当前位置:文档之家› 光纤光缆标准

光纤光缆标准

光纤光缆标准
光纤光缆标准

ITU-T光纤和光缆特性标准研究新进展

New Progress on Standard Study for Optical Fiber and Cables by ITU-T 国际电信联盟ITU-T SG15(第十五研究组)于2000年颁布了光纤标准最新版本后,在2001-2004年研究期的前几次会议上,又继续对G.650(2000)《单模光纤相关参数的定义和试验方法》、G.652(2000)《单模光纤光缆特性》、G.653(2000)《色散位移单模光纤光缆特性》、G.654(2000)《截止波长位移型单模光纤光缆特性》、G.655(2000)《非零色散位移单模光纤光缆特性》等建议提出修订文稿,2003年1月20日至31日在日内瓦召开的会议上,通过了G.652和G.655的修订文稿,G.650、G.653、G.654修订文稿将在今年10月和2004年5月通过。

此外,该研究组又起草了一个新建议G.656《宽带光传输用非零色散单模光纤和光缆特性》(Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport),该建议将在今年10月通过。

本文主要介绍ITU-T光纤光缆特性建议最新研究进展情况,重点介绍G.652和G.655的修订内容。

一、ITU-T建议G.652(2003-01)

1、G.652光纤的类别

G.652类型光纤由2000年版本的三个类别进一步分为了G.652A

G.652B、G.652C、G.652D四个类别,增加了G.652D。主要根据光纤支持的应用对PMD的要求和1383nm衰减的要求区分。

G.652A光纤主要支持ITU-T G.957规定的SDH传输系统、G.691

规定的带光放大的单通道直到STM-16的SDH传输系统,和对于G.693应用的直到40km的10Gbit/s以太网系统及STM-256。

G.652B光纤主要支持更高速率例如在G.691和G.692传输系统

中直到STM-64应用,在G.693和G.959.1中对于STM-256的某些应用。

G.652C光纤(即波长段扩展的非色散位移单模光纤,又称为低

水峰光纤)的属性与G.652A的属性是类似的,除了允许使用在1360nm-1530nm扩展波长范围外。

G.652D光纤的属性与G.652B的属性是类似的,除了允许使用

在1360nm-1530nm扩展波长范围外。

2、光纤的主要技术指标

G.652A、G.652B、G.652C、G.652D四个类别光纤的主要技术

指标如表1、表2所列。

为了便于与2000年版本的比较,表中同时给出了2000版本的

主要技术指标。

表1ITU-T G.652A、G.652B光纤和光缆的主要技术指标

表2ITU-T G.652C、G.652D光纤的主要技术指标

(1)从表1、表2可知,G .652四个类别光纤的模场直径和容差、包层直径和容差、芯同心度误差、光缆截止波长、色散特性、筛选应力等指标都相同,而且2000年版本与2003都相同。

(2)2003年版本将G .652A 、G .652B 、G .652C 、G .652D 光纤宏弯损耗的弯曲半径均改为30mm ,因为G.652B 、G.652C 、G .652D 光纤可以使用在L-波段,仅规定了1625nm 波长宏弯损耗要求,删除了1550nm 宏弯损耗要求。

(3)2000年版本与2003版本对未成缆光纤PMD 系数的指标都没作规定。2000年版本对G .652A 成缆光纤没有规定链路PMD 指标,2003年版本对G .652A 、G.652B 、G .652C 、G.652D 成缆光纤均规定了链路PMD 指标。G .652A 和G .652C 光纤PMD 系数链路设计最大值PMD Q 为0.5ps/√km ,G.652B 和G .652D 光纤PMD 系数链路设计最大值PMD Q 为0.2ps/√km 。

3、建议G .652的附录

(1) 在建议G .652的2003年版本中只保留一个附录Ⅰ(链路属 性和系统设计信息)

,删除了附录Ⅱ、附录Ⅲ(衰减谱模型和例子)和附录Ⅳ(关于PMD 的统计信息)。

(2) 录Ⅰ(链路属性和系统设计信息)主要内容介绍如下:附录 Ⅰ的主要目的是给出链路属性和系统设计的参考。一个串接的光缆链路通常包含一些连接在一起的光缆制造长度。串接光缆链路的传输参数不仅要考虑单一光缆的性能,而且还必须考虑串接光缆链路的统计属性。这些属性包括光缆衰减系数、色散特性、非线性效应、链路PMD 指标。链路属性主要受到诸如接头、连接器和安装的影响。这些因素在本建议中不能规定。为估计链路属性值,表3和表4(附录Ⅰ的表1和表2)分别给出串接光缆链路的代表值。表4中包含光纤引进的最大差分群时延是企图给出对在链路中可能有的其他光部件要求的指南。对系统设计所需参数的估计方法是基于测试、模型或其他考虑。

表3 串接光缆链路的代表值

(Table I.1/G.652(Representative value of concatenated optical fibre links))

表4 差分群时延(Table I..2/G.652 Differential group delay)

注:表4中光缆段长除了对于0.10ps/√km/>4000km链路是25km外(概率是6.5×10-8),其他都是10km。

二、ITU-T建议G.655(2003-01)

1、G.655光纤的类别

G.655类型光纤由2000年版本的G.655A、G.655B两个类别进一步分为了G.655A、G.655B、G.655C三个类别。主要根据对PMD的要求和色散特性的要求区分。附录Ⅰ给出了传输距离和比特速率对PMD的不同要求。

G.655A光纤主要支持ITU-T G.691、G.692、G.693和G.959.1应用,对于G.692应用,根据通道波长和规定的色散特性,限制最大的总注入功率,典型的最小通道间隔不小于200GHz。

G.655B光纤主要支持ITU-T G.691、G.692、G.693和G.959.1应用,对于G.692应用的密集波分复用传输系统,根据通道波长和规定的色散特性,最大的总注入功率能比G.655A 光纤容许的高,典型的最小通道间隔允许100GHz或更小。

