当前位置:文档之家› 薄板成型简介

薄板成型简介

薄板成型简介
薄板成型简介

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

有限元4-薄板弯曲问题

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

有限元薄板弯曲问题分析

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如杨耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

金属薄板成形性能试验

金属薄板成形性能试验 1. 简介 成形性能是指薄板对各种冲压成形的适应能力,即薄板在指定加工过程中产生塑性变形而不失效的能力。成形性能研究的重点是成形极限的大小,也就是薄板发生破裂前能够获得的最大变形程度。 1.1 模拟成形性能指标 选择或评定金属薄板冲压成形品级时,可对模拟成形性能指标提出要求。设计或分析冲压成形工艺过程,以及设计冲压成形模具时,经常需要参考模拟成形性能指标的数据。薄板常用模拟成形性能指标有: 1、胀形性能指标:杯突值IE; 2、拉深性能指标:极限拉深比LDR或载荷极限拉深比LDR(T); 3、扩孔(内孔外翻)性能指标:极限扩孔率(平均极限扩孔率)λ(λ); 4、弯曲性能指标:最小相对弯曲半径R min/t; 5、“拉深+胀形”复合成形性能指标:锥杯值CCV; 6、面内变形均匀性指标:凸耳率Z e; 7、贴模(抗皱)性指标:方板对角拉伸试验皱高; 8、定形性指标:张拉弯曲回弹值。 1.2 特定成形性能指标 选择或评定金属薄板冲压成形品级、协议金属薄板的订货供货、设计或分析冲压成形工艺过程时,可对金属薄板的材料特性指标或工艺性能指标提出要求,或参考它们的数据,它们统称为特定成形性能指标: 1、塑性应变比(r值)或平均塑性应变比(r); 2、应变硬化指数(n值); 3、塑性应变比平面各向异性度(r?)。 1.3 局部成形极限 评定、估测金属薄板的局部成形性能,或分析解决冲压成形破裂问题时,可使用金属薄板的成形极限图或成形极限曲线。 1.4 其他 以上所列举的各种成型性能试验方法均为我国冲压生产和冶金制造行业已经使用或比较熟悉的模拟成型性能试验方法,而且也属于国际上的主流成形性能

金属材料薄板和薄带摩擦系数试验方法

YB/T ×××××-200× 金属材料薄板和薄带 摩擦 系数试验方法 Metallic Materials Sheet and Strip Method for Coefficient of Friction 编 制 说 明 行业标准起草小组 2011年4月

金属材料薄板和薄带 摩擦系数试验方法 编 制 说 明 一、 任务来源 根据国家工业与信息化部2010年第一批行业标准修订项目计划,《金属材料薄板和薄带 摩擦系数试验方法》行业标准由武汉钢铁(集团)公司联合华中科技大学和冶金工业标准研究院共同起草。 二、 起草过程和征求意见情况 摩擦广泛存在于实际生产与生活中,是固体力学的研究重点之一。当两相互接触的物体之间有相对运动或相对运动趋势时,会在接触表面上产生阻碍相对运动的机械作用力,即为摩擦力,而相互摩擦的两物体称为摩擦副。按摩擦副的运动状态,摩擦可分为静摩擦和动摩擦,前者是指相互接触的两物体间有相对运动趋势并处于静止临界状态时的摩擦,后者是相互接触的两物体越过静止临界状态而发生相对运动时的摩擦。 摩擦系数则是指两接触表面间的摩擦力和作用在其一表面上的垂直力比值,摩擦系数通常和接触表面的粗糙度有关,而和接触面积的大小无关。依据运动的性质,可分为静摩擦系数和动摩擦系数。两接触表面在相对移动开始时的最大阻力为静摩擦力,与法向力的比值即为静摩擦系数。两接触表面以一定速度相对移动时的阻力,与法向力的比值即为动摩擦系数。需要强调的是,摩擦系数是与一组摩擦副相对应的,与组成摩擦副的两接触物体的材质和粗糙度相关,单纯讲某种材料的摩擦系数是没有意义的。 多数学者认为摩擦力的本质是由物体接触面上的分子间内聚力引起的。然而事实上,对于两个相互接触的物体来讲,只有在表面间的微观凸起才相互接触,而大多数地方是不接触的,因此实际接触面积远小于表观接触面积(即我们所测定的试样面积) 。摩擦阻力与实际接触面积成正比( 不是与表观接触面积成正比),一般实际接触面积又与表面上的正压力成正比,因此摩擦力与正压力成正比。不同材料间接触面上分子间的内聚引力不同,这将影响到物体间的摩擦力,因此不同材料间的摩擦系数也就不同。 摩擦在大部分场合都是起到负面作用,会造成产品和零件磨损,进而导致表面损坏、材料损耗和零件失效,不仅会消耗能源和花费材料、降低设备运转效率,而且会加速设备报废、导致部件更换频繁,造成极大的经济损失。在金属板料成形领域,摩擦条件也是影响板料成形性能的重要参数之一。在成形过程中,金属板料同模具共同组成了摩擦副,两者之间的摩擦状态会直接影响零件的成形极限、回弹和表面质量,过大的摩擦会导致板料在成形过

