当前位置:文档之家› 构建利于可再生能源发展的电力系统

构建利于可再生能源发展的电力系统

构建利于可再生能源发展的电力系统
构建利于可再生能源发展的电力系统

构建利于可再生能源发

展的电力系统

Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

构建利于可再生能源发展的电力系统

受化石能源资源有限性和气候变化等环境问题的影响,加快开发利用可再生能源已成为国际社会的共识。可再生能源具有资源潜力大、对环境影响小并可永续利用的特点。但同时还具有能量密度低、存在间歇不连续等问题。

如何破解可再生能源的不连续性与能源需求连续性之间的矛盾,是推动可再生能源大规模发展的核心问题。为了不断扩大可再生能源的利用规模,在加强科技创新、促进技术进步的同时,必须转变思路,加快建立适应可再生能源发展的政策体系和电力系统。

加快开发和应用储能技术推动可再生能源规模化发展

促进可再生能源规模化发展必须解决好两个方面的问题:一是要把可再生能源转化成符合要求的电力;二是可再生能源发出的电力必须与用户的电力需求相平衡,这是由电力供需的瞬时平衡特性决定的。可再生能源是自然界客观运行产生的能量,是不能人为调控的,如风能和太阳能等,都具有不可控制和间歇随机的特点,往往在用电低谷时发电量大,而在需要用电的时候又发不出来。

如果要大规模开发利用具有随机间歇特性的可再生能源,必须采取技术措施解决可再生能源发电的不连续性与用电需求连续性之间的问题。

从目前来看,加快开发和推广大容量储能技术是促进规模化开发利用可再生能源的重要措施。长期以来,抽水蓄能电站是目前电力系统中最成熟和应用最广泛的大容量储能技术,也是以电站方式管理的储能技术。随着可再生能源发电比重的增加,仅靠抽水蓄能电站还不够,还应重视分布式储能技术的应用。分布式储能技术的应用一是在发电侧,主要是在风电和太阳能电站内配置必要的储能容量,用于调节风电和太阳能电站的发电出力特性,使其较好地适应用电负荷变化需要,减少风电、太阳能发电随机间歇性对电力系统的影响;二是在用户侧,在包括居民在内的所有电力用户中,都配置必要的储能设施,用于调节用电的不平衡性,使用电特性尽可能做到平稳,以减少用电变化对电力系统的影响。可以设想,今后每个电力用户包括家庭电力用户都是一个可独立运行的电力系统,它的电源就是类似电池的储能设备,与大电力系统联网运行,在用电负荷低谷时可向储能设备充电,在用电负荷高峰时段储能设备可为用户提供电力,使用户的用电特性尽可能平稳,特别是在发生事故时还可以独立运行,能有效提高电力系统供电的安全性和可靠性。这实际就是智能电网的发展目标。

这种设想在电力系统中配置储能设施的做法,必须建立在储能技术经济可行的基础上。目前,还没有可以大规模推广应用的储能技术,这是今后需要努力攻克的技术,同时也蕴藏着巨大的发展商机。

更新观念推动转型构建以可再生能源为主的能源体系

在目前全球每年160多亿吨标煤的能源消费总量中,90%为煤炭、石油、天然气等化石能源。以化石能源为主的能源供给体系在为人类带来空前文明的同时,也带来了前所未有的挑战,除了化石能源资源问题外,最主要的就是气候变化问题。

理论和实践都证明,气候变化与人类活动密切相关,特别是与化石能源大量燃烧排放的二氧化碳等温室气体有关。因此,世界各国都把开发利用可再生能源作为减少化石能源消费、应对气候变化的重要措施。今后20~50年将是能源转型的重要时期,转变的目标和方向就是用碳含量低的能源替代碳含量高的能源,用可再生能源替代化石能源,并最终实现由化石能源向可再生能源的转变,进入低碳能源或无碳能源新时代。

要实现能源转型,就必须在发展思路和管理理念上逐步进行调整。例如燃煤火电的年利用小时数问题,过去,我们长期处于缺电状态,火电的年利用小时很高,有些机组甚至达到7000到8000小时,并认为低于5000小时电力就过剩了,就不应该再建新的电厂了。对于可再生能源发电,包括水电、风电、太阳能发电在内,其设备年利用小时数都不会太高,从目前来看,水电平均在3000小时左右,风电平均在2000小时左右,太阳能发电平均在1000小时左右。特别是受自然特性的影响,风电、太阳能发电容量都不能作为有效容量看待,其在电力系统中的作用主要是提供电量,用来替代火电发电量,节约化石能源资源。

如以这样的观点来观察和思考,未来电力系统的电力负荷应由常规能源发电机组满足,电力系统的用电量由常规能源发电机组和可再生能源发电机组提供,并要优先利用可再生能源发电量。随着电力系统中可再生能源发电量比重的增加,常规能源的发电利用小时数就会减少。

由此展望未来能源系统,应是以可再生能源为主体、以常规能源为补充的能源体系。按目前的技术来看,未来的电力系统,应是以核电提供主要基荷,以可再生能源提供系统主要电量,以水电和抽水蓄能电站提供运行调节,以化石能源发电为补充,具有智能化特征的电力系统。为实现这样的转变,应按照这样的思路和目标加强技术创新和工程示范,积极推动能源系统的转型。