G.655C类别光纤的属性与G.655B类似,但它具有比G.655B光纤对PMD更严的要求,允许STM-64系统传输距离比400km长的更多和G.959.1 STM-256的应用。

2、光纤的主要技术指标

G.655A、G.655B、G.655C三个类别光纤的主要技术指标如表5、表6所列。为了便于与2000年版本的比较,表中同时给出了2000版本的主要技术指标。

表5 ITU-T G.655A光纤的主要技术指标

表6ITU-T G.655B和G.655C光纤的主要技术指标

(1)从表5、表6可知,G.655三个类别光纤的模场直径和容差、

包层直径和容差、芯同心度误差、光缆截止波长、色散特性、筛选应力等指标都相同,而且2000年版本与2003都相同。光缆截止波长由1480nm改为1450nm。

(2)建议G.655的2003年版本将G.655A、G.655B、G.655C光

纤宏弯损耗的弯曲半径均改为30mm,因为G.655B、G.655C光纤可以使用在L-波段,仅规定了1625nm波长宏弯损耗要求,删除了1550nm宏弯损耗要求。

(3)建议G.655的2000年版本与2003版本对未成缆光纤PMD

系数的指标都没作规定。2000年版本对G.655A成缆光纤没有规定链路PMD指标,2003年

版本对G.655A、G.655B、G.655C成缆光纤均规定了链路PMD指标。G.655A和G.655B光纤PMD系数链路设计最大值PMD Q为0.5ps/√km,G.655C光纤PMD系数链路设计最大值PMD Q为0.2ps/√km。

3、建议G.655的附录

(1)在建议G.655的2003年版本中保留了原附录Ⅰ(链路属性

和系统设计信息),删除了原附录Ⅱ(关于PMD的统计信息),将附录Ⅱ改为:参考文献(IEC61282-3(2002),Guidelines for the Calculation of PMD in Fibre Optic Systems.(A work in progress.)。)

(2)录Ⅰ(链路属性和系统设计信息)主要内容介绍如下:附录

Ⅰ的主要目的是给出链路属性和系统设计的参考。一个串接的光缆链路通常包含一些连接在一起的光缆制造长度。串接光缆链路的传输参数不仅要考虑单一光缆的性能,而且还必须考虑串接光缆链路的统计属性。这些属性包括光缆衰减系数、色散特性、非线性效应、链路PMD指标。链路属性主要受到诸如接头、连接器和安装的影响。这些因素在本建议中不能规定。为了估计链路属性值,表7和表8(附录Ⅰ的表1和表2)分别给出串接光缆链路的代表值。表8中包含光纤引进的最大差分群时延是企图给出对在链路中可能有的其他光部件要求的指南。表9给出了色散特性的几个例子。对系统设计所需参数的估计方法是基于测试、模型或其他考虑。

表7 串接光缆链路的衰减值

(Table I.2/G.655 Link attenuation values)

表8 差分群时延(Table I.2/G.655 Differential group delay)

注:表8中光缆段长除了对于0.10ps/√km/>4000km链路是25km外(概率为6.5×10-8),其他都是10km。

表9 对λ min=1530nm和λ max=1565nm色散值的例子

三、结语

由于掌握的资料有限,本文介绍的光纤特性标准内容不一定齐

全,可能有遗漏。文中作的简单说明仅仅是为读者提供一个参考,应以正式颁布的标准文本为准。

光缆的种类与结构

2.5 光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)光缆——适用于室布放的光缆。 (4)设备光缆——用于设备布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 2.5.2 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图2.11所示。

标准光缆标准规范

第一章总则 第1.0.1条本暂行规定(以下简称规定)是电信网光纤数字传输系统安装工程施工质量检验、随工检验和竣工验收的依据。适用于长途、市内通信的新建、扩建和改建的光缆线路和传输设备安装工程。本规定也可供其它光纤数字传输系统安装工程参考。 第1.0.2条本规定未列入的内容应按设计文件办理。 第1.0.3条各种光缆线路工程和传输设备安装工程所用器材的程式、规格、质量等均应符合本规定和设计文件的要求;工程中不准使用未经鉴定合格的器材。 第1.0.4条在施工过程中,施工单位应严格执行部颁有关施工质量检查的规定。建设单位应通过工地代表加强工地的质量检查,做好随工检验。 第1.0.5条本规定光缆线路工程部分的内容以结合光缆施工的特点为主,一般的线路常规工序,可按部颁相关线路工程施工及验收技术规范执行。 第1.0.6条施工单位制定的施工操作规程应贯彻本规定的要求。 第1.0.7条施工中应严格执行部颁的各种法规,在施工安全方面应贯彻执行电信线路、设备安全技术操作规程的规定。 第1.0.8条本规定的解释权与修改权属邮电部。 1、光缆线路工程 第二章光缆及器材检验 第一节一般规定 第2.1.1条施工单位在开工前,应对运到工地的光缆、器材的规格、程式进行数量清点和外观检查,如发现异常应作重点检查。对光缆、连接器(活接头)等还应进行光学特性、电特性的测试。 第2.1.2条工程所用光缆器材必须有产品质量检验合格证,应核对厂方提交的产品测试记录所列项目及指标,是否符合国家或部颁标准和设计要求,或订货合同规定。 第2.1.3条对不符合要求的光缆、器材不得使用。属一般缺陷修复合格后方可使用。 第2.1.4条经过检验的光缆、器材,应做好记录。 第2.1.5条光缆、连接器等光学特性、电特性测试的一般规则: 1、测试方法应按CCITT建议的规定。 2、测试仪表应经过计量部门校验取得合格证。

