当前位置:文档之家› 化水系统工艺流程

化水系统工艺流程

化水系统工艺流程
化水系统工艺流程

化学专业系统概述:

1、净水站预处理系统工艺流程

2、锅炉补给水系统工艺流程

3、凝结水精处理系统主要设备

4、供氢站设备

5、工业废水处理系统工艺流程

6、含煤废水处理系统工艺流程

7、含油废水处理系统工艺流程

8、生活污水处理系统工艺流程

9、脱硫废水处理系统工艺流程

10、电解海水制次氯酸钠系统工艺流程

1、净水站预处理系统工艺流程

预处理系统工艺流程:原水先进入接触絮凝斜板沉淀池(2座)处理,同时投加二氧化氯溶液消毒、混凝剂,沉淀池出来的水,一部分直接进入工业消防水池(2座,1200立/池),经工业水泵加压后进入工业杂用水系统;另一部分经过重力式空气擦洗滤池(4个)过滤后进入化学服务水池(2座1000立/池)。综合水泵房内各种水泵分别从工业消防水池及化学服务水池吸水,加压后送至各用户。

沉淀池排泥至污泥浓缩池(1座)经浓缩后通过污泥泵提升至工业废水污泥脱水机间脱水,泥饼外运处理,浓缩池上清液与滤池反冲洗排水送入中间水池(1座),经水泵提升后送至絮凝池回收利用,溢流水排至厂区雨水管网

2、锅炉补给水系统工艺流程

从化学服务水池来的清水一级清水泵活性炭过滤器(10台)清水箱(2台500m3)清水泵(4台)

浮动床阳离子交换器(即阳床4台)

除CO2器(3台)中间水箱(3个V=100 m3)中间

水泵(4台)浮动床阴离子交换器(即阴床4台)混合离子交换器(即混床4台)除盐水泵(5台)

除盐水箱(2个V=1500 m3)

3、凝结水精处理系统主要设备

1、精处理单元每套凝结水精处理系统应至少包括以下设备:3台高速混床、3台树脂捕捉器、1台再循环泵。

2、再生单元阳再生罐、阴再生罐各1台,树脂分离塔1台;、冲洗和

再生水泵2台、罗茨风机2台、热水箱1台。

3、酸碱贮存计量单元酸计量泵、碱计量泵各2台;卸酸泵、卸碱泵各

1台酸贮存罐、碱贮存罐各1个;安全淋浴器1套;酸雾吸收器一台。

4、压缩空气单元压缩空气系统的控制阀、减压阀、气管路等附件

5、废水处理单元废水输送泵2台

4、供氢站设备

氢气集装格(10组,20瓶/组)汇流排架去发电机补氢

5、工业废水处理系统流程

a.废水贮存池(可在池内进行曝气、氧化和pH值粗调整)?废水输送泵?pH 调整槽(通过pH表的测量信号自动调整加酸或加碱量)?絮凝槽(加凝聚剂)?反应槽(加助凝剂)?斜板澄清器?无阀过滤器?最终中和池(通过pH表的测量信号自动调整加酸或加碱量)?清净水池?回收水泵?复用水点。

b.排泥系统流程为:澄清器泥浆?澄清器排泥泵?浓缩池?浓缩池污泥输送泵?脱水机?泥饼汽车外运。

废水储存池

废水储存池正在曝气

6、含煤废水处理系统流程

系统功能

含煤废水处理系统主要功能是处理电厂输煤系统排放的含煤废水和下雨时在煤场附近收集的煤粒雨水,使之达到含煤废水排放标准后回用于栈桥冲洗用水和煤场喷淋用水。

3.1.2 含煤废水的来源

根据含煤废水的排放周期,可以将含煤废水分为经常性排水和非经常性排水。

经常性排水主要包括:输煤栈桥冲洗废水、煤场冲洗废水,水量约20m3/h;

非经常性排水主要包括:煤场雨水。

3.2 系统说明

3.2.1 含煤废水集中处理系统组成

含煤废水集中处理系统包括:煤水沉淀池(2座1000m3水池,分别设置在煤场南面及北面)、中水回用池、煤泥池、含煤废水处理设备、加药系统、排泥系统以及水泵等。

系统概况

含油污水处理站主要处理油罐区油罐脱水、油泵房及汽机房排出的含油污水,按4×330MW机组建设,设计处理能力10m3/h,分2组,一次建成,每组5m3/h,采用油水分离技术进行油水分离,处理后的水排至工业废水贮存池。

主要处理工艺流程如下:含油污水→含油污水调节池→油水分离器→监测池→排至工业废水处理站中间水池(经油水分离器处理后的出水含油量≤5ppm)。其中油水分离器分离出的污油汇集至再生油箱后通过油泵提升至污油回用管道系统。油水分离过程无需动力,可长期连续自动完成油水分离工序。