薄板弯曲实验报告

金属薄板的弯曲实验报告 1.实验目的 (1)了解金属薄板弯曲变形过程及变形特点。 (2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 (3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 (1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影响。 (2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯曲, 分析板厚和弯曲角度对相对弯曲半径的影响。 (3)观察弯曲过程和弯曲回弹现象。 (4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 (5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a)所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…,l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…,r k。当板料弯曲到一定程度时,如图1(c)所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d)所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a)(b)(c)(d) 图1 弯曲过程示意图 和所有的塑性加工一样,弯曲时,在毛坯的变形区里,除产生塑性变形外,也一定存在有弹性变形。当弯曲工作完成并从模具中取出弯曲件时,外加的载荷消失,原有的弹性变形也随着完全或部分地消失掉,其结果表现为在卸载过程中弯曲毛坯形状与尺寸的变化。这个现象为弹复,也叫回弹。回弹可以通过补偿法(图2(a),(b))、校正法(图2(c))、三点式折弯(图2(d))等方法进行抑制。

金属材料 薄板和薄带 弯折性能试验方法(标准状态:现行)

I C S77.040.10 H22 中华人民共和国国家标准 G B/T38806 2020 金属材料薄板和薄带 弯折性能试验方法 M e t a l l i cm a t e r i a l s S h e e t a n d s t r i p T e s tm e t h o d f o r b e n d i n g a n d f o l d i n gp r o p e r t i e s 2020-06-02发布2020-12-01实施 国家市场监督管理总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号和说明1 5 试验原理2 6 试样3 7 模具3 8 试验机4 9 试验程序5 10 试验结果评定6 11 试验报告6 附录A (规范性附录) 测定极限弯曲角度θm a x 的方法8

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中国钢铁工业协会提出三 本标准由全国钢标准化技术委员会(S A C/T C183)归口三 本标准起草单位:宝山钢铁股份有限公司二深圳万测试验设备有限公司二国家钢铁及制品质量监督检验中心二冶金工业信息标准研究院三 本标准主要起草人:方健二张建伟二董莉二黄星二朱兴江二侯慧宁三