加快推进改革构建利于可再生能源发展的现代电力系统

目前电力系统主要以集中大型电站为主,电力的流向也是固定的,即发电厂发电经升压后送往用电地区,再逐级降压至用户需要的电压等级,以满足用户的电力需要。电力系统的特点是发电站数量较少,电力用户数量很多,电力系统管理者根据用电负荷的需要调度发电站,要求发电站增加发电容量或减少发电容量,以保持电力系统的供需平衡,确保电力系统的安全可靠运行。

可再生能源的特点是资源分布广,能源密度低,更适宜于小规模分散开发和利用。比如太阳能资源到处都有,都可建太阳能发电设施,装机规模可大可小;生物质资源也很分散,也适宜建设小型发电设施,如目前的沼气发电和气化发电。从发展趋势来看,只要资源和条件允许,电力用户未来都有可能安装小型发电系统,在城市的建筑屋面和空闲场地、农村的荒山荒坡和农民的房前屋后等地方,都可以建设光伏发电站。我国如果人均建设1个千瓦的光伏发电,全国总计就会超过10多亿千瓦,而每千瓦光伏发电系统仅需安装几平方米的太阳能电池板。德国目前的太阳能光伏发电已达到2500多万千瓦。

可以设想,今后的电力系统会像今天的互联网络,电力用户都会安装必要的发电设施,电力用户同时也是发电商,既可以从电网得到电力,也可以向电网输送电力,形成以分布式发电为特征的新型电力系统。

然而,目前我国分布式发电受到严重制约。这固然有技术方面的问题,但更多的是政策问题和电力管理体制问题。

要促进分布式可再生能源发电的发展,必须对电价政策和电力管理进行改革。一是要明确支持分布式能源发电的上网电价政策,形成鼓励千家万户建设分布式能源发电的政策体系;二要形成可再生能源发电自由上网的电力管理体制,实施输电、配电、供电三者利益相分离的管理体制,输电和配电企业为公用事业单位,按过网的电量收取过网费用,输送的电量越多,收取的费用就越多,得到的利益也越多。把供电环节放开经营,鼓励有实力企业参与供电环节的经营,通过市场竞争的方式提高电力服务水平,形成有利于分布式可再生能源发展的电力管理体制。

国内外的实践证明,增加可再生能源发电在电力结构中的比重,从技术上讲是不会有制约的,不会因为可再生能源比重大而影响电力系统的安全运行。

但增加可再生能源发电会在经济上付出更多的代价,要求电力系统有更多的发电备用容量,电网输送能力也要更大些,电网结构更坚强些,整个电力系统发电设备利用小时会降低,电力系统运行管理的要求会更高,电力用户也需承担更高的电价。也就是说要开发利用可再生能源,走可持续发展的低碳能源之路,需要付出更多的经济代价。

从目前能源技术和管理来看,要推动可再生能源发展,必须解决好可再生能源发电与现代电力系统的融合问题,要根据可再生能源的特点,构建适应可再生能源发展的新的电力系统,既要保障电力系统的安全可靠运行,又要充分发挥可再生能源清洁环保的作用,积极推动能源体系由以化石能源为主,向以可再生能源为主的转变。

中国新能源的发展现状与未来趋势(精)

中国新能源的发展现状与未来趋势The Current Development Situation and the Future Trend of Chinese New Energy 新能源发展趋势、前景 从新能源行业发展总体情况来看,大部分新能源利用方式始于20世纪70年底,并在90年代开始普及应用,虽然部分技术趋向成熟,但无论从市场扩张速度还是成长前景看,新能源行业仍然处于生命发展周期中的成长期,并将在3年左右的时间内陆续进入成熟期。 由于技术的限制,短期内电力行业没有替代品,电力行业生命周期的问题主要研究对象是各种具体的电源类型,比较的是这些电源类型之间的替代和生命周期。新能源由于具有清洁、可持续的特性,因此新能源行业的成熟期持续时间将较长,即使到了行业的饱和衰退期,其衰退速度也将很慢。 具体来看,水电行业历史悠久,技术已经比较成熟,可以看作是步入成熟期的行业;风电产业在20世纪70年代末起始西欧国家,风电设备行业克服了“能量不稳定”、“转换效率低”等弱点,在丹麦、德国、西班牙、荷兰、美国、日本、印度等国家得到广泛应用,风电设备产业在部分国家开始饱和,逐步向外技术输出。从这些特征可以确定,风电设备产业在先发国家已经进入了成熟期,但在中国、印度等新兴国家,风电产业仍处于快速成长期;太阳能发电行业目前在技术研发、试点应用等方面取得了显著成效,已经脱离了幼稚期,但由于成本仍然过高,限制了技术的推广应用,可以看作刚刚进入成长期的朝阳产业。 新能源行业目前投资成本仍然较高,尤其是大型风电基地、核电站的投资规模要求很高,行业存在一定风险,但短期来看,国家新能源发电优先上网的政策对新能源行业盈利水平提供了基本的保障。虽然风电设备、多晶硅等部分潜在产能过剩或存在低水平重复建设的行业竞争趋向激烈,部分企业发展面临困难。但在2020年前,在国家节能减排及能源结构调整的大背景下,新能源行业均将保持在景气区间,行业盈利水平有望持续提高。一、中国能源行业发展历史