含油废水处理系统设备技术参数

1)系统处理能力:10m3/h

2)数量:分2组,每组5m3/h

3)工作介质:含油污水,水温0~40℃

4)系统处理的污水污油含量变化范围:0~100%

5)系统处理后的出水含油量:≤5ppm

系统概况

生活污水处理站主要处理厂区内综合办公生活楼、主厂房、辅助/附属车间以及食堂等建筑物排出的生活污水,系统按满足4×330MW机组的要求设计并一次建成,设计处理能力2×5m3/h,采用生物曝气滤池技术进行处理。污水处理达标后供厂区绿化和道路浇洒,污泥排至工业废水处理站浓缩池。3.1.2 系统组成及总体要求

在生活污水处理站设置一座60 m3的污水调节池,收集全厂生活污水,用泵提升至2?5m3/h水解酸化沉淀池,经初步沉淀后至2?5m3/h生物曝气滤池进行生物曝气处理,出水经二氧化氯消毒后回用于厂区绿化和道路浇洒。

处理工艺及流程

处理工艺采用生物曝气滤池,流程为:生活污水→格栅→污水调节池→水解酸化沉淀池→生物曝气滤池→砂滤器→反冲洗水池→接触消毒池→厂区清扫绿化用水。

制水工艺规程

制水工艺 MPI-012(01) 分发部门: 质量部(QA、QC),保障部(制水岗位)。 1.目的 建立纯化水、注射用水生产工艺规程,使产品生产工艺标准化,确保生产有依据,质量有保证。 2.范围

纯化水、注射用水生产工艺。 3.职责 保障部部长、质量部部长、QA、QC。 4.定义 纯化水:为饮用水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的供药用的水,不含任何添加剂。 注射用水:指去离子水经蒸馏所得的水。 纯蒸汽:指由去离子水经蒸馏产生的蒸汽。 反渗透膜:由高分子材料制成的人工半透膜,在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来,能够有效地去除水中的溶解盐类、胶体、微生物、有机物等。 电离子交换(EDI):是将电渗析膜分离技术与离子交换技术有机地结合起来的一种新的制备超纯水(高纯水)的技术,它利用电渗析过程中的极化现象对填充在淡水室中的离子交换树脂进行电化学再生。 5.内容 5.1.概述 5.1.1.产品名称及质量标准 5.1.2.系统简述 制水岗位共有两套纯化水和注射用水生产设备,分别由山东潍坊精鹰医疗器械有限公司(以下简称精鹰系统)和广州万冠制药设备有限公司(万冠系统)设计制,万冠系统生成的纯化水可进入精鹰系统纯化水储罐。具体组成如下:

5.1.3. 工艺流程图 5.1.3.1. 纯化水制备工艺流程 精鹰系统 万冠系统

5.1.3.2.注射用水制备工艺流程 5.2.纯化水系统 5.2.1.工作原理 5.2.1.1.反渗透(RO),即施加压力超过溶液的天然渗透压,则溶剂便会流过半透膜,在相 反一侧形成稀溶液,而在加压的一侧形成浓度更高的溶液。如施加的压力等于溶液的天然渗透压,则溶剂的流动不会发生;如施加的压力小于天然渗透压,则溶剂自稀溶液流向浓溶液。 5.2.1.2.电再生离子交换(EDI)即利用两端电极高压使水中带电离子移动,淡水室中充填 离子交换树脂,而树脂的存在可以大大地提高离子的迁移速度。在电压作用下使离子从淡水水流进入到邻近的浓水水流。 5.2.1.3.石英砂过滤器中装有颗粒度均匀的石英砂,可截留原水中的沙石和絮凝物等,降 低水的浊度,进一步提高水的澄明度。

化产车间工艺流程

HPF法脱硫 HPF法脱硫属液相催化氧化法脱硫,HPF催化剂在脱硫和再生全过程中均由催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF为催化剂的湿式氧化脱硫,煤气中的H2S等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为元素硫。HPF法脱硫选择使用HPF(醌钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。 二、HPF法脱硫工艺流程 1.HPF法脱硫工艺流程如图5-5所示,从鼓风冷凝工段来的煤气,温度约55℃,首先进入直冷式预冷塔6与塔顶喷洒的循环冷却水逆向接触,被冷至30~35℃;然后进入脱硫塔8。 预冷塔自成循环系统,循环冷却水从塔下部用预冷塔循环泵7抽出送至循环水冷却器3,用低温水冷却至20~25℃后进入塔顶循环喷洒。采取部分剩余氨水更新循环冷却水,多余的循环水返回鼓风冷凝工段,或送往酚氰污水处理站。 预冷后的煤气进入脱硫塔,与塔顶喷淋下来的脱硫液逆向接触以吸收煤气中的硫化氢、氰化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气含硫化氢降至50mg/m3左右,送入硫酸铵工段。

