。第二阶段是有机物在水中微生物作用下的生物化学氧化分解。该阶段持续时间的长短随水温、有机物浓度、微生物种类与数量等而不同。一般要延续数天,但被生物化学氧化的物质一般在5天内可全部完成。第三阶段是含氮有机物的硝化过程。这个过程最慢,一般要持续一个月左右。 二、特征: 废水或污染物一旦进入水体后,就开始了自净过程。该过程由弱到强,直到趋于恒定,使水质逐渐恢复到正常水平。全过程的特征是: 1)进入水体中的污染物,在连续的自净过程中,总的趋势是浓度逐渐下降。 2)大多数有毒污染物经各种物理、化学和生物作用,转变为低毒或无毒化合物。 3)重金属一类污染物,从溶解状态被吸附或转变为不溶性化合物,沉淀后进入底泥。 4)复杂的有机物,如碳水化合物,脂肪和蛋白质等,不论在溶解氧富裕或缺氧条件下,都能被微生物利用和分解。先降解为较简单的有机物,再进一步分解为二氧化碳和水。 5)不稳定的污染物在自净过程中转变为稳定的化合物。如氨转变为亚硝酸盐,再氧化为硝酸盐。 6)在自净过程的初期,水中溶解氧数量急剧下降,到达最低点后又缓慢上升,逐渐恢复到正常水平。 7)进入水体的大量污染物,如果是有毒的,则生物不能栖息,如不逃避就要死亡,水中生物种类和个体数量就要随之大量减少。随着自净过程的进行,有毒物质浓度或数量下降,生物种类和个体数量也逐渐随之回升,最终趋于正常的生物分布。进入水体的大量污染物中,如果含有机物过高,那么微生物就可以利用丰富的有机物为食料而迅速的繁殖,溶解氧随之减少。随着自净过程的进行,使纤毛虫之类的原生动物有条件取食于细菌,则细菌数量又随之减少;而纤毛虫又被轮虫、甲壳类吞食,使后者成为优势种群。有机物分解所生成的大量无机营养成分,如氮、磷等,使藻类生长旺盛,藻类旺盛又使鱼、贝类动物随之繁殖起来。 三、实现方式: 水体自净主要通过三方面作用来实现。 1、物理作用 物理作用包括可沉性固体逐渐下沉,悬浮物、胶体和溶解性污染物稀释混合,浓度逐渐降低。其中稀释作用是一项重要的物理净化过程。 2、化学作用 污染物质由于氧化、还原、酸碱反应、分解、化合、吸附和凝聚等作用而使污染物质的

最新三类水体中各项浓度指标限值

1.三类水体中各项浓度指标限值如下 溶解氧(DO):空气中的分子态氧溶解在水中称为溶解氧,水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。 高锰酸盐指数(CODMn):CODmn是指在分析水样时采用的高锰酸盐试剂所测出来的一个值,CODmn一般用于自来水,地表水、地下水水质化验。 化学需氧量(CODcr):是指以化学氧化物质将水体中可氧化物质氧化,然后根据残留的氮化物的量测定出消耗掉氧的量,是水质污染的重要标准。 五日生化需氧量(BOD5):有机质生物氧化是一个缓慢的过程,需要

很长时间才能终结。因此,各国都规定统一采用5日、20摄氏度作为生物化学需氧量测定的标准条件,以便作相对比较,这样测得的生物化学需氧量记作BOD5(20 ℃),或只写BOD5。 氨氮(NH3-N):工业污水、生活污水中都含有NH3-N。环评中NH3-N,一般分为现有环境水(废水)中中氨氮含量指标和项目投产后排放废水中中氨氮含量指标。如果环评项目投产后排放废水中氨氮含量指标高,就涉及到上污水处理设施,增加投资。 以上几种物质之间的联系密切,第三四位物质相互影响。 2 中国主要河流水质状况统计表如下 从表中有中国主要河流中珠江,长江水质较好1,2类水质所占比