中国新能源的发展现状与趋势

中国新能源的利用现状与趋势 1 引言 随着全球化石能源枯竭供应紧、气候变化形势严峻,世界各国都认识到了发展新能源的重要性,特别是中国长期以来主要依靠煤炭,在一次能源供给中一直保持在2/3以上的比例。而中国的石油进口量连续增长,2009年进口原油约2.04亿吨。据测算,中国石油消费进口依存度已达到50%的“警戒线”。同时随着2000年以来,在国家和地方政府的政策支持下,城镇燃气行业改革加速,燃气行业得到了长足发展,对天然气的需求一直处于高速增长,这种状况将在未来将长时间存在,毕竟中国的人均能源消耗只有的美国的1/11。随着中国的社会经济进一步发展,生活水平的改善意味着人均能源消耗量将有十分巨大的增长,近几年来汽车保量的快速增加即是例证。 随着传统化石燃料,如石油、煤矿、天然气等储存量不断减少,而同时社会经济不断发展,对能源的需求日益增加,以及环境恶化的巨大压力,新能源被提到了更重要的位置。虽然中国还处于工业化、城镇化快速发展的关键阶段,但是仍然在哥本哈根会议上提出努力的方向,“到2020年单位国生产总值二氧化碳排放比2005年下降40%-45%”。新能源是一个有力的工具。 2 新能源的利用现状 2.1 新能源 新能源,是指新的能源利用方式,既包括风电、太阳能、生物质能等,又包括对传统能源进行技术变革所形成的新能源,如煤层气、煤制天然气等。新能源

产业具有资源消耗低、清洁程度高、潜在市场大、带动能力强、综合效益好的优势,正在成为富有活力、最具前景的战略性新兴产业,对推动我国经济社会可持续发展具有重要战略意义。 2.2 太阳能 太阳能利用主要有太阳能的热利用和发电两种途径。热利用以太阳能热水器为代表,主要集中在小城镇和农村地区,由于城市土地紧以及政策、规划和设计等因素,太阳能的热利用在城市属于个案,如位于市龙岗区的振业城是华南第一个大规模应用太阳能技术的社区,整个太阳能中央热水系统采用的是联集式全玻璃真空式太阳能集热器。太阳能板和屋顶结合,与保温水箱分离,这种安装方式达到形式与功能的统一,与建筑较为完美的结合,这些太阳能热水器还设置了电辅助加热设施,即使在阴雨天也可正常使用,能提供适宜身体的水温。而集中利用则较少。 另一种主要的途径就是太阳能光伏发电,虽然近些年来光伏发电技术有了较大的进步,但是与常规发电方式和核发电相比太贵了,经济性不强。 2.3 风能 中国的风能资源丰富和较丰富的地区主要分布在两个大带:一是三北(东北、华北、西北)地区丰富带。风能功率密度在200W/㎡~300W/㎡以上,有的可达500 W/㎡,可利用的小时数在5000h以上,有的可达7000h以上。二是沿海及其岛屿地丰富带。年有效风能功率密度在200W/㎡以上,可利用小时数在7000h~8000h。这一地区特别是东南沿海,由海岸向陆是丘陵连绵,所以风能丰富地区仅在海岸50km之。 《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速,截

