当前位置:文档之家› 基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]

基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]

基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]
基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]

习题五

5-1 有一弹簧振子,振幅m A 2

100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振

动位移、速度和加速度方程。

分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[?π

?ω+=+=t T

A t A x 代入有关数据得:30.02cos[2]()4

x t SI π

π=+ 振子的速度和加速度分别是:

3/0.04sin[2]()4

v dx dt t SI π

ππ==-+

2223/0.08cos[2]()4

a d x dt t SI π

ππ==-+

5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.

分析 通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x

得:振幅0.1A m =,角频率20/rad s ωπ=,频率1

/210s νωπ-==,

周期1/0.1T s ν==,/4rad ?π=

(2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,22cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-

5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;

(2)作用于质点的力的最大值和此时质点的位置.

分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

解:(1)跟据x m ma f 2

ω-==,)]6/(5sin[2.0π-=t x

将0=t 代入上式中,得: 5.0f N =

(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率

Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.

分析 根据简谐振动频率公式比较即可。 解:由m k /21π

ν=

,对于同一弹簧(k 相同)采用比较法可得:

m

m '

21=

νν 解得:'4m m =

5-5一放置在水平桌面上的弹簧振子,振幅m A 2

100.2-?=,周期T=0,当t=0时,

(1)物体在正方向端点;

(2)物体在平衡位置,向负方向运动;

(3)物体在m x 2

100.1-?=处,向负方向运动; (4)物体在m x 2100.1-?-=处,向负方向运动. 求以上各种情况的振动方程。

分析 根据旋转矢量图由位移和速度确定相位。进而得出各种情况的振动方程。 解:设所求振动方程为:]4cos[02.0]2cos[?π?π

+=+=t t T

A x 由A 旋转矢量图可求出

3/2,3/,2/,04321π?π?π??====

(1)0.02cos[4]()x t SI π=(2)0.02cos[4]()2

x t SI π

π=+

题图5-5

(3)0.02cos[4]()3

x t SI π

π=+

(4)20.02cos[4]()3

x t SI π

π=+

5-6在一轻弹簧下悬挂0100m g =砝码时,弹簧伸长8cm.现在这根弹簧下端悬挂250m g =的物体,构成弹簧振子.将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程.

分析 在平衡位置为原点建立坐标,由初始条件得出特征参量。 解:弹簧的劲度系数l g m k ?=/0。

当该弹簧与物体m 构成弹簧振子,起振后将作简谐振动,可设其振动方程为:

]cos[?ω+=t A x

角频率为m k /=

ω代入数据后求得7/rad s ω=

以平衡位置为原点建立坐标,有:000.04,0.21/x m v m s ==- 据202

0)/(ωv x A +=

得:0.05A m =

据A

x 0

1

cos

-±=?得0.64rad ?=±由于00v <,应取)(64.0rad =? 于是,所求方程为:))(64.07cos(05.0m t x += 5-7 某质点振动的x-t 曲线如题图5-7所示.求: (1)质点的振动方程;

(2)质点到达P 点相应位置所需的最短时间.

分析 由旋转矢量可以得出相位和角频率,求出质点的振动方程。并根据P 点的相位确定最短时间。

00001cos()0,/2,03

1,3

2

56

50.1cos(

)63

20x A t t x A v t s t x t m P ω?π

π

ωπ

ωππ=+==>=-=-=

=

=- 解:()设所求方程为:从图中可见,由旋转矢量法可知;又故:()点的相位为

题图

5-7

0500.463

0.4p p p t t t s

P s

ππ

ω?∴+=

-==即质点到达点相应状态所要的最短时间为 5-8有一弹簧,当下面挂一质量为m 的物体时,伸长量为m 2

108.9-?.若使弹簧上下振动,且规定向下为正方向.

(1)当t =0时,物体在平衡位置上方m 2

100.8-?,由静止开始向下运动,求振动方程. (2) 当t =0时,物体在平衡位置并以0.6m/s 的速度向上运动,求振动方程. 分析 根据初始条件求出特征量建立振动方程。 解:设所求振动方程为:)cos(?ω+=t A x

其中角频率l

g

m l mg

m k ?=?=

=//ω,代入数据得:10/rad s ω= (1)以平衡位置为原点建立坐标,根据题意有:000.08,0x m v =-= 据202

0)/(ωv x A +=

得:0.08A m =

据A

x 0

1

cos

-±=?得rad ?π=±由于0v =0,不妨取rad ?π= 于是,所求方程为:10.08cos(10)()x t SI π=+

(2)以平衡位置为原点建立坐标,根据题意有:000,0.6/x v m s ==- 据202

0)/(ωv x A +=

得:0.06A m =

据A

x 0

1

cos

-±=?得/2rad ?π=±由于00v <,应取/2rad ?π= 于是,所求方程为:20.06cos(10/2)()x t SI π=+

5-9 一质点沿x 轴作简谐振动,振动方程为)SI )(3

t 2cos(104x 2π+π?=-,求:从 t=0时刻起到质点位置在x=-2cm 处,且向x 轴正方向运动的最短时间.