重较大,这两条河的主要污染物均为无。而黄河淮河的形势这不容乐观,水质主要是3,4类,最差的是海河和辽河的水质,5类水质占了很大一部分! 养生经典语录 1、人生最大的财富是希望,人生最大的资本是健康。人生最大的幸福是快乐,人生最大的幸运是平安!物质是健康的基础,精神是健康的支柱,运动是健康源泉,科学是健康的法宝,健商是健康的保证。 2、观念比能力重要,策划比实施重要,行动比承诺重要,选择比努力重要,尊重生命比别人看法重要!必须明白是自己创造了自己身体每一个“疾病”,掌握了自己的身体,也就掌握了自己的生活。给身体提供了足够的能量就会彻底改变自己生活。 3、有规律的生活原是健康与长寿的秘诀。健康的身体乃是灵魂的客厅,有病的身体则是灵魂的禁闭室。治病花钱不要细,别跟自己过不去。病来身上心放宽,战胜疾病须乐观。要活好,心别小,善制怒,寿无数。笑口开,病不来,心烦恼,病来了。 4、生气四害:血压变高,血脂变稠,血色变紫,血管变细。引发脑塞,心肌梗死!长寿六戒六要:一戒纵欲,二戒名利,三戒吸烟,四戒暴食,五戒懒惰,六戒抑郁。一要限酒多茶,二要勤劳锻炼,三要心胸开阔,四要细嚼慢咽,五要淡泊宁静,六要清心寡欲。

实验十三 水体自净程度监测─水中氮素含量测定

实验报告 课程名称:环境监测实验实验类型:综合实验 实验项目名称:水体自净程度监测─水中氮素含量测定 实验地点:环资B座实验日期:2018年12 月20日 一、实验目的和要求(必填) 1.了解水体中三氮间的转换与其环境学意义 2.熟悉水体中三氮含量的测定 3.熟悉水质分析仪的使用 4.选定自然水体(河流或小型湖泊等)作为研究对象,按照水体布点、采样、样品保存 原则与规范进行样品采集、“三氮”各指标的测定。 5.了解测定三氨对环境化学研究的作用和意义,根据监测数据平价研完水体的自净程 度。 二、实验内容和原理(必填) 各种形态氮的相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中含氮类化合物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可逐步分解氧化为无机的氨(NH3)或铵(NH4)、亚硝酸盐(NO2)、硝酸盐(NO3 )等简单的无机氮化物。氨和铵中的氮称为氨氮(NH4-N);亚硝酸盐中的氮称为亚硝酸盐氮(NO2-N);硝酸盐中的氮称为硝酸盐氮(NO3-N)。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。 在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表1。 表一水体中三氮检出的环境化学意义

水质评价指标

水质是否符合卫生要求,是否被污染以及污染的来源、性质和程度如何,可根据下列各项水质性状指标的检测结果来评价,从而判断其对人体健康可能产生的危害。 一、物理性状指标 根据水的物理性状指标的测定结果,可判断水质的感官性状是否良好,也可说明水质是否受到污染。 (一)水温 地面水的温度随日照与气温而变化,地下水的温度较恒定。大量工业冷却废水进入地面水可造成热污染,导致溶解氧降低,危害水生生物的生长与繁殖。地下水的温度如突然发生改变,可能是地面水大量渗入所致。 (二)色 清洁的水无色。影响水色的因素很多,如流经沼泽地带的地面水,因含腐殖质呈棕黄色;水中大量藻类生长时,呈绿色、红色或黄绿色;含低铁盐的深层地下水,汲出后因低铁被氧化成高铁而呈现黄褐色。水体受工业废水污染后,可呈现该工业废水所特有的颜色。 (三)臭 清洁水无臭气。地面水流经沼泽地或有大量藻类生长和死亡分解时,均出现异臭;流经含硫地层的深层地下水可带硫化氢臭;生活污水、工业废水污染时,可出现各种特殊的异臭。 (四)味 清洁水无异味。天然水出现异味,常与过量盐类的溶入有关,如含过量氯化物带咸味;硫酸钠或硫酸镁过多时呈苦味;铁盐多时有涩味。受生活污水、工业废水污染后可呈现各种异味。 (五)浑浊度 水的浑浊程度,是悬浮于水中的胶体颗粒产生的散射现象。浑浊度主要取决于胶体颗粒的种类、大小、形状和折射指数,而与水中悬浮物含量(重量)的关系较小。 现行通用的计量方法是把1L水中含有相当于1mg标准硅藻土所形成的浑浊状况,作为1个浑浊度单位,简称1度。 地面水浑浊主要是泥土、有机物、浮游生物和微生物等造成。浑浊度升高表明水体受到胶体物质污染。 二、化学性状指标 水质的化学性状复杂,因而采用较多的评价指标,以阐明水质的化学性质及受污染的状况。