光缆的结构及种类

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/5e9851704.html,) 光缆的结构及种类 变宝网11月21日讯 光缆是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件。它可以根据环境的不同有不同的表现形式,比如需要防水、缓冲等。 一、光缆的结构 光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。 光缆由加强芯和缆芯、护套和外护层3部分组成。缆芯结构有单芯型和多芯型两种:单芯型有充实型和管束型两种;多芯型有带状和单位式两种。外护层有金属铠装和非铠装两种。 二、光缆的种类 1.按照传输性能、距离和用途的不同,光缆可以分为用户光缆、市话光缆、长途光缆和海底光缆。 2.按照光缆内使用光纤的种类不同,光缆又可以分为单模光缆和多模光缆。 3.按照光缆内光纤纤芯的多少,光缆又可以分为单芯光缆、双芯光缆等。 4.按照加强件配置方法的不同,光缆可分为中心加强构件光缆、分散加强构件光缆、护层加强构件光缆和综合外护层光缆。 5.按照传输导体、介质状况的不同,光缆可分为无金属光缆、普通光缆、综合光缆(主要用于铁路专用网络通信线路)。 6.按照铺设方式不同,光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。

7.按照结构方式不同,光缆可分为扁平结构光缆、层绞式光缆、骨架式光缆、铠装光缆和高密度用户光缆。 三、光缆的选用 光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。一般在管道中或强制通风处可选用阻燃 但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。 3.楼内垂直布缆时,可选用层绞式光缆(Distribution Cables);水平布线时,可选用可分支光缆(Breakout Cables)。 4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。 直埋光缆埋深标准 敷设地段或土质埋深(m)备注 普通土(硬土)≥1.2

光纤、光缆的基本知识(非常实用)

光纤、光缆的基本知识(非常实用) 1.简述光纤的组成。 答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。2.描述光纤线路传输特性的基本参数有哪些? 答:包括损耗、色散、带宽、截止波长、模场直径等。 3. 产生光纤衰减的原因有什么? 答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。 4.光纤衰减系数是如何定义的? 答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。 5.插入损耗是什么? 答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。 6.光纤的带宽与什么有关? 答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。 7.光纤的色散有几种?与什么有关? 答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。 8.信号在光纤中传播的色散特性怎样描述? 答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。 9.什么是截止波长? 答:是指光纤中只能传导基模的最短波长。对于单模光纤,其截止波长必须短于传导光的波长。 10.光纤的色散对光纤通信系统的性能会产生什么影响? 答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。 11.什么是背向散射法? 答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。

光纤光缆活动连接器的基本结构及光纤熔接机的种类

光纤光缆活动连接器基本上是采用某种机械和光学结构,使两根光纤的纤芯对准,保证90%以上的光能够通过,目前有代表性并且正在使用的有以下几种。 1.套管结构 这种连接器由插针和套筒组成。插针为一精密套管,光纤固定在插针里面。套筒也是一个加工精密的套管(有开口和不开口两种),两个插针在套筒中对接并保证两根光纤的对准。其原理是:当插针的外同轴度、插针的外圆柱面和端面以及套筒的内孔加工得非常精密时,两根插针在套筒中对接,就实现了两根光纤对准。 由于这种结构设计合理,加工技术能够达到要求的精度,因而得到了广泛应用。FC,SC等型号的连接器均采用这种结构。 2.双锥结构 这种连接器的特点是利用锥面定位。插针的外端面加工成圆锥面,基座的内孔也加工成双圆锥面。两个插针插入基座的内孔实现纤芯的对接。插针和基座的加工精度极高,锥面与锥面的结合既要保证纤芯的对准,还要保汪光纤端面问的间距恰好符合要求。它的捕针和基座采用聚合物压成型,精度和一致性都很好。这种结构由AT&T创赢和采用。 3. v形槽结构 它的对中原理是将两个插针放人V形槽基座中,再用盖板将插针压紧,使纤芯对准。这种结构可以达到较高的精度。其缺点是结构复杂,零件数量多,除荷兰菲利浦公司之外,其他国家不采用。 4. 球面定心结构 这种结构由两部分组成,一部分是装有精密钢球的基座,另一部分是装有圆锥面(相当于车灯的反光镜)的插针。钢球开有一个通孔,通7L的内径比插针的外径大。当两根插针插入基座时,球面与锥面接合将纤芯对准,并保证纤芯之间的问距控制在要求的范围内,这种设计思想是巧妙的。fH零件形状复杂,加工调整难度大。目前只有法国采用这种结构。

光纤光缆技术要求规范

光纤光缆技术规范书 1.概述 1.1本技术规范书未规定的其它技术要求应不劣于ITU、IEC建议和中国国家标准、通信行业标准的要求。 1.2本技术规范书未标明日期的ITU、IEC建议和中国国家标准、通信行业标准均使用最新版本。 1.3申请人对本技术规范的应答将作为双方签订合同以及供货期间产品检测的技术依据 1.4本文件的解释权属于采购人。 2.主要技术要求和指标 2.1 光缆中的光纤 本条款中的技术要求基于如下前提: 除传输衰减及偏振模色散(PMD)等两项指标之外,光纤在成缆前后的其他技术参数指标,均不得有任何变化。 2.1.1 成缆后光纤的衰减系数 (1)光纤在1310nm波长上的最大衰减系数为:0.35dB/km (2)光纤在1285 ~ 1330nm波长范围内,任一波长上光纤的衰减系数与1310nm波长上的衰减系数相比,其差值不超过0.03dB/km。 (3)光纤在1550nm波长上光纤的最大衰减系数为:0.21dB/km。 (4)光纤在1525 ~ 1575nm波长范围内,任一波长上光纤的衰减系数与1550nm波长上的衰减系数相比,其差值不超过0.05dB/km。 2.1.2 偏振模色散 (1)在1550nm波长单盘光缆的偏振模色散系数:≤0.20ps/km (2)光纤成缆后必须满足在1550nm波长光缆链路(≥20盘光缆)偏振模色散系数≤0.10ps/km;Q(概率)=0.01%。 2.1.3 光纤识别 光缆中的光纤应采用全色谱标志,其颜色应选自表1规定的各种颜色;每个