吸收了H2S、HCN的脱硫液从塔底流出,经水封槽4进入反应槽9,然后用脱硫液循环泵11送入再生塔10,同时自再生塔底部通入压缩空气,使溶液在塔内得以氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环吸收。 浮于再生塔顶部扩大部分的硫磺泡沫,利用位差自流入泡沫槽14,经澄清分层后,清液返回反应槽,泡沫用泡沫泵15送入熔硫釜16,经数次加热、脱水,再进一步加热熔融,最后排出熔融硫磺,经冷却后装袋外销。系统中不凝性气体经尾气洗净塔洗涤后放空。 为避免脱硫液盐累积影响脱硫效果,排出少量废液送往配煤。 自鼓风冷凝送来的剩余氨水,经氨水过滤器除去夹带的煤焦油等杂质,进入换热器与蒸氨塔底排出的蒸氨废水换热后进入蒸氨塔,用直接蒸汽将氨蒸出。同时将蒸氨塔上部加一些稀碱液以分解剩余氨水中的固定铵盐。蒸氨塔顶部的氨气经分凝器和冷凝冷却器冷凝成含氨大于10%的氨水送入反应槽,增加脱硫液中的碱源。

反渗透设备原理,反渗透水处理系统工程工艺流程

奥凯〖反渗透设备〗概述; Okay reverse osmosis water treatment equipment(inverse)with high selectivity for reverse osmosis membrane element desalination rate can be high up to99.7%.So the choice of high salt rejection rate,low osmotic pressure,high flux membrane, can be the most salt ions removal from water. Ro(reverse osmosis)is a kind of pressure driven by a semipermeable membrane, the selection of interception function,the solution of the solute and solvent separation separation method.They are widely used in various liquid separation and concentration.Water treatment process,water,inorganic ion,bacteria,virus, organic matter and colloid and other impurities are removed,to obtain a high quality water. 奥凯反(逆)渗透水处理设备采用选择性较高的反渗透膜元件除盐率可以高达99.7%。所以选择脱盐率高,低渗透压力,高通量的膜,可以将水中的大部分的盐离子去除。 反渗透(逆渗透)是一种在压力驱动下,借助半透膜的选择截留作用,将溶液中的溶质与溶剂分开的分离方法。目前被广泛的应用于各种液体的分离与浓缩。水处理工艺中,将水中无机离子、细菌、病毒、有机物及胶质等杂质去除,以获得高质量的水。 奥凯〖反渗透设备〗原理: Ro(reverse osmosis)technology:reverse osmosis is REVERSE OSMOSIS,it is the United States of America NASA set international scientists,in support of the government,to spend billions of dollars,after many years of research into.Reverse osmosis principle is applied in water on one side than the natural osmotic pressure greater pressure,so that the water molecules from the high concentrations of a reverse osmosis to the low concentration of a party.Due to the reverse osmosis membrane pore size is much smaller than a virus and bacterial hundreds of times or even thousands of times,so a variety of viruses,bacteria,heavy metal,solid solubles,organic pollution,such as calcium and magnesium ions cannot pass reverse osmosis membrane,so as to achieve the purpose of purifying water quality softening. Reverse osmosis membrane of the epidermis is covered with many very fine pores of the membrane,the membrane surface selective adsorption of a layer of water molecules, salt solute is membrane rejection,higher valence ion exclusion of more distant, film hole surrounding water molecules in reverse osmosis pressure role,through the membrane of the capillary effect of water and salt to reach out.RO membrane pore size< 1.0nm,thus can remove at least one bacterium Pseudomonas aeruginosa (specifically10-10m3000influenza virus(800),specifically for10-10m), meningitis,virus(10-10m200specifically for various viruses,can even remove pyrogen