(完整版)习题水质与水体自净.doc

第一章水质与水体自净 1-1 名词解释 水污染:水体因接受过多的污染物而导致水体的物理特征、化学特征和生物特征发生不良变化,破坏了水中固有的生态系统,破坏了水体的功能及其在经济发展和人民生活中的作用,该状态为“水体污染” 。 水质:水与其中所含的杂质共同表现出来的物理学、化学和生物学的综合特性。 水质指标:水中杂质的种类、成分和数量,是判断水质的具体衡量标准。 水质标准:由国家或政府部门正式颁布的有关水质的统一规定。 水环境容量:一定水体在规定的环境目标下所能容纳污染物质的最大负荷量。 水体自净:进入水体的污染物通过物理、化学和生物等方面的作用,使污染物的浓度逐渐降低,经过一段时间后,水体将恢复到受污染前的状态。这一现象为“水体自净作用”。 水体污染物:凡使水体的水质、生物质、底泥质量恶化的各种物质均称为“水体污染物”。COD :在一定严格的条件下,水中各种有机物与外加的强氧化作用时所消耗的氧化剂量。 BOD :在水体中有氧的条件下,微生物氧化分解单位体积水中有机物所消耗的溶解氧量。 总固体:水中所有残渣的总和。(在一定温度下,将水样蒸发至干时所残余的固体物质总量。) 1-2 试区别悬浮固体和可沉固体,区别悬浮固体和浑浊度。它们的测定结果一般如何表示? 如果对水样进行过滤操作,将滤渣在103~ 105℃下烘干后的重量就是悬浮固体,结果 以mg/L 计。 而可沉固体是指将1L 水样在一锥形玻璃筒内静置1h 后所沉下的悬浮物质数量,结果 用mL/L 来表示。 浑浊度是指水中不溶解物质对光线透过时所产生的阻碍程度。一般来说,水中的不溶解物质越多,浑浊度也越高,但两者之间并没有固定的定量关系。因为浑浊度是一种光学效应,它的大小不仅与不溶解物质的数量、浓度有关,而且还与这些不溶解物质的颗粒尺寸、形状和折射指数等性质有关。将蒸馏水中含有1mg/L 的 SiO2称为 1 个浑浊度单位或 1 度。由此测得的浑浊度称为杰克逊浊度单位(JTU)。 1-3 取某水样 250mL 置于空重为 54.342 6 g 的古氏坩埚中,经过滤、 105℃烘干、冷却后称 其质量为 54.3998 g,再移至 600℃炉内灼烧,冷却后称其质量为54.362 2 g。试求此水样的悬浮固体和挥发性悬浮固体量。 解:悬浮固体228.8mg/L ;挥发性悬浮固体量150.4mg/L 。 1-6 取某水样 100ml ,加酚酞指示剂,用 0.100 0 mol/L HCl 溶液滴定至终点消耗盐酸溶液 1.40 ml。另取此水样100 ml ,以甲基橙作指示剂,用此盐酸溶液滴定至终点用去 6.60 ml 。试计算此水样的总碱度及各致碱阴离子的含量(结果以mmol/L 计)。 解:总碱度 6.60mmol/L (酚酞碱度 1.40mmol/L ); [OH -]0mmol/L ;[HCO 3-]1.4mmol/L ; [CO 32-]3.8mmol/L 。 1-7 取水样 100 ml 用 0.100 0 mol/L HCl 溶液测其碱度。现以酚酞作指示剂,消耗了HCl 溶液 0.20 ml ,接着再加甲基橙作指示剂,又消耗了 3.40 ml 。试求该水样的总碱度和各种致碱 阴离子的含量(结果以mmol/L 计) 解:总碱度 3.60mmol/L (酚酞碱度0.20mmol/L );