松套管内光纤的序号,应按表1中规定的颜色顺序排列。 用于识别的色标应鲜明,在安装或运行中可能遇到的温度下,不褪色,不迁染到相邻的其它元件上,并应透明。 2.2 光缆 2.2.1 光缆结构型式及应用场合 申请人应根据表2及下列基本要求,提出详细的光缆结构图并注明各部分尺寸。 2.2.1.1 管道光缆 管道光缆(GYTA):金属加强构件、松套层绞填充式、铝-聚乙烯粘接护套通信用室外光缆。 2.2.1.2 架空光缆 架空光缆(GYTS):金属加强构件、松套层绞填充式、钢-聚乙烯粘接护套通信用室外光缆。

光纤跳线基础知识

光纤跳线是指光纤两端都装上连接器插头,用来实现光路活动连接(一端装有插头的称为尾纤)。光纤跳线用于长途及本地光传输网络、数据传输及专用网络,以及各种测试和自控系统。光纤跳线是通过精密设备经过多道工序精磨而成的,具有插入损耗低、回波损耗高、重复性好等优点,可广泛应用于各种光纤器件和各种光纤通信系统中。 光纤跳线的种类有很多,根据连接器形状可分为:FC、SC、ST、LC、MT-RJ、MU等;根据连接器插头从插针体的类型可分为:PC、UPC、APC等;根据光纤种类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900μm、2mm、3mm等。在根据连接器形状划分中,单模光纤可使用的连接器类型有FC,SC,ST,FDDI,SNA,LC,MT-RJ等,多模光纤可使用的连接器类型有FC,SC,ST,FDDI,SMA,LC,MT-RJ,MU 及VF45等。单模跳线包括SC/PC,SC/APC,FC/PC,FC/APC,ST/PC,LC/PC, LC/APC,MU/PC、MU/APC、MT-RJ;多模跳线包括:SC/PC,FC/PC,ST/PC,LC/PC,MU/PC,MT- RJ。光纤跳线所用光纤一般为G.652光纤,直径一般为Φ3mm,长度一般为 5~100m,插入损耗一般小于0.1dB;反射损耗一般要大于45dB。 下面我们简单介绍根据光纤连接器形状常使用的FC,SC,ST,LC,MT-RJ和MU 6种光纤跳线。注意,光纤跳线的两端连接器插头根据使用情况可以是不相同,如我们常使用的FC/APC-LC/APC,就是一项连接ODF,另一端连接设备的光纤跳线。 1、FC-FC光纤跳线:FC (Ferrule Connector,意为金属连接件)光纤连接器通常是圆形的金属套,紧固方式为螺纹式,主要应用于配线架上。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器作了改进,采用对接端面呈球面的插针,连接器一般是圆形带螺纹的,而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。如图1所示的就是一条两端都带FC连接器接头的FC-FC光纤跳线。 图1:FC-FC光纤跳线示例

光缆基本知识介绍

光缆基本知识介绍 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、 石英光纤的分类 单模光纤 G.652A(简称B1) (简称B1) G.652C() () G.655A光纤(B4)(长途干线使用) 光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1)

125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。

光缆基础知识

光缆Q&A 1.1 什么是光缆 用适当的材料和缆结构,对通信光纤进行收容保护,使光纤免受机械和环境的影响和损害,适应不同场合使用。 1.2 影响光纤性能和寿命的因素 A)应力:导致光纤断裂或衰减增加 B)水和潮气:使光纤易于断裂(变脆),影响寿命 C)氢气(压):光纤在一定具有压力的氢气作用下,光纤衰减曲线会在1240nm处产生突变的吸收峰,使1310nm及1550nm波长处的衰减明显增加。 1.3 光缆设计的基本原则 针对光纤的弱点,光缆设计应遵循以下原则: A)为光纤提供机械保护,使光纤在各种环境下免受应力; B)必须防止水分和潮气侵入; C)必须避免光缆中产生氢气,尤其避免形成氢压。 1.4 光缆的基本性能 包括:光缆中的光纤传输特性、光缆的机械特性、光缆的环境特性和光缆的电气特性 1.5 光缆机械性能的实现

A)加强芯——主要抗拉元件 B)套管——将光纤外界隔绝,提供最基本的保护 C)余长控制——二套及成缆 D)金属带纵包——防潮、防水、抗侧压、抗冲击 E)护套——抗侧压、抗冲击、抗弯曲 1.6 光缆的防潮措施 A)径向防水——纤膏及缆膏填充、金属带纵包、PE护套 B)轴向防水——纤膏及缆膏填充、阻水环、阻水带、阻水纱、单根加强芯 1.7 光缆避免形成氢压的措施 A)氢气源于光缆材料 B)严格挑选材料,控制材料析氢量,控制不同材料间的反应析氢 C)特别是金属件的析氢控制(镀锌钢丝加强芯的禁用) 1.8 光缆的分类 A)按光纤在光缆中的状态分:紧结构、松结构、半松半紧结构 B)按缆芯结构分:中心管式、层绞式、骨架式 C)按光缆敷设条件分:架空、管道、直埋和水底光缆 D)按光缆使用环境场合分:室外光缆、室内光缆 1.9 光缆的相关标准 A)国际标准 IEC60794(IEC-International Electrotechnical Commission) ITU-T K.25(ITU-International Telecommunications Union) IEEE P1222(IEEE- Institute of Electrical and Electronics Engineers) B)国内标准 国家标准GB/T 7424.1-1998 行业标准YD/T 1.10 光缆的寿命 光缆的寿命主要由两方面决定:一是光缆所使用的材料寿命,另一是光缆中光纤的寿命。光缆材料寿命包括,光缆所使用各种材料本身寿命和它们之间之间相互作用对寿命的影响。光缆中光纤寿命,则主要由光纤在其服务期间所受到的应力(应变)确定。