污水处理厂工艺流程图(新

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D 型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后. 达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级. 二级和三级处理. 一级处理. 主要去除污水中呈悬浮状态的固体污染物质. 物理处理法大部分只能完成一级处 理的要求.经过一级处理的污水.BOD一般可去除30%左右. 达不到排放标准.一级处理属于二级处理的预处理.二级处理. 主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD 物质). 去除率可达90%以上. 使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物. 氮和磷等能够导致水体富营养化的可溶性无机物等. 主要方法有生物脱氮除磷法. 混凝沉淀法.砂率法.活性炭吸附法. 离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后. 经过格删或者筛率器. 之后进入沉 砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理). 初沉池的出水进入生物处理设备. 有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池. 氧化沟等. 生物膜法包括生物滤池. 生物转盘. 生物接触氧化法和生物流化床). 生物处理设备的出水进入二次沉淀池. 二沉池的出水经过消毒排放或者进入三级处理. 一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法. 二沉池的污泥一部分回流至初次沉淀池或者生物处理设备. 一部分进入污泥浓缩池.之后 进入污泥消化池. 经过脱水和干燥设备后. 污泥被最后利用. 各个处理构筑物的能耗分析 1. 污水提升泵房进入污水处理厂的污水经过粗格删进入污水提升泵房. 之后被污水泵提升至沉砂池的前池. 水泵运行要消耗大量的能量. 占污水厂运行总能耗相当大的比例. 这与污水流量和要提升的扬程有关. 2. 沉砂池沉砂池的功能是去除比重较大的无机颗粒. 沉砂池一般设于泵站前. 倒虹管前. 以便减轻无机颗粒对水泵.管道的磨损, 也可设于初沉池前. 以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池. 多尔沉砂池和钟式沉砂池. 沉砂池中需要能量供应的主要是砂水分离器和吸砂机. 以及曝气沉砂池的曝气系统. 多尔沉砂池和钟式沉砂池的动力系统. 3. 初次沉淀池初次沉淀池是一级污水处理厂的主题处理构筑物. 或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面. 处理的对象是SS和部分BOD5.可改善生物处理构筑物的运行条件并降低其BOD5负荷.初沉池包括平流沉淀池. 辐流沉淀池和竖流沉淀池. 初沉池的主要能耗设备是排泥装置.比如链带式刮泥机.刮泥撇渣机. 吸泥泵等. 但由于排泥周期的影响. 初沉池的能耗是比较低的. 4. 生物处理构筑物污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例. 它和污泥处理的单元过程 耗能量之和占污水厂直接能耗的60%以上. 活性污泥法的曝气系统的曝气要消耗大量的电能

水处理工艺流程

1污水的分类及其来源 根据废水来源可分为城镇污水和农业废水。城市废水又分为:生活污水工业污水雨水 A生活污水 *主要包括粪便水、洗浴水、洗涤水和冲洗水。 *来源:除家庭生活排的废水外还有集体单位和公共事业单位排出的废水。 生活污水以有机物污染为主、可生化性好、但随着饮食结构的改变尤其是治病的新药层出不穷,部分排泄物与生活污水混为一体使污水结构趋于复杂并使处理效果的难度增加。 B工业污水 *是工业生产过程排放的废水,由工业生产车间与厂矿排出的绝大部分工业废水是用于冷却、洗涤及地面冲洗,因此,里面会含有工业生产所用的原料、产品、副产品、和中间产物。 *工业废水的排放特点:1具有排放量大、方式多、范围广。2种类繁多,浓度波动范围大。3迁移变化规律差异大。4毒性强、危害大。5 不宜治理,恢复困难 C雨水 *雨雪降至地面形成地表径流,工业废渣和垃圾堆放厂冲刷排水随着

时间季节环境的变化其成分复杂 D农业废水 *农业废水包括农田灌溉,畜牧业养殖,食品生产加工等过程中废液的排放,分散面积广,不易集中,治理困难。农药化肥,有机富营养物的含量较高 污水污染程度表示指标: 1) BOD -定义:水中有机污染物被好氧微生物分解至无机物时所消 耗的溶解氧的量。 ?指标:在20 C水温下,5d的BOD约占总BOD的70%—80%, 常用BOD20作为总生化需氧量La,工程上常用BOD5作为可生 物降解有机物的综合浓度指标。BOD意义: 直接反应水体中的有机污染情况 能表征易生物降解的有机物 BOD/COD>0.3才认为可采用生物处理 定义:在一定的严格的条件下,水中还原性物质与外 加的强氧化K2Cr2O7,KMnO4等)作用时所消耗的氧量,用 氧(O2)的mg/L表示。COD综合反映有机物质相对含量。

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

电厂化学水处理工艺流程

化学水处理系统一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (口mol/L)溶解氧 (卩g/L)电导率 (s/cm)二氧化硅 (口g/L) PH值 (25 C )二氧化碳 (u g/L) 标准 < 30 < 50 10 < 20 8.8 ?9.2 < 20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离 子(Ca2+)和镁离子(Mg廿)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2 +内含6.02 X 1023个钙离子)。如果1L溶液中含有1g Ca2 +,那么它的摩尔浓度是1/80 = 0.0125mol/L = 12.5mmol/L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危

害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物, 这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下, 就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中, 结有1mm厚的水垢时,其燃料用量就比原来的多消耗1.5 %? 2.0%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低, 从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后, 必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2. 热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO,离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时, 还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

典型纯化水系统工艺流程示意图

典型纯化水系统工艺流程示意图 制药纯化水制备系统清单(以2t/h纯化水设备为例)