分析 由旋转矢量图求得两点相位差,结合振动方程中特征量即可确定最短时间。 解: 依题意有旋转矢量图

?π?=从图可见

02(0)t t ?ωπ?=?=-而

012

t s ?

ω

?=

=

故所求时间为:

5-10两个物体同方向作同方向、同频率、同振幅的简谐振动,在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动,试利用旋转矢量法求它们的相位差.

分析 由旋转矢量图求解。根据运动速度的方向与位移共同确定相位。 解:由于2/10A x =、100v <可求得:4/1π?= 由于2/20A x =、200v >可求得:4/2π?-= 如图5-10所示,相位差:12/2???π?=-=

题图

5-10

解答图5-9

5-11一简谐振动的振动曲线如题图5-11所示,求振动方程.

分析 利用旋转矢量图求解,由图中两个确定点求得相位,再根据时间差求得其角频率。 解:设所求方程为)cos(?ω+=t A x

当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ?π== 当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 23/2t rad ?π==

所以,2秒内相位的改变量203/22/35/6t t rad ???πππ==?=-=-= 据t ?ω?=?可求出:/5/12/t rad s ω?π=??= 于是:所求振动方程为:52

0.1cos(

)()123

x t SI ππ=+ 5-12 在光滑水平面上,有一作简谐振动的弹簧振子,弹簧的劲度系数为K,物体的质量为m ,振幅为A .当物体通过平衡位置时,有一质量为'm 的泥团竖直落到物体上并与之粘结在一起.求:(1)'m 和m 粘结后,系统的振动周期和振幅;

(2)若当物体到达最大位移处,泥团竖直落到物体上,再求系统振动的周期和振幅. 分析 系统周期只与系统本身有关,由质量和劲度系数即可确定周期,而振幅则由系统能量决定,因此需要由动量守恒确定碰撞前后速度,从而由机械能守恒确定其振幅。 解:(1)设物体通过平衡位置时的速度为v ,则由机械能守恒

:

2211

22

KA mv v ==±当'm 竖直落在处于平衡位置m 上时为完全非弹性碰撞,且水平方向合外力为零,所以

题图5-11

题图5-11

(')'

mv m m u

m

u v

m m =+=+ 此后,系统的振幅变为'A ,由机械能守恒,有

2211

'(')22

'KA m m u A =+==

系统振动的周期为: K

'

m m 2T +π

= (2)当m 在最大位移处'm 竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A,周期为K

'

m m 2+π

. 5-13 设细圆环的质量为m,半径为R,挂在墙上的钉子上.求它微小振动的周期. 分析 圆环为一刚体须应用转动定律,而其受力可考虑其质心。 解: 如图所示,转轴o 在环上,角量以逆时针为正,则振动方程为

θ-=θ

sin mgR dt

d J 22 当环作微小摆动θ≈θsin 时, 22

20d dt

θωθ+=

ω=

22J mR =

22T π

ω

∴=

=5-14 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 此小物体是停在振动物体上面还是离开它?(2) 物体的振动方程;(3) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(4) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间.(5) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?

分析 小物体分离的临界条件是对振动物体压力为零,即两物体具有相同的加速度,而小物

解答图

5-13

体此时加速度为重力加速度,因此可根据两物体加速度确定分离条件。 解: 选平衡位置为原点,取向下为x 轴正方向。 由:f kx = 200/f

k N m x

=

=

7.07/rad s ω=

(1) 小物体受力如图. 设小物体随振动物体的加速度为a , 按牛顿第二定律有 ma N mg =- )(a g m N -=

当N = 0,即a = g 时,小物体开始脱离振动物体, 已知 A = 10 cm ,200/,

7.07/k N m rad s ω=≈

系统最大加速度为 22max 5a A m s ω-==? 此值小于g ,故小物体不会离开. (2) 00010cos ,0sin t x cm A v A ?ω?=====-时,

解以上二式得 100A cm

?==

∴ 振动方程0.1cos(7.07)()x t SI =

(3) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 ()f m g a =- ,而2

2

2.5a x m s ω-=-=?

29.2f N ∴=

(4) 设1t 时刻物体在平衡位置,此时0x =,即 10cos ,A t ω= ∵ 此时物体向上运动, 0v < ∴ 11,

0.2222

2t t s π

π

ωω

=

=

=。 再设2t 时物体在平衡位置上方5cm 处,此时5x cm =-,即 25cos ,A t ω-=

∵此时物体向上运动,0v < 2222,0.2963

3t t s ππ

ωω

=

=

= 210.074t t t s ?=-=

(5) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得

x a g 2ω-== 2/19.6x g cm ω=-=-

即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得 2

/19.6A g cm ω>=。

题图5-14

题图5-14

5-15在一平板下装有弹簧,平板上放一质量为1.0Kg 的重物.现使平板沿竖直方向作上下简谐振动,周期为0.50s ,振幅为m 2

100.2-?,求: (1)平板到最低点时,重物对板的作用力;

(2)若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物会跳离平板? 分析 重物跳离平板的临界条件是对平板压力为零。