光纤标准

一、前言 光纤光缆行业领域的国际和国内标准很多,标准版本不断更新,新标准不断推出,为了给从事该领域工作的科研人员、光纤光缆制造者、广大用户及相关人员提供参考,本文特将光纤光缆行业领域最新国际和国内标准的情况作一简要介绍。 二、标准项目及名称 1.国际标准 1)国际电工委员会(IEC)标准 ●光纤标准: IEC60793-1-1(1995,第1版)光纤第1部分总规范总则 IEC60793-1-2(1995,第1版)光纤第1部分总规范尺寸参数试验方法 IEC60793-1-3(1995,第1版)光纤第1部分总规范机械性能试验方法 IEC60793-1-4(1995,第1版)光纤第1部分总规范传输特性和光学特性试验方法 IEC60793-1-5(1995,第1版)光纤第1部分总规范环境性能试验方法 IEC60793-2(1998,第4版)光纤第2部分产品规范 ●光缆标准: IEC60794-1-1(1999,第1版)光缆第1部分总规范总则 IEC60794-1-2(1999,第1版)光缆第1部分总规范光缆性能基本试验方法 IEC60794-2(1989,第1版)光缆第2部分产品规范 IEC60794-3(1998,第2版)光缆第3部分管道、直埋、架空光缆─分规范 IEC60794-4-1(1999,第1版)光缆第4部分高压电力线架空光缆(OPGW) 2)国际电信联盟(ITU-T)标准

ITU-TG.650(1997)单模光纤相关参数的定义和试验方法 ITU-TG.651(1993) 50/125μm多模渐变型折射率光纤光缆特性 ITU-TG.652(1997)单模光纤光缆特性 ITU-TG.653(1997)色散位移单模光纤光缆特性 ITU-TG.654(1997)截止波长位移型单模光纤光缆特性 ITU-TG.655(1996)非零色散位移单模光纤光缆特性 3)其他国外标准 安装在架空电力线路上的全介质自承式光缆(ADSS)IEEE(电气与电子工程师协会)标准2.国内标准: 1)国家标准 ●光纤标准: GB/T15972.1-1998(第1版)光纤总规范第1部分总则 GB/T15972.2-1998(第1版)光纤总规范第2部分尺寸参数试验方法 GB/T15972.3-1998(第1版)光纤总规范第3部分机械性能试验方法 GB/T15972.4-1998(第1版)光纤总规范第4部分传输特性和光学特性试验 方法 GB/T15972.5-1998(第1版)光纤总规范第5部分环境性能试验方法 ●光缆标准: GB/T7424.1-1998(第1版)光缆第1部分总规范 2)通信行业标准

光纤结构

第一章绪论 重点内容:光纤光缆基本结构,各部分的作用,所用原料的科学性,七种常用护套的形式,光纤的发展历史与水平(自查资料,写出报告) 难点:光纤结构胶各部分作用的理解 主要内容: 1.1 概述 1.1.1 光纤 1.定义:光纤是光导纤维的简称。狭义的说,光纤是一种约束光并传导光的多层同轴圆 柱实体介质光波导,又称光介质传输线。 2. 作用:光纤的主要作用是传导光,将传输的光信号从一地如实地传到另一地,实现光 信号的长距离异地传输。 3.光纤典型结构 光纤的典型结构是一种细长多层同轴圆柱形实体复合纤维。自内向外为:纤芯(芯层) -→包层-→涂覆层(被覆层)。核心部分为纤芯和包层,二者共同构成介质光波导,形成对 光信号的传导和约束,实现光的传输,所以又将二者构成的光纤称为裸光纤。涂覆层又称被 覆层,主要对裸光纤提供机械保护,可分为一次涂层和二次涂层,图1-1-1。 纤芯(芯层): 光纤的纤芯主要由具有高折射率(记为n 1)的导光材料制成,如:SiO 2 光纤芯层材料多 为SiO 2--GeO 2 。它的作用是传导光,使光信号在芯层内部沿轴向向前传输; 包层: 光纤的包层由低折射率(记为n 2)导光材料制成(折射率较纤芯低),如:SiO 2 光纤包 层材料多为SiO 2—B 2 O 3 或SiO 2 —P 2 O 5 。它的作用是约束光。由于纤芯和包层的折射率,满足n 1 >n 2 光传导条件,光波在芯包界面上可发生全反射,使大部分的光能量被阻止在芯层中,从而导致光信号沿芯层轴向向前传输。 涂覆层(被覆层): 光纤涂覆层是为保护裸光纤、提高光纤机械强度和抗微弯强度并降低衰减而涂覆的高分子材料层。一般情况下涂覆层有二层,内层为低模量高分子材料,称为一次涂层;外层为高模量高分子材料,称为二次涂层: 一次涂层:又分预涂层和缓冲层两层,常用材料有硅酮树脂、紫外固化炳烯酸酯UV等; 二次涂层:其结构有三种,它们是紧套结构、松套结构、带状结构。常用材料有尼龙PA12、聚乙烯PE、硅橡胶、聚酰胺塑料、聚对苯二甲酸丁二醇酯PBT,聚丙烯,聚脂等。 裸光纤涂覆高分子材料的原因: (1)裸光纤的主要成分为二氧化硅,它是一种脆性易碎材料,抗弯曲性能差,韧性差,为提高光纤的微弯性能,涂覆一层高分子涂层。 (2)光纤拉丝成形时,表面存在缺陷微裂纹的几率很小,但如遇到空气中的水,将会发