在纯化水管道系统的清洗和消毒时,不得安装紫外灯及除菌滤器过滤介质,不得安装呼吸器。纯化水系统贮罐及不锈钢管道的处理(清洗、消毒)分为纯化水循环预冲洗→碱液循环清洗→纯化水冲洗→消毒。 纯化水管道系统中纯化水循环预冲洗: 启动制水系统,待纯水箱内注入约500L纯化水时,启动水泵加以循环,待纯水箱内纯水降到低位时,关闭纯水泵,排尽纯水箱内积水和管道积水后,关闭纯水箱及纯水管道上所有的用水点阀门。 纯化水管道系统冲洗: 启动制水系统,将二级反渗透淡水同时注入配制碱液的清洗箱内和纯水箱内,并通过清洗泵,将清洗箱内的纯水输送到纯水箱内,使对清洗箱进行清洗。 待纯水箱内的纯水到中位时,启动纯水泵,将纯水输送管道各使用点用水阀同时打开,使其处于半开启状态,关闭纯水泵,打开纯水贮罐排污阀和各使用点阀门进行排空。 排空后,继续制备纯化水按以上相同冲洗方法对贮罐和管道进行循环冲洗、排放,总PH、电导率相一致结束。 冲洗结束后,应对纯水箱及各使用点阀门全部开启进行排空,排空结束后,关闭纯水箱及管道所有使用阀门,准备钝化。 消毒: 3%双氧水配制:开启制水系统,制取纯化水进入清洗箱内,输送完毕后,使纯水贮罐内的双氧水浓度为3%,体积为500L。 消毒:开启纯水泵,使3%双氧水消毒剂在纯水箱及管道内循环30分钟,并通过喷淋球对贮罐内壁循环消毒。 消毒剂排放:3%双氧水循环结束后,打开纯水各使用点阀门,使其处于半开启状态,使消毒液对阀门处进行消毒,直致消毒液排尽。 纯水最终冲洗:启动制水系统制备纯水入纯水贮罐中位时,启动纯水泵,对贮罐和管道循环冲洗30分钟后,打开纯水贮罐排污阀和各使用进行排空。 排空后,继续制备纯水输送到纯水贮罐中位,按以上冲洗方法对贮罐和管道进行循环冲洗、排放,直至二级反渗透淡水、纯水贮罐、总送、总PH、电导率符合标准要求为结束。

自来水厂原水处理自来水常用工艺流程

自来水厂原水处理自来水常用工艺流程 目前,自来水厂排泥水含有大量来自原水的污染物,排泥水直接排放,会对地表水体造成污染。随着经济的发展和人们环保意识的提高,我国自来水厂水处理日趋上升。就某自来水厂用源水处理成自来水的流程,华泉药剂总厂给大家做详细介绍。 某自来水厂用源水水处理流程: (1)加入活性炭的作用是吸附;在乡村没有活性炭,常加入明矾来净水。 (2)实验室中,静置、吸附、过滤、蒸馏等操作中可以降低水硬度的是蒸馏。 水处理药剂活性炭具有吸附性,净水时主要用于除去水有色素、异味;为加快水中小颗粒的固体不溶物,可加入明矾,明矾能使悬乳水中的小颗粒凝聚成大颗粒而加快沉降; 硬水是指含有较多钙、镁离子的水,降低水的硬度即减少水中钙、镁离子的量;蒸馏是通过蒸发、凝结后获得蒸馏水的过程,而静置、吸附、过滤等操作只能除去水中不溶性固体; 静置、吸附、过滤主要除去水中不溶性的固体,而对溶于水中的钙、镁离子无任何影响;蒸馏是把水加热变成水蒸气然后再把水蒸气降温凝结成纯净的水,通过蒸馏处理的水为蒸馏水,为不含其它物质的纯净物。 总之,吸附、沉降、过滤、蒸馏是常用的净化水的方法,其中蒸馏是净化程度最高的净化方法.河南省华泉自来水处理总厂是水处理药剂的专业生产基地,直销、、PAC、PAM、活性炭、、滤料等。 自来水厂工艺流程概述 现在人们谈到饮用自来水会“心有余悸”,主要是因为害怕自来水生产过程中未能除尽水中的杂质及微生物,又害怕净水过程中混入了一些有毒气体。基于此,我组成员先到自来水厂参观采访,了解自来水的生产过程。 1、自来水是如何生产的? 众所周知,由于自然因素和人为因素,原水里含有各种各样的杂质。从给水处理角度考虑,这些杂质可分为悬浮物、胶体、溶解物三大类。城市水厂净水处理的目的就是去除原水中这些会给人类健康和工业生产带来危害的悬浮物质、胶体物质、细菌及其他有害成分,使净化后的水能满足生活饮用及工业生产的需要。市自来水总公司水厂采用常规水处理工艺,它包括混合、反应、沉淀、过滤及消毒几个过程。 (1)混凝反应处理 原水经取水泵房提升后,首先经过混凝工艺处理,即: 原水+ 水处理剂→混合→反应→矾花水 自药剂与水均匀混合起直到大颗粒絮凝体形成为止,整个称混凝过程。常用的水处理剂有聚合氯化铝、硫酸铝、三氯化铁等。汕头市使用的是碱式氯化铝。根据铝元素的化学性质可知,投入药剂后水中存在电离出来的铝离子,它与水分子存在以下的可逆反应: Al3+ + 3H2O ←→Al(OH)3 + 3H+ 氢氧化铝具有吸附作用,可把水中不易沉淀的胶粒及微小悬浮物脱稳、相互聚结,再被吸附架桥,从而形成较大的絮粒,以利于从水中分离、沉降下来。 混合过程要求在加药后迅速完成。混合的目的是通过水力、机械的剧烈搅拌,使药剂迅速均匀地散于水中。