新能源发电技术在电力系统中的应用

新能源发电技术在电力系统中的应用 发表时间:2018-12-04T14:34:15.217Z 来源:《河南电力》2018年12期作者:张玉琴1 程佳音2 [导读] 在电力系统之中加强新能源发电的实际应用,有助于改善目前的社会能源供应系统效率较低的情况,推动社会能源的高效利用。 (1.国网河北省电力有限公司涉县供电分公司河北邯郸 056400; 2.国网河北省电力有限公司邯郸供电分公司河北邯郸 056000) 摘要:在我国快速发展的过程中,我国的新能源在不断地出现,作为一种可再生环保能源,大力发展新能源能够有效地节约资源,推动现代社会的可持续发展,同时也有助于今后可持续发展理念的推广。所以,在电力系统之中加强新能源发电的实际应用,有助于改善目前的社会能源供应系统效率较低的情况,推动社会能源的高效利用。基于此,本文就新能源发电在电力系统中的实际应用方向以及相应的应用要求进行一定的探讨和分析,希望在今后新能源发电的发展过程之中对相关人员能够起到一定参考作用。 关键词:新能源发电;电力系统;应用 引言 人们的生活和工业生产离不开电能,可以说电能是支撑我国经济发展的重要能源。随着人民生活水平的提高以及工业生产的进步,未来阶段内我国用电数量会逐年增长,而发电需要消耗大量的能源,过去中,我国发电普遍使用的是化石燃料,如碳煤以及石油等,而这些化石燃料并非可再生资源,用多少就消耗多少,如果一直使用化石燃料的话,必然会导致化石燃料的枯竭。在这样的背景下,研究新能源的应用具有十分重要的意义。 1分布式光伏的特点与应用效果的阐述 以光生伏特效应为基础,充分利用太阳能电池元件,将太阳能转化为电能的技术,就是我们所说的光伏发电。由于半导体硅在加入了不同特性的半导体材料,最终导致半导体内部出现了多余的空穴或者自由电子。分布式光伏发电是除了风力发电外在发电中光伏应用的新能源发电技术之一。其主要是通过将光伏发电接入风电场用电系统中,负责照明电力的需求,这种新能源技术已经得到了的大范围的推广和应用。我们常说的光伏发电,实际上就是日常生活中常见的太阳能发电,风电场采取在综合办公楼、材料库等建筑物安装太阳能电池板的方式,采取就近接入或者分散接入的方式将光伏发电接入发电站用电系统中。为了确保就近接入、分散接入的顺利进行,发电站必须在确保自身建筑配电间配有光伏并网逆变器的基础上,将光伏发电电流有效的转化为符合发电站用电要求的电能。就目前而言,国内外普遍采用的是直接电流控制火灾间接电流控制等几种类型的逆变器控制策略。如果采取直接电流控制的话,则电流控制器在通过电力反馈闭环直接对电流输出进行调节,不仅不会影响电网电压的稳定性,同时也确保了电流的稳态与动态等各方面性能。但是,其对于电流控制器性能的要求相对较高。而间接电流控制,虽然对控制器要求较低,结构简单且不需要引入反馈电流,但是由于间接电流控制的稳定性较差,电路的动态响应较慢,因此应用这一方式就会导致并网电流跟踪精度的下降。 2新能源发电在电力系统中的应用 2.1利用燃烧电池进行发电技术 燃烧电池是现代技术发展出的众多新能源技术中的一类,其工作方式与传统电池的工作方式并无不同,都是将化学能转化为电能。虽然在机构之上与传统电池相差不大:都存在正负极,电池之中都具备电解质以供电解,然而在具体的核心结构之中仍然与传统电池有所不同,即燃烧电池在其正负极之上并没有像传统电池那样放置有一定量的活性物质来保持工作的稳定以及效率的提高。在实际工作过程中,燃烧电池主要以供给的燃料与电池内部的氧化剂进行反应,通过这一反应从而实现电能的输出。因此在燃烧电池工作过程中,要想保证足够多的电能的产生,只需保证发生反应的燃料以及内部的氧化剂充足即可,相较于传统能源的使用条件而言已经有了极大地简化。所以从理论上来讲这一发电技术能够实现百分百的能源利用效率,而且即便在实际使用过程中受到环境因素的影响,也仍然能够保持远高于传统能源使用效率的百分之八十的能源利用。 2.2海洋能源利用的可能性与前景调查 地球是人们赖以生存的唯一家园,海洋所占面积为71%,陆地所占面积为29%,海洋所蕴含的资源非常大。可以说,谁掌握了海洋技术,谁就掌握了话语权。我国新能源发电主要采用风力发电、太阳能发电这两种方式,忽视了海洋所蕴含的能源。其实,海洋的能量巨大,并且是现阶段找到可替代能源前唯一可依靠的能源。海洋不仅蕴含大量的生物和物种资源,还潜藏大量的能源,比如生物能、潮汐能等,这些能源值得人们进行开发和利用,能够有效地缓解社会对能源的需求压力。海洋能源并不完全指海洋自身,地球存在于太阳系中,只要其一直存在,海洋能源就永远不会枯竭。现阶段,以海洋能为基础进行发电主要有两种方法:第一种:施工人员将沸点较低的水质加热使其呈现为蒸汽;第二种:以温水为基础,将其运送到真空室内加热至沸腾状态,从而转变为蒸汽。液体水转换为蒸汽后具有强大的热能,推动汽轮发电机进行发电,再从600~1000m深处进行冷却水的抽取,从而实现冷凝蒸汽的目的。1930年,法国科学家借助海水存在的温差进行发电,并取得试验成功,但发出的电能与消耗的电能相比少之又少,不值得推广和使用。目前,大多数国家都在积极研究海水温差发电。大量的试验证明,其具备一定的优点:(1)将温海水作为基础进行发电,能有效避免化学物质对海水产生污染;(2)采用开放式循环能降低试验成本,提高发电效率;(3)采用塑料制造的直接接触热交换器,能有效提高设备的抗腐蚀性;(4)能产生大量的蒸馏水,为其他部门的使用节省资源。我国的潮汐能发电在国际上具有一定的地位,并且正常运营的潮汐发电站已达到几十座。经过5~10年的发展,我国的潮汐能发电站势必会超过100座。由此可以看出,海洋能发电和宽阔的海洋一样具有巨大的发展空间和发展前景。我国的海岸线较长,具有丰富的海洋能源,具有一定的优势。海洋能是可再生能源,并且永远不会枯竭,其与煤炭发电相比较,不会消耗现有的能源,也不会对环境产生污染;与太阳能发电进行比较,不会占有现有的土地资源,能过提高土地的利用率;与核能发电进行比较,不需要消耗稀有的能源,也不需要强大的保护措施和科学技术作为依靠。 2.3太阳光伏发电技术运用 我国现阶段的太阳光伏发电技术可以分为三种,具体如下:(1)由电压源电压控制的太阳能光伏系统,这种太阳能光伏发电系统结构被称为独立户用型。(2)由电压源电流控制的太阳能光伏系统,这种结构被称为并网型。(3)融合独立户用型以及并网型太阳能光伏发电系统结构,可在电压源电压和电压源电流控制之间进行切换。而太阳能光伏发电的工作原理如下:利用太阳能电池将太阳能转化为电能,再由功率变化装置把转化来的电能调节成可以接入电网的电能。太阳能电池转化来的电能为直流电,只能为直流负荷输出所需要的电