光纤光缆最新国际和国内标准介绍

光纤光缆最新国际和国内标准介绍 发表时间: 2006-10-07 09:59 作者:中国连接器网 一、前言 光纤光缆行业领域的国际和国内标准很多,标准版本不断更新,新标准不断推出,为了给从事该领域工作的科研人员、光纤光缆制造者、广大用户及相关人员提供参考,本文特将光纤光缆行业领域最新国际和国内标准的情况作一简要介绍。 二、标准项目及名称 1.国际标准 1)国际电工委员会(IEC)标准 ●光纤标准: IEC60793-1-1(1995,第1版)光纤第1部分总规范 总则 IEC60793-1-2(1995,第1版)光纤第1部分总规范 尺寸参数试验方法 IEC60793-1-3(1995,第1版)光纤第1部分总规范 机械性能试验方法 IEC60793-1-4(1995,第1版)光纤第1部分总规范 传输特性和光学特性试验方法 IEC60793-1-5(1995,第1版)光纤第1部分总规范 环境性能试验方法 IEC60793-2(1998,第4版)光纤第2部分产品规范 ●光缆标准: IEC60794-1-1(1999,第1版)光缆第1部分总规范 总则 IEC60794-1-2(1999,第1版)光缆第1部分总规范 光缆性能基本试验方法 IEC60794-2(1989,第1版)光缆第2部分产品规范

IEC60794-3(1998,第2版)光缆第3部分管道、直埋、架空光缆─分规范 IEC60794-4-1(1999,第1版)光缆第4部分高压电力线架空光缆(OPGW) 2)国际电信联盟(ITU-T)标准 ●光纤标准: ITU-TG.650(1997)单模光纤相关参数的定义和试验方法 ITU-TG.651(1993) 50/125μm多模渐变型折射率光纤光缆特性 ITU-TG.652(1997)单模光纤光缆特性 ITU-TG.653(1997)色散位移单模光纤光缆特性 ITU-TG.654(1997)截止波长位移型单模光纤光缆特性 ITU-TG.655(1996)非零色散位移单模光纤光缆特性 3)其他国外标准 安装在架空电力线路上的全介质自承式光缆(ADSS)IEEE (电气与电子工程师协会)标准 2.国内标准: 1)国家标准 ●光纤标准: GB/T15972.1-1998(第1版)光纤总规范第1部分总则 GB/T15972.2-1998(第1版)光纤总规范第2部分尺寸参数试验方法 GB/T15972.3-1998(第1版)光纤总规范第3部分机械性能试验方法 GB/T15972.4-1998(第1版)光纤总规范第4部分传输特性和光学特性试验

光纤光缆基本知识讲诉

光纤和光缆基础知识

光纤光缆基本知识 一、光纤通信及发展史 1、1966年英籍华人高锟提出“光纤通信”. 2、以激光为光源,经光纤为传输媒质的通信方式,叫做光纤通信. 3、1983年武汉三镇使用光纤通信投入电话网中使用,标志着我国光纤通信进入使 用阶段. 二、光通信原理介绍及光纤通信的特点 1、全反射原理:1)光从光密介质射入光疏介质。 2)入射角大于临界角。 2、光通信特点: 优点:1)传输频带宽、通信容量大 2) 中继距离远、损耗低 3)抗电磁能力强、无串话 4)重量轻 5)资源丰富 6)抗化学腐蚀、柔软可绕 缺点:1)强度不如金属 2)连接比较困难 3)分路耦合不变 4)弯曲半径不宜太小 5)传输能量比较困难 三、光纤通信系统的组成 光发送光传输光接收光端机 四、光纤简介 1、光纤的结构:由纤芯、包层、涂覆层组成 2、光纤分类:1)按材料组成分:玻璃光纤、塑料光纤 2)按传输模式分:单模光纤、多模光纤

单模光纤 G652 折射率:1310nm 1.4677 1550nm 1.4682 G655 折射率:1550nm 1.4690 多模光纤 芯径62.5um A1b 折射率:850nm 1.496 1300nm 1.487 芯径50um A1a 折射率:850nm 1.482 1300nm 1.477 3、常用光纤的主要技术特性及部分指标介绍 指标的介绍: 1)衰减:光在光纤中传输时能量的损耗 2)色散:光脉冲在光纤中传输时脉冲的展宽 3)偏振模色散:基模可分解成两个垂直相交的偏振模,光脉冲在光纤中传输时现两个 垂直的偏振模间的时延差 4)光纤几何参数:包层直径、涂层直径、光纤不圆度 同心度误差:芯/包层<1um 涂覆层/包层<12um 不圆度=长轴直径-短轴直径/标准值 4、模场直径:基模光斑的大小标准:9.2+0.4um 模:光在光纤中的传输方式(单模、多模) 纤芯直径:8.3um 5、截止波长:保证光纤以基模传输的最小波长(G652 1100-1330nm) 常用光纤的主要技术特性 G652 衰减 1310nm≤0.36dB/km 1550nm≤0.22dB/km 模场直径 1310nm 9.3+0.5um 1550nm 10.5+0.8um 包层直径 125+1.0um 包层不圆度≤02% 模场/包层同心度误差≤1um 涂层直径 245+5um 涂层不圆度 / 涂层与包层同心度误差 <12um 截止波长 1100nm≤λc≤1330nm 零色散波长 1300nm-1324nm 零色散斜率≤0.093Ps/nm2.km 1288-1339nm波长范围内色散系数≤3.5 Ps/nm.km 1271-1360nm波长范围内色散系数≤5.3 Ps/nm.km 1550nm波长范围内色散系数≤17 Ps/nm.km 衰减不连续性—--在1310nm或1550nm处均没有大于0.01dB的不连续点,实际 一般控制≤0.03dB. 衰减不均匀性----在光纤后向散射曲线上,任意500米长度上的实测衰减值与 全长平均每500米的衰减值之差的最坏值应≤0.05dB. 外观检查----排丝整齐,颜色鲜明涂覆层牢固光洁,不脱皮. G655 (康宁LEAF、朗讯真波、长飞大保实) 康宁 LEAF :衰减: 1550nm ≤ 0.22dB/km 模场直径(MFD):9.5±0.6um 截止波长(λcc) 1470nm