解:重物与平板一起在竖直方向上作简谐振动,向下为正建立坐标, 振动方程为:)4cos(02.0?π+=t x

设平板对重物的作用力为N ,于是重物在运动中所受合力为:

f m

g N ma =-=,

2a x ω=-而 据牛顿第三定律,重物对平板的作用力'N 为:)('2x g m N N ω+-=-= (1)在最低点处:A x =,由上式得,'12.96N N =

(2)频率不变时,设振幅变为'A ,在最高点处('A x -=)重物与平板间作用力最小,设

0'=N 可得:2'/0.062A g m ω==

(3)振幅不变时,设频率变为'ν,在最高点处('A x -=)重物与平板间作用力最小,设

0'=N 可得:''/2 3.52Hz νωπ==

=

5-16一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t=0时位移为0.03m ,且向轴正方向运动,求:

(1)t=0.5s 时,物体的位移、速度和加速度;

(2)物体从0.03x m =-处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间? 分析 通过旋转矢量法确定两位置的相位从而得到最小时间。 解:设该物体的振动方程为)cos(?ω+=t A x 依题意知:2//,0.06T rad s A m ωππ===

据A

x 0

1

cos

-±=?得)(3/rad π?±= 由于00v >,应取)(3/rad π?-= 可得:)3/cos(06.0ππ-=t x

(1)0.5t s =时,振动相位为:/3/6t rad ?πππ=-=

据22cos ,sin ,cos x A v A a A x ?ω?ω?ω==-=-=- 得20.052,

0.094/,

0.512/x m v m s a m s ==-=-

(2)由A 旋转矢量图可知,物体从

0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,

A 矢量转过的角度为5/6?π?=,该过程所需时间为:/0.833t s ?ω?=?=

5-17地球上(设2/8.9s m g =)有一单摆,摆长为1.0m ,最大摆角为5

,求:

(1)摆的角频率和周期;

(2)设开始时摆角最大,试写出此摆的振动方程; (3)当摆角为3?

时的角速度和摆球的线速度各为多少? 分析 由摆角最大的初始条件可直接确定其初相。 解:(1

) 3.13/rad s ω=

= 2/ 2.01T s πω==

(2)由t=0时,max 5θθ== 可得振动初相0=?,则以角量表示的振动方程为

cos3.13()36

t SI π

θ=

(3)由cos3.13()36

t SI π

θ=

,当3θ= 时,有max cos /0.6?θθ==

而质点运动的角速度为:max max /sin 0.218/d dt rad s θθω?θ=-=-=-

线速度为:/0.218/v l d dt m s θ=?=

5-18 有一水平的弹簧振子,弹簧的劲度系数K=25N/m,物体的质量m=1.0kg,物体静止在平衡位置.设以一水平向左的恒力F=10 N 作用在物体上(不计一切摩擦),使之由平衡位置向左

题图5-16

运动了0.05m,此时撤除力F,当物体运动到最左边开始计时,求物体的运动方程. 分析 恒力做功的能量全部转化为系统能量,由能量守恒可确定系统的振幅。 解: 设所求方程为0cos()x A t ω?=+

5/rad s ω=

= 因为不计摩擦,外力做的功全转变成系统的能量,

故210.22Fx KA A m =

∴== 000,,t x A ?π==-∴= 又

故所求为 0.2cos(5)()x t SI π=+

5-19如题图5-19所示,一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.

分析 由质点在A 、B 两点具有相同的速率可知A 、B 两点在平衡位置两侧距平衡位置相等距离的位置,再联系两次经过B 点的时间即可确定系统的周期,而相位可由A 、B 两点位置确定。

解:由旋转矢量图和 A B v v = 可知 24,

8T s T s ==,111

,

28

4

s rad s π

νωπν--===

?

(1)以AB 的中点为坐标原点,x 轴指向右方.

05cos t x cm A ?==-=时,

25cos(2)sin t s x cm A A ω??===+=-时,

由上二式解得 1tg ?=

因为在A 点质点的速度大于零,所以3544

ππ

?-=

/cos A x ?==

∴ 振动方程

2

310cos(

))44

t x SI -ππ=-(

题解图5-19

题图5-19

题图5-18

(2) 速率

d 3sin()()d 44

x t SI t ππ

==-v 当t = 0 时,质点在A 点

221d 310sin() 3.9310d 4

x m s t ---π=

=-=??v 5-20一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐振动,物体和水平木板之间的静摩擦系数50.0=s μ,求物体在木板上不滑动时的最大振幅max A . 分析 物体在木板上不滑动的临界条件是摩擦力全部用来产生其加速度。

2max 222max ,mg 0(1)(2)(3)cos()

(4)

(1)(2)(3)/(4)//(4)0.031x x s s s s s N f ma f N

a A t a mg m g

A g g m

μωω?μμμωμπν-==-≤=-+=====解:设物体在水平木板上不滑动竖直方向:水平方向:且又有由得再由此式和得

5-21在一平板上放一质量为2m kg =的物体,平板在竖直方向作简谐振动,其振动周期

0.5T s =,振幅4A cm =,求:(1)物体对平板的压力的表达式.