金属材料薄板和薄带 弯折性能试验方法 1范围 本标准规定了金属薄板和薄带弯折性能试验方法的术语和定义二原理二试样二模具二试验机二试验程序二试验结果评定和试验报告三 本标准适用于厚度0.30mm~4.00mm的金属薄板和薄带的弯折性能试验三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T15825.2金属薄板成形性能与试验方法第2部分:通用试验规程 G B/T15825.5金属薄板成形性能与试验方法第5部分:弯曲试验 3术语和定义 下列术语和定义适用于本文件三 3.1 弯曲失效b e n d i n g f a i l u r e 板材变形区外侧表面产生裂纹或显著凹陷三 3.2 弯折性能b e n d i n g a n d f o l d i n gp r o p e r t i e s 反映金属板材在三点弯曲加载条件下的冷加工塑性三 注1:弯折性能包括最小弯曲半径与极限弯曲角度两种指标三 注2:通常情况下,把小于180?弯曲失效的试验称为弯曲试验,测量板材的极限弯曲角度,把180?U形弯折称为弯折试验,测量板材的最小弯曲半径三 4符号和说明 本标准使用的符号和说明见表1三 表1符号和说明 符号说明单位 c试验前支辊中心轴所在水平面与弯曲压头中心轴所在水平面的间距mm f压头的移动位移mm L支辊间距mm p试验后支辊中心轴所在垂直面与弯曲压头中心轴所在垂直面的间距mm

金属板材的冲压成形性能

金属板材的冲压成形性能 作者:旭日笑出自:旭日笑浏览/评论:845/0 日期:2007年7月18日 16:28 金属板材的成形性能是指板材对冲压成形工艺的适应能力。板材成形性能的好坏会直接影响到冲压工艺过程,生产率,产品质量和生产成本。板料的冲压成形性能好,对冲压成形方法的适应性就强,就可以采用简便工艺,高生产率设备,生产出优质低成本的冲压零件。对冲压成形件来说,不产生破裂是基本前提,同时对它的表面质量和形状尺寸精度也有一定要求,故板料冲压成形性应包括:抗破裂性,贴模性和形状冻结性能等几个方面。所谓冲压成形就是板材可成形能力的总称,或者叫做广义的冲压成形性能。广义成形性能中的抗破裂性能,可视为狭义的冲压成形性能。板料在成形过程中,一是由于起皱,塌陷和鼓包等缺陷而不能与模具完全贴合;另一方面因为回弹,造成零件脱模后较大的形状和尺寸误差。通常将板材冲压成形中取得与模具形状一致的能力,称为贴模性;而把零件脱模后保持其既得形状和尺寸的能力,称为形状冻结性。通常把材料开始出现破裂时的极限变形程度作为板料冲压成形性能的判定尺度。目前对抗破裂性的研究已取得了不少成果。根据把冲压成形基本工序依其变形区应力应变的特点分为伸长类(拉伸类)与压缩类两个基本类别的理论,可以把这种冲压成形的分类与冲压成形性能的分类建立如表1-3所示的对应关系。板料冲压成形的试验方法有多种,概括起来分为直接试验和间接试验两类。直接试验中板材的应力和变形情况与真实冲压基相同,所得的结果也比较准确;而间接试验时板材的受力情况与变形特点却与实际冲压时有一定的差别。所以,所得的结果也只能间接地反映板材的冲压性能,有时还要借助于一定的分析方法才能做到。常用的方法为:直接试验中的模拟试验和间接试验中的拉伸试验。表1-3 冲压成形性能的分类冲压成形类别成形性能类别提高极限变形程度的措施伸长类冲压成形(翻边、胀形等) 伸长类成形性能(翻边性能、胀形性能等) 1) 提高材料的塑性 2) 减少变形不均匀程度 3) 消除变形区局部硬化层和应力集中 压缩类冲压成形(拉深、缩口等) 压缩类成形性能(拉深性能、缩口性能等) 1) 降低变形区的变形抗力、摩擦阻力 2) 防止变形区的压缩失稳(起皱) 3) 提高传力区的承载能力 复合类冲压成形(弯曲、曲面零件拉深成形等) 复合类成形性能 (弯曲性能等) 根据所述成形类别的主次,分别采取相应措施 一、板材拉伸试验拉伸试验是评价板材的基本力学性能用成形性能的主要试验方法。由于简单可行,所以是目前普遍采用的一种方法。由单向拉伸试验所能获得的材料特性值如图1-3所示。图1-3 单向拉深实验所得到的材料特性值示意图拉伸试验与冲压成形性能有密切关系的几项主要性能参数如 下: 1) 称屈强比较小的屈强比几乎对所有的冲压成形都是有利的。屈强比小,对压缩类成形工艺有利。拉深时,如果板材的屈服点低,材料起皱的趋势小,防止起皱所必需的压边力和摩擦损失也会降低,对提高极限变形程度有利。例如,低碳钢的时,极限拉深系数 m=0.48~ 0.5 65Mn 的时,极限拉深系数则为m=0.68~ 0.7 在伸长类成形工艺中,如胀形,拉型,拉弯,曲面形状的成形等,当低时,为消除零件的松弛等弊病和为使零件的形