光纤光缆标准

ITU-T光纤和光缆特性标准研究新进展 New Progress on Standard Study for Optical Fiber and Cables by ITU-T 国际电信联盟ITU-T SG15(第十五研究组)于2000年颁布了光纤标准最新版本后,在2001-2004年研究期的前几次会议上,又继续对G.650(2000)《单模光纤相关参数的定义和试验方法》、G.652(2000)《单模光纤光缆特性》、G.653(2000)《色散位移单模光纤光缆特性》、G.654(2000)《截止波长位移型单模光纤光缆特性》、G.655(2000)《非零色散位移单模光纤光缆特性》等建议提出修订文稿,2003年1月20日至31日在日内瓦召开的会议上,通过了G.652和G.655的修订文稿,G.650、G.653、G.654修订文稿将在今年10月和2004年5月通过。 此外,该研究组又起草了一个新建议G.656《宽带光传输用非零色散单模光纤和光缆特性》(Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport),该建议将在今年10月通过。 本文主要介绍ITU-T光纤光缆特性建议最新研究进展情况,重点介绍G.652和G.655的修订内容。 一、ITU-T建议G.652(2003-01) 1、G.652光纤的类别 G.652类型光纤由2000年版本的三个类别进一步分为了G.652A G.652B、G.652C、G.652D四个类别,增加了G.652D。主要根据光纤支持的应用对PMD的要求和1383nm衰减的要求区分。 G.652A光纤主要支持ITU-T G.957规定的SDH传输系统、G.691 规定的带光放大的单通道直到STM-16的SDH传输系统,和对于G.693应用的直到40km的10Gbit/s以太网系统及STM-256。 G.652B光纤主要支持更高速率例如在G.691和G.692传输系统 中直到STM-64应用,在G.693和G.959.1中对于STM-256的某些应用。 G.652C光纤(即波长段扩展的非色散位移单模光纤,又称为低 水峰光纤)的属性与G.652A的属性是类似的,除了允许使用在1360nm-1530nm扩展波长范围外。 G.652D光纤的属性与G.652B的属性是类似的,除了允许使用 在1360nm-1530nm扩展波长范围外。 2、光纤的主要技术指标 G.652A、G.652B、G.652C、G.652D四个类别光纤的主要技术 指标如表1、表2所列。 为了便于与2000年版本的比较,表中同时给出了2000版本的 主要技术指标。

弱电工程光纤光缆布线基础知识及系统设计

一、光纤 1、光及其特性: 1)光是一种电磁波 可见光部分波长范围是:390~760nm(毫微米)。大于760nm 部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。 2)光的折射,反射和全反射。 因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

2、光纤结构及种类: 1)光纤结构: 光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。 2)数值孔径: 入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&T??CORNING)。 3)光纤的种类:

A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。 多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。综合布线施工教学 B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。 常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。 色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。 C.按折射率分布情况分:突变型和渐变型光纤。 突变型:光纤中心芯到玻璃包层的折射率是突变的。其成

光纤连接器基础知识

光连接器基础知识 一、基本概念(术语) 1、光纤(活动)连接器:是实现将光纤光缆和光纤光缆之间、光纤光缆和有源器件、 光纤光缆和其它无源器件、光纤光缆和系统与仪表进行活动连接的光无源器件(连 接器的作用)。整套光连接器的组成:插头—适配器—插头。 2、光跳线:两端都装有插头的一段光纤或光缆。 3、光纤:是一种利用光全反射原理传导光信号的玻璃纤维。主要成分:SiO2.光纤由纤 芯、包层和涂敷层构成,纤芯的折射率nl大于包层的折射n2.纤芯的作用是传导光 信号,包层的作用是反射光信号,涂敷层的作用是保护光纤,增加光纤的机械强度 和柔韧性。光纤可分为单模光纤(9/125μ)和多模光纤(50/125或62.5/125)。 4、光缆:光缆由护套、加强构件、紧套(或松套)层和涂敷光纤组成。生产跳线采用 的光缆一般有:φ3.0单芯光缆、φ2.0单芯光缆、φ0.9紧套光缆,双芯平行光缆、防水尾缆、束状光缆和带状光缆等。 5、插入损耗:是指光信号通过光连接器之后,光信号的衰减量。一般用分贝数(dB) 表示。表达式为: IL=-10LOG(P1/P0)(d B) 其中P0——输入端的光功率 P1——输出端的光功率 6、回波损耗:也称后向反射损耗,是由于光连接处的非涅尔效应而产生的反射信号, 该信号沿光纤原路返回,会对光源和系统产生不良影响。回波损耗的表达式为: RL=-10LOG(P2/P0) 其中P0—输入端的光功率 P1—后向反射光功率 二、光连接器基本结构原理 图1 光纤连接器精密对中原理 一般均采用精密小孔插芯(Ferrule)和套筒(sleeve)来实现光纤的精确连接。 影响连接器插入损耗的主要因素有: 1、纤芯错位 2、角度偏差 3、连接间隙 4、不同种光纤(数值孔径不同)