(2)平板以多大的振幅振动时,物体才能离开平板?

分析 首先确定简谐振动方程,再根据物体离开平板的临界位置为最高点,且对平板压力为零。

解:物体与平板一起在竖直方向上作简谐振动,向下为正建立坐标,振动方程为:

0.04cos(4)()x t SI π?=+

设平板对物体的作用力为N ,于是物体在运动中所受合力为: x m ma N mg f 2

ω-==-=

(1)据牛顿第三定律,物体对平板的作用力'N 为:)('2

x g m N N ω+-=-= 即:)4cos(28.16.19)16('2

2?πππ+--=+-=t x g m N

(2)当频率不变时,设振幅变为'A ,在最高点处('x A =-)物体与平板间作用力最小 令0'=N 可得:2

'/0.062A g m ω==

5-22一氢原子在分子中的振动可视为简谐振动.已知氢原子质量Kg m 27

1068.1-?=,

振动频率Hz 14

100.1?=ν,振幅m A 11

10

0.1-?=.试计算:(1)此氢原子的最大速度;(2)与此

振动相联系的能量.

分析 振动能量可由其最大动能(此时势能为零)确定。 解:(1)最大振动速度:32 6.2810/m v A A m s ωπν===? (2)氢原子的振动能量为:2201

3.31102

m E mv J -=

=? 5-23 一物体质量为0.25Kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k=25N/m ,如果起始振动时具有势能0.06J 和动能0.02J ,求: (1)振幅;

(2)动能恰等于势能时的位移; (3)经过平衡位置时物体的速度.

分析 简谐振动能量守恒,其能量由振幅决定。

解:

2

11k 2

K P E E E A =+=() 1/2[2()/k]0.08()K P A E E m =+=

2

21(2)k 2/22

K P K P P P E E E A E E E E E kx =+=

===因为,当时,有,又因为

2220.0566()x A x A m ==±=±得:,即

2

1(3)02

K P x E E E mv ==+=

过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±

5-24 一定滑轮的半径为R ,转动惯量为J ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如题图5-24所示.设弹簧的劲度系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力.现将物体m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

分析 由牛顿第二定律和转动定律确定其加速度与位移的关系即可得到证明。 解:取如图x 坐标,平衡位置为原点O ,向下为正,m 在平衡位置时弹簧已伸长0x

(1)mg kx =

设m 在x 位置,分析受力,这时弹簧伸长0x x +

20()

(2)T k x x =+ 由牛顿第二定律和转动定律列方程:

1(3)mg T ma -= 12(4)T R T R J β-= (5)a R β

=

联立(1)(2)(3)(4)(5)解得x m

R J k

a +-

=)/(2

由于x 系数为一负常数,故物体做简谐振动, 其角频率为:2

2

2

)/(mR J kR m

R J k

+=+=ω

5-25两个同方向的简谐振动的振动方程分别为:2

11410cos 2()(),8

x t SI π-=?+

221

310cos 2()()4

x t SI π-=?+求:(1)合振动的振幅和初相;(2)若另有一同方向同频率

的简谐振动2

3510cos(2)()x t SI π?-=?+,则?为多少时,31x x +的振幅最大??又为多少时,32x x +的振幅最小?

分析 合振动的振幅由其分振动的相位差决定。

题图5-24

题图5-24

解:(1))2cos(21?π+=+=t A x x x

按合成振动公式代入已知量,可得合振幅及初相为

2210 6.4810A m --=

=?

4sin(/4)3sin(/2)

1.124cos(/4)3cos(/2)

arctg

rad ππ?ππ+==+

所以,合振动方程为))(12.12cos(1048.62SI t x +?=-π (2)当π??k 21=-,即4/2ππ?+=k 时,31x x +的振幅最大. 当π??)12(2+=-k ,即2/32ππ?+=k 时,32x x +的振幅最小.

5-26有两个同方向同频率的振动,其合振动的振幅为0.2m ,合振动的相位与第一个振动的相位差为6/π,第一个振动的振幅为0.173m ,求第二个振动的振幅及两振动的相位差。 分析 根据已知振幅和相位可在矢量三角形中求得振幅。 解:采用旋转矢量合成图求解

取第一个振动的初相位为零,则合振动的相位为/6φπ= 据21A A +=可知12A A A -=,如图:

)(1.0cos 2122

12m AA A A A =-+=

?

由于A 、1A 、2A 的量值恰好满足勾股定理, 故1A 与2A 垂直.

即第二振动与第一振动的相位差为2/πθ=

5-27一质点同时参与两个同方向的简谐振动,其振动方程分别为

21510cos(4/3)()x t SI π-=?+,22310sin(4/6)()x t SI π-=?-画出两振动的旋转矢量

图,并求合振动的振动方程.

分析 须将方程转化为标准方程从而确定其特征矢量,画出矢量图。 解:)6/4sin(1032

2π-?=-t x )2/6/4cos(1032ππ--?=-t )3/24cos(1032π-?=-t 作两振动的旋转矢量图,如图所示. 由图得:合振动的振幅和初相分别为

题图

5-26

3/,2)35(πφ==-=cm cm A .