电厂化学水处理系统化水车间设计

电厂化学水处理系统、化水车间设计 1应用背景 电厂化学水处理系统作为电厂辅机程控系统的重要组成部分,其运行关系到整个锅炉的安全性与生产的连续性,并影响着整个电厂的工作安全性和机组的使用寿命。 随着化学水处理工艺的不断更新变化,复杂程度越来越高,对系统自动控制的要求也越来越严格。一般电厂化学水处理自动控制系统都采用以 PLC(可编程逻辑控制器)为主,结合现场总线网络的控制系统来实现,功能包括对化学水处理过程的自动化控制、状态监视、数据采集、实时报警、统计打印等。 基于和利时公司LK的化学水处理系统应用解决方案充分发挥了LK在可靠性、易用性、灵活性等方面技术的优势。与常规控制方案相比,具有控制功能更强大、控制水平更高、开放性更优秀等方面特点。 2电厂化学水处理子系统 电厂的水处理系统一般包含三个子系统:锅炉补给水系统、凝结水处理系统、综合水(废水)系统。 •;补给水系统由预处理系统、反渗透预脱盐系统、化学除盐系统、酸碱系统四部分组成,控制范围还包括水工净水站。 凝结水系统主要工艺流程包括:凝结水精处理及树脂再生系统、水汽取样分析系统、化学加药系统等几个部分。凝结水精处理及树脂再生系统包括混床、树脂捕捉器、再循环泵、旁路及单元内所有的管道、管件、阀门、就地仪表等;水汽取样分析系统包括热力系统的水汽取样分析系统和凝汽器检漏取样分析系统。热力系统水汽取样分析系统由高温高压架、仪表盘组成。凝汽器检漏取样分析系统由检漏取样架和分析仪表盘组成;化学加药系统由三部分组成:给水及凝结水加氨系统;给水加联氨系统;炉水加磷酸盐系统。 •;废水系统用来处理电厂的全部废水,包括灰渣废水、化学废水、生活废水和脱硫废水等。 1、锅炉补给水处理

污水处理厂的工艺流程

污水处理厂的工艺流程 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。 二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

以上是污水处理厂处理工艺的基本流程,流程图见下页图一。 二.各个处理构筑物的能耗分析 1.污水提升泵房 进入污水处理厂的污水经过粗格删进入污水提升泵房,之后被污水泵提升至沉砂池的前池。水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。 2.沉砂池 沉砂池的功能是去除比重较大的无机颗粒。沉砂池一般设于泵站前、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可设于初沉池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统,多尔沉砂池和钟式沉砂池的动力系统。 3.初次沉淀池 初次沉淀池是一级污水处理厂的主题处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。初沉池包括平流沉淀池,辐流沉淀池和竖流沉淀池。 初沉池的主要能耗设备是排泥装置,比如链带式刮泥机,刮泥撇渣机,吸泥泵等,但由于排泥周期的影响,初沉池的能耗是比较低的。 图一城市污水处理典型流程 4.生物处理构筑物 污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。活性污泥法的曝气系统的曝气要消耗大量的电能,其基本上是联系运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。氧化沟处理工艺安装的曝气机也是能耗很大的设备。生物膜法处理设备和活性污泥法相比能耗较低,但目前应用较少,是以后需要大力推广的处理工艺。 5.二次沉淀池 二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。 6.污泥处理 污泥处理工艺中的浓缩池,污泥脱水,干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的,这些设备的电耗功率都很大。 三.针对各个处理构筑物的节能途径 1.污水提升泵房 污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在高效段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的办法,定期对水泵进行维护,减少摩擦也可以降低电耗。 2.沉砂池 采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。 3.初次沉淀池 初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。 4.生物处理构筑物

水泥生产工艺流程图

水泥生产工艺流程 水泥的生产工艺可以简述为两磨一烧,即原料要经过采掘、破碎、磨细和混匀制成生料,生料经1450℃的高温烧成熟料,熟料再经破碎,与石膏或其他混合材一起磨细成为水泥。 一、水泥生产的生料制备 1 破碎工艺 水泥生产过程中,很大一部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。 2生料的预均化工艺 原料预均化,实现原料的初步均化,。 3 生料的烘干工艺 烘干工艺是将生料通过烘干机加热干燥。 烘干设备有回转式和悬浮式烘干机、烘干塔等,回转式烘干机内温度约700℃,排放废气量约1300m3/t料。 4 生料的粉磨工艺 二、水泥生产的煅烧 目前大中型水泥厂多使用回转窑,小型水泥厂多使用立窑,我国还有50﹪以上的水泥仍使用立窑生产。 1 立窑煅烧 立窑工艺的设备是静止的竖窑,分为普通立窑和机械化立窑,属于半干法生产。 立窑的日产量已达250~300t/d。立窑又分普通立窑和机立窑,普通立窑采用间歇式生产,能耗热耗较高,产生的废气量约3900立米/吨熟料,粉尘浓度15g/m3。 2 新型干法旋窑煅烧