类水体中各项浓度指标限值

类水体中各项浓度指标 限值 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

1.三类水体中各项浓度指标限值如下溶解氧(DO):空气中的分子态氧溶解在水中称为溶解氧,水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。 高锰酸盐指数(CODMn):CODmn是指在分析水样时采用的高锰酸盐试剂所测出来的一个值,CODmn一般用于自来水,地表水、地下水水质化验。 化学需氧量(CODcr):是指以化学氧化物质将水体中可氧化物质氧化,然后根据残留的氮化物的量测定出消耗掉氧的量,是水质污染的重要标准。 五日生化需氧量(BOD5):有机质生物氧化是一个缓慢的过程,需要很长时间才能终结。因此,各国都规定统一采用5日、20摄氏度作为生物化学需氧量测定的标准条件,以便作相对比较,这样测得的生物化学需氧量记作BOD5(20 ℃),或只写BOD5。 氨氮(NH3-N):工业污水、生活污水中都含有NH3-N。环评中NH3-N,一般分为现有环境水(废水)中中氨氮含量指标和项目投产后排放废水中中氨氮含量指标。如果环评项目投产后排放废水中氨氮含量指标高,就涉及到上污水处理设施,增加投资。 以上几种物质之间的联系密切,第三四位物质相互影响。 2 中国主要河流水质状况统计表如下

从表中有中国主要河流中珠江,长江水质较好1,2类水质所占比重较大,这两条河的主要污染物均为无。而黄河淮河的形势这不容乐观,水质主要是3,4类,最差的是海河和辽河的水质,5类水质占了很大一部分!

水体自净

一、名词解释 水体自净:指河水中的污染物质在河水向下流动中浓度自然降低的现象。 自由沉淀:废水中悬浮固体浓度不高,而且不具有凝聚的性能,在沉淀过程中,固体颗粒不改变形状,也不互相粘合,各自独立地完成沉淀过程。 絮凝沉淀:是颗粒物在水中作絮凝沉淀的过程。在水中投加混凝剂后,其中悬浮物的胶体及分散颗粒在分子力的相互作用下生成絮状体且在沉降过程中它们互相碰撞凝聚,其尺寸和质量不断变大,沉速不断增加。 区域沉淀:区域沉淀的悬浮颗粒浓度较高,颗粒的沉降受到周围其他颗粒影响,颗粒间相对位置保持不变,形成一个整体共同下降。 压缩沉淀:此时浓度很高,固体颗粒互相接触,互相支承,在上层颗粒的重力作用下,下层颗粒间隙的液体被挤出界面,固体颗粒群被浓缩。 污泥容积指数:指曝气池混合液经30min静沉后,相应的1g干污泥所占的容积(以mL 计),SVI=SV30/MLSS。 活性污泥:由细菌、真菌、原生动物和后生动物等各种生物和金属氢氧化物等无机物所形成的污泥状的絮凝物。有良好的吸附、絮凝、生物氧化和生物合成性能。 水环境容量:在一定水环境质量要求下,对排放于其中的污染物所具有的容纳能力。 软化除盐:降低水的硬度,降低水的含盐率 BOD: 在有氧条件下,好氧微生物氧化分解单位体积水中有机物所消耗的游离氧的数量,表示单位为氧的毫克/升(O2,mg/l)。 COD:指在一定严格的条件下,水中的还原性物质在外加的强氧化剂的作用下,被氧化分解时所消耗氧化剂的数量,以氧的mg/L表示。 混合液悬浮固体:指曝气池中单位体积混合液中活性污泥悬浮固体浓度的质量。 污泥龄(SRT):在曝气池中微生物的平均停留时间。 氧垂曲线:表示水体受到污染后,水中溶解氧含量沿河道的分布呈下垂状曲线。 硝化反应:在硝化剂的作用下,向有机化合物分子中引入硝基的过程。 离子交换:不溶性离子化合物上的交换离子与溶液中的其他同性离子的交换反应。 表面负荷:表示沉淀池表面积每平方米所承担的水流量。 土地处理系统:利用农田、林地等土壤-微生物-植物构成的陆地生态系统对污染物进行综合净化处理的生态工程。 人工湿地:是人工建造和管理控制的、工程化的湿地;是由水、滤料以及水生生物所组成,具有高生产力和较天然湿地有更好的污染物去除效果的生态系统。 合流式排水系统:将生活污水、工业废水和雨水混合在同一管道(渠)系统内排放的排水系统称为合流制排水系统。直排式合流制排水系统、截流式合流制排水系统、完全合流制排水系统 分流式排水系统:将生活污水、生产废水和雨水分别在两种以上管道系统内排放的系统,分流制排水系统又分为完全分流制、不完全分流制和半分流制三种。 膜分离法:是一种新型隔膜分离技术,利用一种特殊的半透膜使溶液中的某些组分隔开,某些溶质和溶剂渗透而达到分离的目的。 厌氧、好氧生物处理:好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。 污泥膨胀:污泥结构极度松散,体积增大、上浮,难于沉降分离影响出水水质的现象。 吸附等温线:指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们