合振动方程为))(3/4cos(1022SI t x π+?=-

5-28将频率为348Hz 的标准音叉和一待测频率的音叉振动合成,测得拍频为3.0Hz.若在待测音叉的一端加上一个小物体,则拍频将减小,求待测音叉的角频率. 分析 质量增加频率将会减小,根据拍频减少可推知两个频率的关系。 解:由拍频公式12ννν-=?可知:ννν?±=12

在待测音叉的一端加上一个小物体,待测音叉的频率2ν会减少,若拍频ν?也随之减小,则说明2ν>1ν,于是可求得:21351Hz ννν=+?=

5-29一物体悬挂在弹簧下作简谐振动,开始时其振幅为0.12m ,经144s 后振幅减为0.06m. 问:(1)阻尼系数是多少? (2)如振幅减至0.03m ,需要经过多少时间? 分析 由阻尼振动振幅随时间的变化规律可直接得到。 解:(1)由阻尼振动振幅随时间的变化规律0t A A e β-?=

)/1(1081.4ln

31

s t A A -?==

β

(2)由0t A A e β-?=

1

2

1

2t t A e A e

ββ-?-?=

于是:12

21ln /144A A t t t s β

?=-=

=

5-30一弹簧振子系统,物体的质量m=1.0 Kg ,弹簧的劲度系数k=900N/m.系统振动时受到阻尼作用,其阻尼系数为0.10=β 1/s ,为了使振动持续,现加一周期性外力

)(30cos 100SI t F =作用.求:

(1)振动达到稳定时的振动角频率;

(2)若外力的角频率可以改变,则当其值为多少时系统出现共振现象?其共振的振幅为多大?

分析 受迫振动的频率由外力决定。

解:(1)振动达到稳定时,振动角频率等于周期性外力的角频率,有30/rad s ω= (2)受迫振动达到稳定后,其振幅为:2

2

2

22

004)(/)/(ωβωω+-=m F A 式中m k /0=

ω为系统振动的固有角频率,0F 为外力的振幅

题图5-27

由上式可解得,当外力的频率ω

为:26.5/rad s ω==时

系统出现共振现象,共振的振幅为:0.177r A m ==

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

t (s ) v (m.s -1) 12m v m v o 1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时, 加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222,22===∴== ===ππ ω πωω 2.一个弹簧振子振幅为2 210m -?, 当0t =时振子在2 1.010m x -=?处,且向 正方向运动,则振子的振动方 程是:[ A ] A :2 210cos()m 3 x t πω-=?-; B :2 210cos()m 6x t π ω-=?-; C :2 210cos()m 3 x t π ω-=?+ ; D : 2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简 谐振动,若其速度与时间(v —t )关系曲线 如图示,则振动的初相位为:[ A ] 1.2题图 x y o

A :6π; B :3π; C :2 π ; D :23π; E :56π 解:振动速度为:max sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或0 56 π ?= 由知1.3图,0t =时,速度的大小 是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有0 6 π?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π=两侧分别对T , 和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-==∴= 二、填空题 1.有一放置在水平面上的弹簧振子。振幅 A = 2.0×10-2m 周期 T = 0.50s , 3 4 6 5 2 1 x /1 2题图 x y

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动 选择题 1.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( ) A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点 C .在t =t 1时刻,振子的速度为零 D .从t 1到t 2,振子正从O 点向b 点运动 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( ) A .C 的振幅比 B 的大 B .B 和 C 的振幅相等 C .B 的周期为2π 2 L g D .C 的周期为2π 1 L g 3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后 A 56 T

B .摆动的周期为 65 T C .摆球最高点与最低点的高度差为0.3h D .摆球最高点与最低点的高度差为0.25h 4.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( ) A .甲的最大速度大于乙的最大速度 B .甲的最大速度小于乙的最大速度 C .甲的振幅大于乙的振幅 D .甲的振幅小于乙的振幅 5.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。已知弹簧的劲度系数为k ,则下列说法中正确的是( ) A .细线剪断瞬间A 的加速度为0 B .A 运动到最高点时弹簧弹力为mg C .A 运动到最高点时,A 的加速度为g D .A 振动的振幅为 2mg k 6.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212()x x g L π- B . 212()2x x g L π- C . 212()4x x g L π- D . 212()8x x g L π-

机械振动课程期终考试卷-答案

一、填空题 1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。 2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或( 余弦)函数。 3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。 6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 2、在离散系统中,弹性元件储存( 势能),惯性元件储存(动能),(阻尼)元件耗散能量。 4、叠加原理是分析(线性)系统的基础。 5、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。(本小题2分) 2.振动按激励情况可分为自由振动和强迫振动两类。(本小题2分)。 3.图(a)所示n个弹簧串联的等效刚度= k ∑ = n i i k1 1 1 ;图(b)所示n个粘性阻尼串联的等效粘 性阻尼系数= e C ∑ = n i i c1 1 1 。(本小题3分) (a)(b) 题一 3 题图 4.已知简谐振动的物体通过距离静平衡位置为cm x5 1 =和cm x10 2 =时的速度分别为s cm x20 1 = &和s cm x8 2 = &,则其振动周期= T;振幅= A10.69cm。(本小题4分) 5.如图(a)所示扭转振动系统,等效为如图(b)所示以转角 2 ?描述系统运动的单自由度 系统后,则系统的等效转动惯量= eq I 2 2 1 I i I+,等效扭转刚度= teq k 2 2 1t t k i k+。(本小题4分)