几种新能源发电技术简介

几种新能源发电技术简介 收藏此信息打印该信息添加:用户发布来源:未知 为了实现人类的可持续发展,我们必须减少CO2及其它有害气体的排放,创造一个绿色家园。从另外一个角度看化石能源的储量有限,根据有关数据分析,再过40年左右,石油将消耗所剩无几. 关键字:新能源发电技术 为了实现人类的可持续发展,我们必须减少CO2及其它有害气体的排放,创造一个绿色家园。从另外一个角度看化石能源的储量有限,根据有关数据分析,再过40年左右,石油将消耗所剩无几;再过60年左右,天然气也将宣布告竭;而煤炭资源按目前的消耗量也只能供人类使用200年左右。从人类自身生存环境和能源消耗两方面看,都迫使我们寻找其它可再生能源替代现在的常规化石能源。 新能源是指传统能源之外的各种能源形式。目前技术比较成熟,已经开始大规模利用的新能源是风能、太阳能、沼气、燃料电池这四种。本文介绍沼气、燃料电池等几种发电技术。 1燃料电池 燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。按燃料电池所用原始燃料的类型,大致分为氢燃料电池、甲烷燃料电池、甲醇燃料电池和汽油燃料电池。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。 使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。 燃料电池其原理与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名副其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。 燃料电池具有高效率、无污染、建设周期短、易维护以及成本低的特点,它不仅是汽车最有前途的替代清洁能源,还能广泛用于航天飞机、潜艇、水下机器人、通讯系统、中小规模电站、家用电源,又非常适合提供移动、分散电源和接近终端用户的电力供给,还能解决电网调峰问题。随着燃料电池的商业化推广,市场前景十分广阔。人们预测,燃料电池将成

可再生能源发展现状及趋势

可再生能源发展现状及趋势 能源是经济和社会发展的重要物质基础。随着世界范围内的能源短缺,以及各国对环境保护的日益重视,开发和研究可再生能源来代替被过度开采和使用的不可再生能源,已是各国政府在资源利用方面共同的发展方向。 世界可再生能源产业发展现状 上世纪70年代以来,可持续发展思想逐步成为各国共识,可再生能源的开发和利用受到各国政府的高度重视,许多国家将可再生能源的发展作为能源战略的重要组成部分,纷纷提出明确的发展目标,制定颁布了相关政策与法律法规,使可持续能源产业在近年来得到迅速发展,可再生能源产业,如光伏发电、风能、太阳能等技术的开发应用已成为各类能源中发展最为快速的热点领域。 美国是能源消耗大国,也是全球人均温室气体排放水平最高的国家。为降低对其他国家的能源依赖以及寻求可持续发展的道路,美国近年来不断出台多项能源政策,以立法和财政补贴的形式扶持可再生能源产业的发展。美国国会议员表示将推动税法改革,促进可再生能源项目享受到与石油项目一样的税收政策。税法改革提案的发起者认为,可再生能源发展势头强劲,应该允许

风能、太阳能、生物燃料等可再生能源项目以“业主有限合伙制企业”的性质征税。这种形式的税收结构允许企业从股票市场募集资金,并使企业可以避免缴纳收入所得税。 欧盟是世界上可再生能源发展最为迅速的地区。目前欧盟能源的进口依存度达50%。随着经济不断发展,这一数字将不断增加,欧盟能源安全令人担忧。为此,欧盟制定了相关策略,积极开发可再生能源。欧盟1997年颁布可再生能源发展白皮书,提出到2050年,可再生能源在整个欧盟国家的能源构成中要达到50%。白皮书中提到的计划包括欧盟内部的市场手段,进一步鼓励可再生能源利用的政策,以及各国在可再生能源领域中的投资及信息共享,对此欧盟各国纷纷采取对应措施来响应。 以德国为例,2011年9月,德国经济部、环境部和科技部等部门曾联合颁布了德国第6个能源研究计划,重点集中在可再生能源技术研发、提高能源效率、能源存储技术和电网技术改进等方面。德国联邦经济部、环保部等部门联合制定了长期能源转型战略,规划了未来40年德国能源转型的主要目标。 德国在2004年、2008年曾两次修订《可再生能源法》,明确提出要在考虑规模效应、技术进步等因素的影响后,逐年减少对可再生能源新建项目的上网电价补贴,促进可再生能源市场竞

新能源发展背景,现状,前景,国家政策

新能源发展背景,现状,前景,国家政策 新能源行业发展背景 近年来,面对能源危机、金融危机以及人类对气候危机越来越清晰地认识,全球范围内新能源出现超常规发展的态势。各国对新能源的投资大幅度增长,新能源产能也急剧扩大。 可再生能源发电是新能源发展的核心,风电是在技术和成本上最具竞争力的新能源形式。尽管短期内新能源还无法替代传统化石能源,但世界范围内资源的供需紧张以及全球为应对气候变化而对温室气体排放所做的限制为新能源发展铺就了宽广的道路。新能源技术的发展和市场的扩大超乎想象,许多可再生能源资源将逐渐变成商业项目。可以预见,不同能源形式的逐渐替代将改变世界经济和政治版图以及人类的生存和生活方式。 石器时代的结束并不是因为没有石头了,石油时代的结束并不是因为没有石油了。 ——艾哈迈德·扎基·亚马尼(Ahmed Zaki Yamani)新能源行业发展状况分析 (一)太阳能行业发展状况分析 我国的太阳能光热发电行业正在起步,2009年科技部成立“太阳能光热产业技术创新战略联盟”,开始发动一轮光热攻坚战。目前,我国已完成建设的光热发电项目只有少数几个,且装机容量均在1MW以下。但我国在建和拟建项目较多,这意味着我国光热发电产业将呈现突破式增长。据统计,如果所有已公布项目均能实施,2015年前,我国的太阳能热发电装机容量将达3GW左右规模,市场总量达450亿元人民币。 (二)风能行业发展状况分析 2012年,中国(不包括台湾地区)新增安装风电机组7872台,装机容量12960MW,同比下降26.5%;累计安装风电机组53764台,装机容量75324.2MW,同比增长20.8%。2012年,中国海上风电新增装机46台,容量达到127MW,其中潮间带装机量为113MW,占海上风电新增装机总量的89%。