水体自净程度的指标

水体自净程度的指标 云南民族大学环境科学实验教学中心王红斌 一、实验目的 1. 掌握测定三氮的基本原理和方法。 2. 解测定三氮对环境化学研究的作用和意义。 二、实验重点 测定三氮的基本原理和方法,掌握三氮的指标在水质动态监测的应用和意义。 三、实验难点 水样在采集、保护及测定过程中的质量控制。 四、实验安排: 1、实验预习,提交预习报告; 2、实验讲解提问:通过互动方式帮助学生更好地达到实验目的和要求; 3、在云南民族大学雨花校区中水站的进水口、出水品,调节池的进水口、出水品,曝气池的进水口、出水品,每隔一个小时采样一次,连续采6个小时。 4、学生实验操作; 5、实验数据分析,并评价中水站各采样点水体自净状态及其水质类别进行初步探讨; 6、学生提交实验报告。 五、实验提问: (一)氨氮的测定——纳氏试剂比色法 1、什么是纳氏试剂? 2、测定原理、测定波长及检出限为多少? 3、不含氨的蒸馏水如何制备? 4、酒石酸钾钠溶液的作用是什么? 5、pH为7.4磷酸盐缓冲溶液的作用是什么? (二)亚硝酸盐氮的测定—盐酸萘乙二胺比色法

1、测定原理、测定波长及检出限为多少? 2、不含亚硝酸盐的蒸馏水如何制备? 3、水样为什么要在冷藏及24小时内进行分析? 4、加入氯化汞的目的是什么? 5、制备氢氧化铝悬浮液的目的是什么? (三)硝酸盐氮的测定—二磺酸酚比色法 1、测定原理、测定波长及检出限为多少? 2、为什么在除去除去氯离子?如何操作 3、水样有颜色或悬浮物进行处理? 4、加入乙二胺四乙酸二钠溶液的目的是什么? 5、如何扣除亚硝酸盐氮对硝酸盐氮的影响? 六、思考题 1. 如何通过测定三氮的含量来评价水体的“自净”程度?如水体中仅含有NO3--N,而NH4+和NO2-未检出,说明水体“自净”作用进行到什么阶段?如水体中既有大量NH3-N,又有大量NO3--N,水体污染和“自净”状况又如何? 2. 用纳氏比色法测定氨氮时主要有哪些干扰,如何消除? 3. 在三氮测定时,要求蒸馏水不含NH3、NO2-、NO3-,如何检验? 4. 在蒸馏比色测定氨氮时,为什么要调节水样的pH在7.4作用?pH偏高或偏低对测定结果有何影响? 5. 在亚硝酸盐氮分析过程中,水中的强氧化性物质会干扰测定,如何确定并消除? 附件:实验讲义(董德明朱利中主编.环境化学实验.北京:高等教育出版社) 实验二水体自净程度的指标 各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨 (NH3)或铵 (NH4+)、亚硝酸盐 (NO2-)、硝酸盐 (NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝

相关主题
文本预览
相关文档 最新文档