大学物理 机械振动习题 含答案

题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时,加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A: B: C: D: 解: s T t T x a x a 2.242 2,2 222,22===∴==== =ππ ωπ ωω 2.一个弹簧振子振幅为2210m -?,当0t =时振子在21.010m x -=?处,且向正方向运 动,则振子的振动方程是:[ A ] A :2210cos()m 3 x t π ω-=?-; B :2 210cos()m 6 x t π ω-=?-; C :2210cos()m 3 x t π ω-=?+ ; D :2210cos()m 6 x t π ω-=?+ ; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6π; B :3π; C :2 π ; D :23π; E :56 π 解:振动速度为:max 0sin()v v t ω?=-+ 0t =时,01sin 2?= ,所以06π?=或056 π?= 由知图,0t =时,速度的大小是在增加,由旋转矢量图知, 旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对 应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06 π ?= 是符 合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π =两侧分别对T ,和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-= =∴=

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的 (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )2221 ωA ; (C )232 1 ωA - ; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 第题图

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 x (A ) (B )(C ) (D ) )s 2 1 -

机械振动基础试卷3答案

(共计15分) 故系统的周期为 2.重物m 1悬挂在刚度为k 的弹簧上,并处于静平衡位置,另一重物m 2 从高度为h 处自由落到m i 上无弹跳,如图2所示,求其后的运动。(共 计15分) 解:根据题意,取M=M 1+m 2所处的平衡位置为原点,向下为正,得系 统运动的微分方程为: =詈cos (pZ t ) jl^sin (pZ t ) k m 1 m 2 . k . m, m 2 3.如图3所示系统两个圆盘的半径为r ,设 I 1 I 2 I,k 1 k 2 k,k 3 3k,求系统的固有频率和振型。(共计15分) 解:取1, 2为系 统的广义坐标, 系统的动能为 E T I 1 12 212 22 11 ( 12 22) 振动分析与实验基础课程考试 3答案 1.求如图1所示系统的周期,三个弹簧都成铅垂, 且k 2 2k 〔 , k g k 〔 o 解: 等效刚度二一1— 1 1 (-—) k 1 k 2 k 3 永1 5k 1 k m 3m 解得 x x 0cos n t —°sin n t n T 乙2 n

2). 1 2 1 2 1 2 U 尹i (r J 2 步(「! r 2)2 尹(「2)2 系统的特征方程为: 在频率比/ n = , 2时,恒有X A 2).在/ n V 、2 , X/A 随E 增大而减小,而在 / n > 2 , X/A 随 E 增大而增大 (共计15分) 证明:1).因—<1 (2 / n )2|H() A^ 1 故当 / n = 2 时, |H(W )| .—. V 1 (2 J 2)2 所以,X 1 (2 2 )2 1,故无论阻尼比E 取何值恒有 X/A A ;1 (2 厨 (2 / n )2 ( / n )2 2( / n )2 1 (2 / n )2 (1 ( / n )2)2 (2 / n )2'2 系统的势能为 从而可得 k 1r 2 k 2r 2 k 2r 2 k 2r 2 k 2r 2 k 3r 2 2kr 2 kr 2 kr 2 4kr 2 得 W 12 (3 .2)牛 (3 其振型分别为:U 1 u 2 4. H( )| 1 (2 / n )2, |H( )| 1/ . 1-( / n ) 2 2 (2 / n )2 证明: 1).无论阻尼比E 取何值,

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

机械振动基础试卷

机械振动基础试卷 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

振动分析与实验基础课程考试试卷 1 1. 设有两个刚度分别为21,k k 的线性弹簧如图1所示, 试证明:1)它们并联时的总刚度eq k 为: 2)它们串联时的总刚度eq k 为: (共计15分) 2. 弹簧下悬挂一物体,弹簧静伸长为δ,设将物体向下拉,使弹簧有静 伸长3δ,然后无初速度地释放,求此后的运动方程。 (共计15分) 3. 求如图2所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴1O ,2O 转动,它们相互啮合,不能相对滑动,在图示位置(半径1O A 与2O B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘, 质量分别为1m ,2m 。(共计15分) 4. 试证明:对数衰减率也可用下式表示 n n x x l n 01=δ (式中n x 是经过n 个循环后的振幅)。 并给出在阻尼比ξ为0.01,0.1,0.3时振幅减小到50%以下所需要的循环数。(共计15分) 5. 如图3所示的扭振系统,设, 221I I =12t t K K = 1).写出系统的刚度矩阵和质量矩阵。 2).写出系统的频率方程并求出固有频率和振型,画出振型图。 (共计15分) 6. 证明:对系统的任一位移{}x ,Rayleigh 商 满足221)(n x R ωω≤≤