金属塑性成形原理

研究金属薄板弯曲变形过程及特点(金属塑性成型讨论课) 组员:张鹏奚宁黄常勋刘岩 冯博 班级:13锻压2班 指导老师:李纬民

目录 引言 (1) 实验目的 (1) 实验原理 (2) 实验材料 (3) 结果分析 (3) 思考题 (4) 有限元分析 (4) 参考文献 (7)

1引言 弯曲:弯曲是常见的一种金属材料塑性成形方法,是冲压生产中应用较广泛的一种工序。据大多数弯曲都是在通用压力机上由弯曲模弯曲形成的。压力机、模具、弯曲工艺是弯曲形成的三要素,其中模具是关键因素,因为弯曲件的质量,生产效率和模具寿命取决于弯曲模结构设计的正确合理和先进程度。弯曲就是将平直板材、线材或管材等型材的毛坯或半成品用模具或其他工具弯成具有一定角度和形状制件的加工方法。弯曲成型由于原材料消耗少而且成型后零件质量较高,且经过多次弯曲能够成型形状复杂而又轻便、实用的产品,因而弯曲工艺在冲压生产中占有很大的比例,应用相当广泛。弯曲工艺是一种经验性很强的生产方式工艺及模具设计的好坏直接影响到产品质量,如果能够对这些生产实际中的生产经验和技巧将进行归类并进行详细的研究,找出一定的规律性,使设计人员更好的掌握板料弯曲成型的变形规律,并可利用宝贵的生产实例,减少工艺设计和模具设计时的盲目性,从而提高零件弯曲成形的质量。分析版聊弯曲的力学特点和弯曲件的公益性,总结提高弯曲精度的方法。 薄板:两个平行面和垂直于这两个平行面的柱面或棱柱面所围成的物体,称为平板,或简称为板,这两个平行面为板面,而这个柱面或棱柱面称为侧面或板边。两个板面之间的距离σ称为板的厚度,而评分厚度σ的平面称为板的中间平面,或简称为中面。如果板的厚度σ远小于中面的最小尺寸这个板就称为薄板,否则就称为厚板 实验的灵感来源:本实验的想到的灵感来源于材料力学中有一个实验是梁弯曲实验,目的是为了测量梁弯曲时的应力应变分布规律:通过试验机使试件弯曲,稳定后用试验机测量梁的各部分应力和应变得到规律;而本实验是为了测量薄板弯曲时的形状及角度变化:将薄板在模具中进行弯曲精确求其角度变化找到薄板在模具中弯曲的形状规律。一个是求其内部的受力情况,另一个一个是求其外部形状的变化。 其他专业基础课或专业课与本实验的联系:大学专业基础课包括理论力学,材料力学,机械原理,机械设计等课程的学习,为专业课教学的开展做好铺垫。金属塑性成型原理是研究和探讨金属在各种塑形加工过程中可遵循的基础和规律的一门学科。本门课程从塑形变形的力学基础,物理基础,塑形成型的成型问题的工程解法,塑性成形件的质量分析等方面进行论述。经典而且广泛使用的理论学习,是专业课学习的基石。从专业基础课的学习中,或多或少的会对本专业形成一定理解,了解行业基础知识,学习必备的基本技能是专业课学习之前必不可少的步骤。专业课实验的设立是为了使学生在理论知识学习的同时,亲身去体会实践,使理论理解更加透彻,专业知识学习更加清楚。 1. 实验目的 (1) 了解金属薄板弯曲变形过程及变形特点。 (2) 熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 (3) 掌握测定最小相对弯曲半径的实验方法。 2. 实验内容 (1) 认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影响。 (2) 了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯曲,分析板厚和弯曲角度对相对弯曲半径的影响。 (3) 观察弯曲过程和弯曲回弹现象。 (4) 掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。