它是在旋窑煅烧增加预分解窑与悬浮预热工艺。生料在预热器以内悬浮状态或沸腾状态下与热气流进行热交换,又在分解炉中加入占总燃料用量50~60%的燃料,使生料在入窑前的碳酸钙分解率达80%以上。 预热分解 把生料的预热和部分分解由预热器来完成,代替回转窑部分功能。 (1)物料分散 换热80%在入口管道内进行的。喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。 (2)气固分离 当气流携带料粉进入旋风筒后,被迫在旋风筒筒体与内筒(排气管)之间的环状空间内做旋转流动,并且一边旋转一边向下运动,由筒体到锥体,一直可以延伸到锥体的端部,然后转而向上旋转上升,由排气管排出。 (3)预分解 预分解技术是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90%以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入。 据有关专家统计,每生产1t 水泥就要向环境排放1t 有害气体。我国水泥工业的CO2排放量约为7亿t左右,S02在80万t左右,NOx在100万t左右。

水系统工艺流程设计

水系统设计(关于冷却水再考虑)(1)根据任务书要求和GMP、 EU-GMP 、cGMP相关规定,对于制药用水的规范如下表: (2)水系统的整个设计流程图 以质量源于设计为最终目标,以有效避免污染、交叉污染、混淆和差错为设计理念,对给水系统流程简要说明。 1.纯化水的设计流程 2.注射用水的流程设计

一.纯化水工艺: 1.纯化水系统由原水箱、预处理、终处理、纯化水储罐、纯化水分配系统和各使用点组成 2.纯化水制备系统的主要部件为:原水箱、多介质过滤器、活性炭过滤器、软化器、保安过滤器、反渗透、EDI 纯化水系统简要流程图

二.注射用水制备: 1.注射用水的生产选用节能、高效的多效蒸馏设备 2.多效蒸馏设备通常由两个或更多蒸发换热器、分离装置、预热器、两个冷凝器、阀门、仪表和控制部分等组成。 3.制备流程: 纯化水去除不凝性气体多效蒸馏水机微孔滤膜注射用水 注射用水系统简要流程图

三:纯蒸汽的制备 1.纯蒸汽通常是以纯化水为原料水,通过纯蒸汽发生器或多效蒸馏水机的第一 效蒸发器产生的蒸汽,纯蒸汽冷凝时要满足注射用水的要求。 2.软化水、去离子水和纯化水都可作为纯蒸汽发生器的原料水,经蒸发、分离(去除微粒及细菌内毒素等污染物)后,在一定压力下输送到使用点 纯蒸汽在制药中的作用:洁净室空调加湿;湿热灭菌柜灭菌;反应釜、注射用水使用点到使用容器等的消毒;纯化水存储与分配系统的消毒;注射用水存储与分配系统的灭菌 制备原理: 原料水通过泵进入蒸发器管程与进入壳程的工业蒸汽进行换热,原料水蒸发后通过分离器进行分离变成纯蒸汽,由纯蒸汽出口输送到使用点。 制备原理如下图: 纯蒸汽发生的工作原理图

糖化车间工艺流程示意图

2.2.1糖化车间工艺流程示意图(图2-1) 粉碎糊化糖化过滤 麦槽麦汁煮沸锅酒花渣分离器回旋澄淀槽薄板冷却器 酒花糟热凝固物冷凝固物 图2-1啤酒厂糖化车间工艺流程示意图 第三章主要设备计算与选型 3.1发酵罐的计算与选型 3.1.1 发酵罐的选型 圆筒体锥底立式发酵罐(简称锥形罐),已广泛用于上面或下面发酵啤酒生产。它与传统的发酵方式相比有如下特点: a锥形发酵罐具有锥形罐底,所以前发酵结束后回收酵母非常方便。 b 锥形发酵罐在罐体上设有冷却部件,冷却面积能够满足工艺降温要求,锥底部分也设有冷却部件,以利于酵母的沉降和保存。而且膳体自身进行保温处理,大大降低冷耗。 c锥形发酵罐是密封容器,可以进行CO2洗涤,也方便回收CO2,可做发酵罐及贮酒罐。 d罐内的发酵液由于罐体的高度而产生的CO2梯度以及冷却方位的控制,可以使发酵液形成自下而上的自然对流。对流情况与罐体的形状、大小和冷却系统都有着密切的关系。 e锥形发酵罐易于实现自动化控制,操作十分方便,还可以进行自动清洗,改善了劳动条件和卫生条件。 f锥形发酵罐向立面发展,节约了大量的站地面积。 锥形发酵罐的规格很多,—般常用的规格见表3-1[10]。其D:H1.5—6均可取得良好的效果。但从以往的设计和使用情况来看,控制D:H=1:2—4的范