光纤光缆技术规范标准

光纤光缆技术规书 1.概述 1.1本技术规书未规定的其它技术要求应不劣于ITU、IEC建议和中国国家标准、通信行业标准的要求。 1.2本技术规书未标明日期的ITU、IEC建议和中国国家标准、通信行业标准均使用最新版本。 1.3申请人对本技术规的应答将作为双方签订合同以及供货期间产品检测的技术依据 1.4本文件的解释权属于采购人。 2.主要技术要求和指标 2.1 光缆中的光纤 本条款中的技术要求基于如下前提: 除传输衰减及偏振模色散(PMD)等两项指标之外,光纤在成缆前后的其他技术参数指标,均不得有任何变化。 2.1.1 成缆后光纤的衰减系数 (1)光纤在1310nm波长上的最大衰减系数为:0.35dB/km (2)光纤在1285 ~ 1330nm波长围,任一波长上光纤的衰减系数与1310nm波长上的衰减系数相比,其差值不超过0.03dB/km。 (3)光纤在1550nm波长上光纤的最大衰减系数为:0.21dB/km。

(4)光纤在1525 ~ 1575nm波长围,任一波长上光纤的衰减系数与1550nm波长上的衰减系数相比,其差值不超过0.05dB/km。 2.1.2 偏振模色散 (1)在1550nm波长单盘光缆的偏振模色散系数:≤0.20ps/km (2)光纤成缆后必须满足在1550nm波长光缆链路(≥20盘光缆)偏振模色散系数≤0.10ps/km;Q(概率)=0.01%。 2.1.3 光纤识别 光缆中的光纤应采用全色谱标志,其颜色应选自表1规定的各种颜色;每个松套管光纤的序号,应按表1中规定的颜色顺序排列。 用于识别的色标应鲜明,在安装或运行中可能遇到的温度下,不褪色,不迁染到相邻的其它元件上,并应透明。 光纤识别用全色谱表1 2.2 光缆 2.2.1 光缆结构型式及应用场合 申请人应根据表2及下列基本要求,提出详细的光缆结构图并注明各部分尺寸。

电线电缆基础知识培训资料

品质管理处培训资料 目录 第一部分基础知识 (1) 第二部分主要生产的线缆品种 (4) 1、圆线同心绞架空导线 (4) 2、电力电缆 (8) 3、电气装备用电线电缆 (15) 4、塑料绝缘控制电缆 (22) 5、通用橡套电缆 (27) 6、架空绝缘电缆 (30) 7、矿用橡套软电缆 (32) 8、电子计算机电缆 0 9、平行集束架空绝缘电缆 (2) 10、聚稀烃绝缘挡潮聚稀烃综合护套市内通信电缆(了解) (4) 11、同轴射频电缆 (6) 12、预制带分支电缆 (7) 13、变频器专用电力电缆 (9)

第一部分基础知识 一、电线电缆的定义: 电线电缆是用于传输电能、传递信号及实现电磁能转换的电工产品。 二、电线电缆的分类 随着社会的飞速发展,科学技术的不断进步,电线电缆的品种越来越多,目 前粗略统计有一千多种,两万多个规格。根据制造工艺、结构特点、功能要求、 产品的用途可以分为五大类: 1、裸电线 ----指仅有导体,而无绝缘层的产品,其中包括铜、铝等各种金属和复合金属圆单线、各种结构的架空输电线用的绞线、软接线、型线和形材。 2、电力电缆 --- 电力电缆是在电力系统的主干线路中用以传输和分配大功率 电能的线材产品。其中包括 1—500kV及以上各种电压等级、各种绝缘的电力电缆。 3、电气装备用电线电缆--- 从电力系统的配电点把电能直接传送到各种用电设备、器具的各种电源连接线,各种工农业用的电气安装线和控制信号用的电线 电缆。这类产品使用面广,品种多,而且要结合所用设备的特性和使用环境条件 来确定电缆的结构和性能。因此,除了那些大量通用产品外,还有许多专用的特 种电缆。 4、通信电缆和光缆 ----通信电缆是传输电话、电报、电视、广播、传真、数据和其他电信信息的电缆。HYV MHYV SYV-75(射频电缆原先生产)。 5、电磁线; 三、电线电缆的型号 每一种电线电缆都有其名称,电缆型号一般用一系列汉语拼音字母和阿拉伯 数字来表示的。一个完整的型号由以下七部分组成,即构成电缆的各个组成部分:类别用途导体绝缘护层特征外护套派生

光纤、光缆的基本知识

电线、光缆的认识 电线、光缆 1. 简述光纤的组成。 答:电线由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。 2.描述电线路传输特性的基本参数有哪些?唯雅诺https://www.doczj.com/doc/5e9851704.html,/ 答:包括损耗、色散、带宽、截止波长、模场直径等。 3.产生电线衰减的原因有什么? 答:电线的衰减是指在一根电线的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。 4.电线衰减系数是如何定义的? 答:用稳态中一根均匀电线单位长度上的衰减(dB/km)来定义。 5.插入损耗是什么? 答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。 6.电线的带宽与什么有关? 答:电线的带宽指的是:在电线的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB 时的调制频率。电线的带宽近似与其长度成反比,带宽长度的乘积是一常量。 7.电线的色散有几种?与什么有关? 答:电线的色散是指一根电线内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、电线两者的特性。 8.信号在电线中传播的色散特性怎样描述? 答:可以用脉冲展宽、电线的带宽、电线的色散系数三个物理量来描述。 9.什么是截止波长? 答:是指电线中只能传导基模的最短波长。对于单模电线,其截止波长必须短于传导光的波长。 10.电线的色散对电线通信系统的性能会产生什么影响? 答:电线的色散将使光脉冲在电线中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。 11.什么是背向散射法? 答:背向散射法是一种沿电线长度上测量衰减的方法。电线中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。三菱变频器在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀电线的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。 12.光时域反射计(OTDR)的测试原理是什么?有何功能? 答:OTDR基于电的背向散射与菲涅耳反射原理制作,利用于电线中传播时产生的后向散射光来获取衰减的信息,可用于测量电线衰减、接头损耗、电线故障点定位以及了解光纤沿长度的损耗分

相关主题
文本预览
相关文档 最新文档