这里[]K和[]M分别是系统的刚度矩阵和质量矩阵,1ω和nω分别是系统的最低和最高固有频率。(共计15分) 7. 求整流正弦波 T tπ A x(t) 2 sin =的均值,均方值和方差。(共计10分)

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

机械振动基础习题

机械振动分析与应用习题 第一部分问答题 1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。 2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。 3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。 4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? 5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。 6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。 第二部分计算题 1.求图2-1所示两系统的等效刚度。 图2-1 图2-2 图2-3 2.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。3.如图2-3所示系统,求轴1的等效转动惯量。 图2-4 图2-5 图2-6 图2-7 4.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。(注:飞轮外径100mm,R=150mm。) 5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。 6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。 7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。 8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

浙江大学《机械振动基础》期末试卷

诚信考试沉着应考杜绝违纪 浙江大学2013–2014学年夏学期 《机械振动基础》课程期末考试试卷A卷 开课学院:化工系,考试形式:闭卷,允许带 1张A4纸的笔记入场 考试时间: 2014 年 7 月 2 日, 下午14:00~16:00 ,所需时间: 120 分钟 考生姓名: __学号:专业:过程装备与控制工程 . 注意事项: (1)、考试形式为闭卷,允许带1页A4纸大小的参考资料、计算器和尺子。不允许带 PPT课件打印稿、作业本、笔记本草稿纸等纸质材料,不允许带计算机、IPad等智能电子设备。 (2)、第一、二大题答题内容写在试卷上,第三大题答题内容写在试卷所附答题纸上。试题(三个大题,共100分): 一、判断题(每题2分,共18分) 1.1 杆的纵向振动、弦的横向振动和轴的扭转振动虽然在运动表现形式上并不相同, 但它们的运动微分方程是同类的,都属于一维波动方程。() 1.2 稳态响应的振幅及相位只取决于系统本身的物理性质(m, k, c)和激振力的频率 及力幅,而与系统进入运动的方式(即初始条件)无关. () 1.3 在受到激励开始振动的初始阶段,振动系统的响应是暂态响应与稳态响应的叠 加。即使在零初始条件下,也有自由振动与受迫振动相伴发生。() 1.4 为减轻钢丝绳突然被卡住时引起的动张力,应适当减小升降系统的刚度。() 1.5 汽轮机等高速旋转机械在开、停机过程中经过某一转速附近时,支撑系统会发生 剧烈振动,此为转子系统的临界转速,即转子横向振动的固有频率。() 1.6 谐波分析法是将非周期激励通过傅立叶变换表示成了一系列频率为基频整数倍的 简谐激励的叠加,从而完成系统响应分析。 () 1.7阻尼自由振动的周期小于无阻尼自由振动的周期。 () 1.8叠加原理可用于线性和非线性振动系统。 () 1.9若将激振力 F(t) 看作一系列单元脉冲力的叠加,则线性振动系统对任意激振力的 响应等于激振力作用时间内各个单元脉冲响应的总和。 ()

(完整版)《大学物理》习题册题目及答案第15单元 机械振动

第15单元 机械振动 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。与其对应的振动曲线是: [ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B) s 32 (C) s 3 4 (D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接, 两弹簧的另外两端分别固定在墙上。滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。现将滑块m 向左移动x0,自静止释放,并从释放时开始 计时。取坐标如图所示,则其振动方程为: ??? ? ? ?+=t m k k x x 2 10cos (A) ??????++=πt k k m k k x x )(cos (B) 212 10 ? ?? ???++=πt m k k x x 210cos (C) ??? ???++=πt m k k x x 210cos (D) ??????+=t m k k x x 2 1 0cos (E) [ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A) 167 (B) 169 (C) 1611 (D) 1613 (E) 16 15 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若 这两个简谐振动可叠加,则合成的余弦振动的初相为: (A) π2 1 (B)π t y A (D) A -t y o A -(A) A t y o A A -t y A A (C) o m x x O 1k 2 k t x o 2 /A -2 x 1 x

机械振动2015试题及参考答案-1

中南大学考试试卷(A卷) 2015 - 2016学年上学期时间110分钟 《机械振动基础》课程 32 学时 2 学分考试形式:闭卷专业年级:机械13级总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上 1、简述机械振动定义,以及产生的内在原因。 (10分) 答:机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。(5分)产生机械振动的内在原因是系统本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。(5分) 2、简述随机振动问题的求解方法,随机过程基本的数字特征包括哪些? (10分) 答:随机振动问题只能用概率统计方法来求解,只能知道系统激励和相应的统计值(5分)。 随机过程基本的数字特征包括:均值、方差、自相关函数、互相关函数。(5分) 3、阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? (10分) 答:阻尼消耗振动系统的能量,它使自由振动系统的振动幅值快速减小(5分)。增加黏性阻尼量,可使指针快速回零位(5分)。 4、简述求解周期强迫振动和瞬态强迫振动问题的方法。