我国新能源开发与利用现状

《工程热力学》课程设计(论文)我国新能源开发与利用现状 学号 姓名 院系 专业 完成日期 授课教师 得分

我国新能源开发与利用现状 王宝增 能源学院 摘要:概述了世界和中国的能源危机与环境压力,阐述了我国新能源开发利用概况。分析了我国新能源应以太阳能和风能为开发重点,分析了我国在可再生能源开发利用过程中存在的问题,并提出推进新能源开发的政策。 关键词:新能源;开发利用;太阳能;风能;问题;政策 1能源危机与环境压力 随着世界经济的发展,各国对能源的需求量也越来越大.在当前的世界能源结构中,人类所利用的能源主要是石油、天然气、煤炭等化石能源.19 9 9 年世界能源结构见表 1. 2004年中国和世界能源消费结构见图1 随着经济的发展,人口的增加,社会生活水平的不断提高,预计未来能源消耗量以每年2.7% 的速度递增,此速度前世界能源储量仅供全球消费1 7 2 年.根据目前国际上通行的预测,石油能源可用4 0 年,天然气6 0 年内枯竭,煤炭也只能用2 2 0 年.正是化石能源的大量利用,使二氧化碳:等温室气体的排放也大幅度增加,致使地球在过去10 0 年里平均气温上升0.3一0.6 ℃,全球海平面平均上升1 0 ~ 2 5 cm.如不对温室气体采取措施,在未来几十年内,全球平均气温每 1 0 年可上升. 0 2 ℃.到 2 10 0 年全球平均气温升高1一3.5 ℃,这对人类和地球的危害是无法估量的.因此必须改变当前能源的开发、利用方式.着重开发新能源和可再生能源,有计划、有步骤地开发化石能源,合理高效利用能源.

我国一次能源结构见表2. 其中煤炭比例近7 0 % ,加上净化设施较差,致使对大气的污染十分严重.如二氧化硫的排放引起的酸雨污染已占全国土地面积的 4 0 % ;城市悬浮颗粒物( T S P ) 亦严重超标.严峻的生态环境形势迫使我国只有生态环境形势迫使我国只有在有计划、有步骤开发石油、天然气、煤炭等化石能源的基础之上,除依靠高效节能技术、洁净煤技术之外,着重开发利用各种新能源和可再生能源,减缓化石能源的枯竭,改善生态环境,走可持续发展之路. 2我国新能源开发利用概况 我国具有丰富的新能源和可再生能源资源: 水能可开发资源为3. 78亿千瓦, 目前已开发利用11%; 生物智能资源, 包括农作物秸秆、薪柴和各种有机废物, 利用量约为 2. 6亿吨标准煤, 占农村生活能源消费的70%, 占整个用能的50% ; 我国太阳能年总辐射量超过60万焦耳/平方厘米, 开发利用前景广阔; 风能资源总量为16亿千瓦, 约10 %可供开发利用; 地热资源尚待继续勘探, 目前已探明的地热储量约为4626亿吨标准煤, 现利用的仅约十万分之一; 我国海洋能源资源亦十分丰富, 其中可开发的潮汐能就有2000万千瓦以上。 风能开发利用继续发展。我国风力发电总装机容量达到2 . 6万千瓦。20世纪80年代以来, 50~ 200瓦的微型风力发电机相继研制成功并投入批量生产, 目前有12万余台在内蒙古、新疆、青海等牧区草原和沿海无电网地区运行, 解决了渔、牧民看电视和照明问题。1千瓦~ 20千瓦的中、小型风力发电机组达到小批量生产阶段, 目前正在研制50千瓦~200千瓦的中、大型风力发电机有14个风电场正在建设当中。与此同时, 低扬程大流量和高扬程小流量两种新型风力提水机已研制成功。此外, 全国风能资源调查显示, 在风力机性能测试技术基础理论研究、风能综合利用、国外风力机引进技术的消化吸收及风电场的试验运行方面均取得进展。其他新能源和可再生能源的开发利用, 也有了一定的发展。我国地热资源现已利用的相当于400万吨标准煤。值得一提的是我国西藏的地热开发利用, 羊八井地热电站现装机总容量2 5万千瓦, 年发电量达9700万度, 为拉萨电网供电的50%, 是我国目前最大的地热电站。氢能等极应用前景的新能源技术开发尚处于实验室试验研究阶段。近20年来, 我国新能源和可再生能源的开发利用有了很大发展, 已经成为现实能源系统中不可缺少的组成部分。目前各类新能源和可再生能源, 年提供约3亿吨标准煤(其中大部分是生物质能源, 在目前的商品能源统计数字中并未计入), 这对促进国民经济发展和满足广大农村和边远地区人民生活的能源需求起到了重要作用。 3新能源的开发重点 我国新能源的开发重点为太阳能和风能。 3. 1关于太阳能 我国太阳能的开发利用与国际先进水平相比,差距仍较大,特别是在太阳能光电利用方面,产品供不应求,市场缺口较大。应将太阳能的开发利用作为新能源发展的中近期重点,加大投资力度,加速产业化。 要集中力量攻克太阳能光伏电池可大规模使用的关键性难点。这里主要是指大幅度降低太阳能光伏电池( PV) 元件的造价,及延长使用寿命。应集中力量开发价格便宜、寿命长、便于大规模制造的染料纳米半导体材料PV 系统,实现跨越式的发展。西部太阳能丰富,大规模