围较合适。锥底角α一般采用60°或75°为宜。本设计采用为α为60°。麦汁、酵母、啤酒均由锥底口进入或排出,发酵结束后回收酵母方便,所采用的酵母菌株应该是凝集沉淀性好的酵母菌种。锥底表面尽可能打光,这样有利于酵母的沉降和排除。 3.1.2 发酵罐的冷却设备 罐体设夹套冷却,冷媒采用25%的乙二醇或乙醇间接冷却,也可用液氨直接冷却。冷却面积要能够满足工艺上降温要求。啤酒发酵罐的冷却面积可参考表3-2计算[11]。 上述简体面积视圆柱体部分高度可分为2—3段均匀分布,上段冷带的顶部一般设置在工作液面以下150mm;锥体部分也应设一段冷带,冷带面积一般为锥 表3-1 锥形发酵耀常用规格 表3-2 发酵耀冷却面积参考值 体般设置在工作液面以下150mm;锥体部分也应设一段冷带,冷带面积一般为锥体表面积的1/3左右,冷却面积区域应小于锥体表面积的1/3左右,冷却面积区

反渗透水处理技术标准工艺流程

反渗透水处理技术标准工艺流程 标准工艺流程如下: 原水(自来水)→原水箱→原水泵→砂滤→活性炭过滤→全自动软化水设备→保安过滤器→反渗透主机→纯净水箱→臭氧杀菌器→集中取水点。 1.原水箱 显像管生产纯净水设备,阴极射线管纯净水设备, 液晶显示器纯净水设备 该装置防止增压泵直接抽取管网的水因流量不足及压力不稳定而损坏增压泵或影响系统正常运行,原水箱内置进水不锈钢浮球阀及液位传感器。大型设备须设置进水电动碟阀。 1)浮球阀作用是控制原水进水量,在系统运行时能及时补水。 2)液位传感器有中水位和低水位,作用是控制增压泵的启动和停止;当水箱水位处于中水位以上时,增压泵才能自动启动;当水箱水位低于低水位时,增压泵自动停止。 2.原水泵 为了保证系统供水的流量和压力恒定而设置,系统原水增压泵进口品牌-------丹麦格兰富、德国威乐、西班牙亚士霸,免维修机械密封泵,效率高,噪音小,性能稳定可靠。或者选用国内知名品牌------南方特种泵、无锡九阳泵。 原水泵由原水箱水位控制其自动启、停。 3.加混凝剂装置 常用加药泵有:美国米顿罗、美国帕斯菲达。 混凝----利用铁盐、铝盐、高分子等混凝剂,与水中的杂质通过絮凝和架桥作用生成大颗粒沉淀物,然后通过其它设备,如澄清、过滤等,予以去除。 加入适量的凝聚剂,有效混凝水中的胶体及有机杂质,使以上物质通过絮凝和架桥作用生成大颗粒沉淀物或絮凝体,然后经过预处理过滤,提高预处理的过滤效果,处理出来后的SDI(污染指数)≤5。如进水SDI值过大,则还需增设助凝剂。 常用凝聚剂有:硫酸铝、聚合氯化铝、硫酸亚铁、氯化铁等。 常用助凝剂有:氧化钙、氢氧化钙、聚丙稀酸胺、碳酸钠等。 控制:同原水泵同步启动。 4.预处理 目前我们常过预处理过滤器有不锈钢过滤器、玻璃钢过滤器和碳钢内衬胶过滤器三种。预处理过滤分为多介质过滤、除铁锰装置、活性碳过滤和软化过滤三部分;可采用美国阿图祖多路阀来自动控制器按照所设定的时间对过滤罐内的滤料进行反冲洗和正冲洗;或者选用手动操作控制。 水在精制处理之前,预先进行的初步处理,以便在水的精处理时取得良好效果,提高水质。由于自然界的水都有大量的杂质,如泥沙、粘土、有机物、微生物、机械杂质等,这些杂质的存在,严重影响精制水的水质与处理效果,因此必须在精处理之前将一些杂质降低或除去,这就需要预处理。 1)多介质过滤器 2)多介质过滤器主要用于去除水中的悬浮物、泥沙及颗粒性杂质。 主要填料有:石英砂、无烟煤等。 2)除铁过滤器 RO的进水铁离子要求:Fe2+≤0.1mg/L,有时为节省成本也可放宽至≤1mg/L以下。

电厂化学水处理工艺流程

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 8.8~9.2 ≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g(其化学意义是:1mol Ca2+内含6.02×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=0.0125mol/L=12.5mmol/L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危

害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运 行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗1.5%~2.0%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要

相关主题
文本预览
相关文档 最新文档