(10分) 答:求解周期强迫振动时,可利用傅里叶级数将周期激励力转化为简谐激励力,然后利用简谐激励情况下的周期解叠加,可以得到周期强迫振动的解(5分)。求解瞬态强迫振动的解时,利用脉冲激励后的自由振动函数,即单位脉冲响应函数,与瞬态激励外力进行卷积积分,可以求得瞬态激励响应(5分)。周期强迫振动和瞬态强迫振动,也可以通过傅里叶积分变换、拉普拉斯积分变换来求解。 5、如图1所示,系统中质量m 位于硬质杆2L (杆质量忽略)的中心,阻尼器的阻尼系数为c ,弹簧弹性系数为k , (1)建立此系统的运动微分方程; (5分) (2)求出临界阻尼系数表示式; (5分) (3)阻尼振动的固有频率表示式。 (5分) 答:(1)可以用力矩平衡方法列写平衡方程,也可以用能量方法列写方程,广义坐标可以选质量块的垂直直线运动,也可以选择杆的摆角,以质量块直线运动坐标为例,动能212T E mx =&,势能21(2)2U k x =,能量耗散2 12 D cx =&,由222,,T T ij ij ij i j i j i j E D U m c k x x x x x x ???=== ??????,得到:40mx cx kx ++=&&&; (2 )e c == (3 )d n ω== 6、如图2所示系统,两个圆盘的直径均为r ,设I 12,k 12,k 3=3k , (1)选取适当的坐标,求出系统动能、势能函数; (5分) (2)求出系统的质量矩阵、刚度矩阵; (5分) (3)写出该系统自由振动时运动微分方程。 (5分)

大学物理机械振动习题解答

习题四 4-1 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短). 题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用 0d d 2 22=+ξωξt 描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力. (2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ?<<R ,

故R S ?= θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 θθ mg t mR -=22d d 令R g = 2ω,则有 0d d 2 22=+ωθt 4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 题4-2图 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串 所以串联弹簧的等效倔强系数为

(完整版)大学物理(第四版)课后习题及答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相?=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析 弹簧振子的振动是简谐运动。振幅A 、初相?、角频率ω是简谐运动方程 ()?ω+=t A x cos 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A 、?已知外, ω可通过关系式T π ω2= 确定。振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。 解 因T π ω2=,则运动方程 ()?? ? ??+=+=?π?ωt T t A t A x 2cos cos 根据题中给出的数据得 ]75.0)2cos[()100.2(12ππ+?=--t s m x 振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+??-==---t s s m dt dx v πππ75.0)2cos[()108(/112222+??-==---t s s m dt x d a x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为?? ???? +=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析 可采用比较法求解。 将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量。 运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()?ω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相π?25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。 (2)t= 2s 时的位移、速度、加速度分别为 m m x 21007.7)25.040cos()10.0(-?=+=ππ )25.040sin()2(/1πππ+?-==-s m dt dx v

机械振动综合试题及答案

第11章 机械振动 单元测试 一、选择题(本题共10小题海小题4分,共40分?在每小题给出地四个选项中 ,有地只 有一个选项正确,有地有多个选项正确,把正确选项前地字母填在题后地括号内?全部选对地 得4分,选对但不全地得2分,有选错或不答地得 0分) 1?一质点做简谐运动,则下列说法中正确地是( ) A ?若位移为负值,则速度一定为正值,加速度也一定为正值 B ?质点通过平衡位置时,速度为零,加速度最大 3?一质点做简谐运动地振动图象如图 2所示,质点地速度与加速度方向相同地时间段是 ( ) A ? 0?0.3 s B ? 0.3?0.6 s C . 0.6?0.9 s D . 0.9?1.2 s 4?一个弹簧振子放在光滑地水平桌面上 ,第一次把它从平衡位置拉开距离为 d ,释放后 做 简谐运动,振动频率为f ;第二次把它从平衡位置拉开距离为 3d ,释放后仍做简谐运动,其振动 频率为f 2.则f 1 : f 2等于( ) A . 1 : 3 B . 3 : 1 C . 1 : 1 D. . 3 : 1 5. 自由摆动地秋千,摆动地振幅越来越小,下列说法正确地是( ) A .机械能守恒 B .总能量守恒,机械能减小 C .能量正在消失 D .只有动能和势能地转化 6如图3所示,一质点做简谐运动,先后以相同地速度依次通过 A 、B 两点,历时1 s 质点通 过B 点后再经过1 s 又第2次通过B 点,在这2 s 内质点通过地总路程为 12 cm.则质点地振动 周期和振幅分别为() A . 3 s ,6 cm B . 4 s ,6 cm C . 4 s ,9 cm D . 2 s ,8 cm A 0 11 图3 7.如图 4 所示,光滑槽半径远大于小球运动地弧长 ,今有两个小球同时由图示位置从静止释放 则它们第一次相遇地地点是 ( ) C .质点每次通过平衡位置时 D ?质点每次通过同一位置时 ,加速度不一定相同 ,速度也不一定相 同 2.如图1所示是一做简谐运动物体地振动图象 ,由图象可知物体速度最大地时刻是 C. t 3 D. t 4 ( A . t 2 图4

相关主题
文本预览
相关文档 最新文档