新能源发电在电力系统中的应用

新能源发电在电力系统中的应用 发表时间:2017-05-16T15:26:32.673Z 来源:《电力设备》2017年第4期作者:李翔波 [导读] 摘要:新能源发电技术是解决电力生产消耗过多煤炭等战略资源的最佳途径。 (广州艾博电力设计院有限公司广东广州 510080) 摘要:新能源发电技术是解决电力生产消耗过多煤炭等战略资源的最佳途径。本文以新能源发电形式为研究对象,着眼于电力系统运用实际情况,将简单阐述一下新能源对电力系统的影响,并对现行的几种新能源发电技术进行简单点的介绍。 关键词:新能源发电;原则;电力系统;应用 引言 能源危机日益严重的今天,人们迫切需要找到新的方法来进行发电,在相关的研究人员的努力下,分布式发电同新能源发电应运而生。为确保电力系统能够在整个现代经济社会建设发展中得到长时间且可持续性的发展,展开有关新型能源在电力系统中的应用研究势在必行。所以,随着我国能源需求的逐渐提高,新能源发电逐渐获得了政府的支持和人们的关注。利用新能源进行发电解决了传统发电过程中对环境的污染问题,并且减少了不可再生的化石燃料的使用,取而代之的是可再生的清洁的新能源,比如风能、太阳能等。但是在利用新能源进行发电的过程中,多个小型的发电站所产生的电流对电力系统会不可避免的产生一定的影响,所以,本文首先分析新能源发电对电力系统的影响,进而提出几种新能源发电技术。 一、新能源发电对电力系统的影响 在新能源发电的电力并入国家电网的过程中会对电力系统造成一定的冲击,这是因为由于部分地区的新能源发电机组容量有限,只能采用异步发电机,这种发电机因为缺少相对独立的励磁装置,所以在发电机所发出的电能并入电网之前发电机自身是没有电压的。在发电机并网前后其电压电流必然会出现一定范围内的波动。根据相关的数据资料记载,在并网时会出现大概比额定电流大5-6倍的并网冲击电流。在并网过程中,特别是对于容量较小的电网而言,数量比较大的异步发电机同时并入电网的瞬时会将电网电压大幅拉低,瞬间降低的电压会对在同一电网上运行的其它电气设备造成一定的影响,达到一定程度之后就会威胁到整个电网的运行安全和稳定。 在新能源发电的电力并网过程中,除了上文所介绍的对电力系统造成冲击以外,新能源电力并网还会对电力系统的稳定性造成一定的影响。当风力发电的电能并入大型电网的过程中,由于大型电网所配备的备用电容和调节电力的设备比较充足,因而风电并网不会对电网造成太大的影响。但是风电所并入的电网并不都是具有相当调节能力的大型电网,当风电将要并入小型电网的时候,并网所造成的频率改变和对电网的稳定性造成的影响不容忽视。同上文所介绍的情况一样,当多台大型风力发电机将其所发的电量同时并入电网中的时候,会造成电网电压的瞬间降低。风力发电过程中,风速是不稳定的,当风速超过切出值的时候,风力发电机就会从额定出力状态自动退出并网状态。由于风电的并入而造成的电网电压的下降无疑会对电网运行的稳定性带来一定的威胁。 二、新能源发电在电力系统的应用 1、利用开发风能发电 在目前的电力电子背靠背变频技术的支持下,风力发电系统能够对发电功率的各个参数的输出作业进行有效的调整和控制,风力发电的目标也是通过控制电磁转矩控制机组转速频率来实现的。风能在利用过程中因为没有产生辐射、也不会对空气产生污染是一种公认的清洁的可再生能源,风力发电基本原理,利用自然界的风力带动发电企业安装的风车叶片旋转,通过增速机把风车旋转的速度加快,从而带动发电机发电。 2、利用海洋能发电 (1)波浪发电 波浪发电需要利用转换装置,把波浪能转化为机械、气压或液压的能量,以催动机械的运行。其中,我国最典型的波浪发电案例,应该是广东油尾建成的100千瓦的振荡水柱式波浪发电站,当然,还有一些地区也取得了很好的效果,如海南、福建,现如今,很多沿海城市已经把建设100千瓦以上的波浪发电站,作为建设目标。虽然说波浪发电技术难度大、需要耗费大量资金,但是却符合我国经济市场的发展需要,具有广阔的发展空间。 (2)潮汐发电 潮汐是海洋水位受太阳和月球等天体的引力影响,发生变化,进而产生水位波动的一种自然现象。因而,潮汐发电的方式是:利用潮水涨落产生的水位差,创造势能,把势能转化为电能,来投入使用。可再生、存储量大、生产成本少是潮汐能的最大优势,同时,潮汐能是一种清洁能源,不会引起环境污染,把潮汐能发电水库建立在河口或海湾,不会占用地区的耕地。但是,在潮汐能发电方面,我国存在着电价高、成本高等问题,给潮汐能的推广和运用带来不利影响。 3、太阳能发电技术 目前世界储备量最多的自然资源就属太阳能了,当电力、煤炭、石油等资源存储量耗尽时,太阳能发电将成为解决能源危机的最佳方法。在地球外层空间建立太阳能发电基地是太阳能技术的基本构想,产生的电能将通过微波传输到地面上太阳能接受装置里。然后在经过相应的处理把太阳能从液态变为气态,用于汽轮发电机发电。其中太阳能发电形式包括:光伏发电和光热发电:光伏发电光伏技术随着科学技术的发展而不断得到更新,这不仅提升了电能产生的效率,同时各种能源的转化运用也得到了加快。由于光伏发电领域在国内起步比较早,所以经过长期的研究发展在太阳能电池组件的生产能力等方面取得了诸多成就,对于缓解国内能源危机提供了很有效的方式。太阳能电池把太阳能转变成电能的部件主要运用了光伏效应。太阳光的光子在电池里激发出点子空穴对,电子和空穴则会移动到了电池的两端,如果外部存在通路就会有电流的出现,最终生成电能;光热发电技术是指将自然界中所有的光能聚集在一起,然后结合聚光器汇集太阳能。由于受技术的限制,国家在研究光热发电方面进展迟缓,对光热发电能源尽管进行了全力研究但还是没有取得很突出的成绩。 4、利用生物质能发电 生物质发电时蕴含在生物中的能量,具有可再生、低污染、分布广等特点,在能源资源中占有比例重,是第四大能源。在中国,农村地区秸秆等资源丰富,大部分都是经过燃烧处理掉,造成了资源的严重浪费,如果将其利用与发电上,将会创造大量的电能。同样,在一部分的林区,可以实施林业生物质直燃的方式进行发电。在甘蔗种植面积较大的区域,可以变废为宝,利用蔗渣进行直燃发电。另外,在人口密集,土地资源匮乏的地区,可以利用垃圾焚烧进行发电,既能够有效解决发电问题,还可以同时解决了垃圾处理问题。最后,在大