金属薄板的弯曲_实验报告

1.实验目的 1)了解金属薄板弯曲变形过程及变形特点。 2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影响。 2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯曲,分析板厚 和弯曲角度对相对弯曲半径的影响。 3)观察弯曲过程和弯曲回弹现象。 4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a) 所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…, l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…, r k。当板料弯曲到一定程度时,如图1(c) 所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d) 所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a) (b) (c) (d) 图1 弯曲过程示意图

薄板弯曲问题的有限元分析

变分原理与有限元素法课程报告 报告名称:薄板弯曲问题的有限元分析 姓名: 学号: 导师: 专业: 2015.5.15

目录 1.问题描述 (3) 2.理论基础 (3) 2.1矩形薄板弯曲单元 (3) 2.1.1挠度函数 (3) 2.1.2单元刚度矩阵 (5) 2.2四边简支矩形板的纳维叶解法 (5) 3.有限元模型 (6) 4.结果与分析 (7) 4.1均布载荷作用下四边简支板 (7) 4.2集中载荷作用下四边简支板 (8) 4.2均布载荷作用下四边固支板 (9) 4.2集中载荷作用下四边固支板 (10) 4.5总结 (11)

1.问题描述 一块方板,边长为L,厚度为t( 5 1 /801≤≤t L ) ,材料为铝,分别用不同密度的四节点12个自由度的矩形单元来划分网格。 要求:考虑四边简支和四边固支两种边界情况,分别计算受均匀载荷q 和在板中心处受集中载荷P 两种载荷情况下,板的中心挠度max ω(不超过板厚t 的1/5),进而计算出不同情况下的方板的中心挠度系数;将计算出的系数与精确解进行比较,通过比较发现不同有限元网格密度对薄板弯曲问题计算结果的影响。 本例中,方板边长L=40mm,厚度t=1mm,铝的弹性模量E=70GPa,泊松比 3.0=μ,粗略计算当q=0.1MPa 或者P=50N 时,板中心挠度小于板厚的1/5,属 于小挠度弯曲,因此载荷可取这两个值。 2.理论基础 2.1矩形薄板弯曲单元2.1.1挠度函数 薄板弯曲单元中比较简单的是四节点12个自由度的矩形单元,将矩形薄板沿坐标方向划分为若干矩形单元,如图1所示,每个单元设有四个节点,每个节点位移有三个分量:挠度w,绕x 轴的转角y w x ??=/θ,绕y 轴的转角x w y ?-?=/θ,即 )4,3,2,1()/()/(}{=? ???????????-??=?? ?????? ??=i x w y w w w i i i yi xi i i ??δ图1

薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题 一.内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二.重点 1. 基尔霍夫假设; 2. 薄板的应力、广义力和广义位移; 3. 薄板小挠度弯曲问题的基本方程; 4. 薄板的典型边界条件及其简化。 知识点 薄板的基本概念、薄板的位移与应变分量、薄板广义力、薄板小挠度弯曲问题基本方程、薄板自由边界条件的简化、薄板的莱维解、矩形简支薄板的挠度、基尔霍夫假设、薄板应力、广义位移与薄板的平衡、薄板的典型边界条件、薄板自由边界角点边界条件、挠度函数的分解

§12.1 薄板的基本概念和基本假设 学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤ /b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1. 薄板基本概念; 2. 基尔霍夫假设; 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。

相关主题
文本预览
相关文档 最新文档