新能源电力系统的主要特征

新能源电力系统的主要特征 传统电力系统以煤炭、石油、天然气、水能等传统能源作为一次能源,由于其可储存的特性以及稳定可靠的发电技术,使得电力系统供应侧可控可调。随着可再生能源发电的大规模接入,风能、太阳能等可再生能源作为一次能源具有的不可储存及波动特性,使得风电等可再生能源发电出力具有较大的不确定性,电力系统供应侧可调控性降低,电力系统呈现出较强的供需双侧随机性。新能源电力系统就是通过电力系统结构、运行方式的根本性变革,使电力系统更够承受供需双侧不确定性对系统的冲击,保证可再生能源的安全高效利用。 新能源电力系统的主要特征有两点: 第一,高可再生能源利用比例。高渗透率的可再生能源电力是新能源电力系统的重要特征。由于风能、太阳能等可再生能源较低的能量密度以及我国可再生能源资源主要集中在“三北”地区的分布格局,未来我国的新能源电力系统应该是集中式与分布式可再生电源、远距离大电网输送与区域微网就地消纳相结合的形式,从而保证系统能够最大限度地利用可再生能源电力。 第二,供应侧的横向多能源互补,系统纵向源—网—荷

—储协调互动。安全高效利用可再生能源是新能源电力系统的重要目标。在供应侧,一方面,利用可再生能源发电精确预测技术、新型可再生能源发电设备及控制技术,最大程度上做到对风电等可再生能源发电出力的可调可控;另一方面,通过可再生能源与传统水火电、抽水蓄能电站之间,不同可再生能源之间,集中式与分布式可再生能源之间的协调控制,实现多类型能源电力互补,使得供应侧整体呈现出稳定的出力特性,减小可再生能源发电出力波动对系统造成的冲击。在输配环节,新型的电网结构、先进的输配电方式、控制和安全防御系统及储能设施的建设和应用,使得电网对可再生能源拥有足够的接纳能力,最大限度地避免物理通道对电力资源优化配置的影响。在需求侧,一方面,通过AMI 及先进的通信系统,使用户能够实时掌握自身用电情况与不同层级的系统运行情况,根据价格响应信号,调整自身的用电行为;另一方面,通过先进的控制技术,能够对用户的终端用电器做到精确计量与控制,最大程度的利用需求侧“暗储能”潜力。 综上所述,新能源电力系统核心特征就是要借助相关的技术手段,实现电力系统中真正意义上的“横向多源互补,纵向源网荷储协调”,从而最大限度地利用可再生能源,逐步提高可再生能源在电力一次能源消费中的比例,最终使得可再生能源在我国电力能源结构中占据主导地位。

我国近年新能源发电并网情况

我国近年新能源发电并网情况 16009626 康雨翔通过学习时斌老师的讲座,我对新能源电力近年来的发展有了较深的认识,课后通过请教电气的学长和借助网络,我从三个比较浅显的角度对我国近年来新能源发电并网状况稍作阐述: 一、中国可再生能源发电发展现状 2011年中国可再生能源发电(水电、风电、太阳能发电、生物质发电)和生物液体燃料等计入能源统计的商品化可再生能源利用量达到约2.6亿吨标准煤,约占当年一次能源消费总量(32.5亿吨标准煤)的7.9%。如果计入沼气、太阳能热利用等非商品可再生能源,可再生能源年利用量总计2.9亿吨标准煤,约占当年一次能源消费总量的9%。主要可再生能源产业发展情况如下。 (1)水电:中国水电技术成熟,装机容量和产业规模均位居世界前列。2005年后,水电年新增装机均在2000万千瓦左右。到2010年底,水电装机总容量达到了2.13亿千瓦,当年发电量6863亿千瓦时,占全国总发电量的16%,占全国能源消费总量的7%,是目前中国可再生能源的支柱。 (2)风电:中国风电已经进入规模化发展阶段。自2006年,风电装机容量连续四年翻番, 2009年和2010年,中国年新增风电装机量均排名世界第一。到2010年底,风电吊装容量达到4400多万千瓦,并网容量3100万千瓦,年发电量约500亿千瓦时,占全国总发

电量的1.3%。海上风电建设2009年开始启动。在市场需求和竞争的推动下,中国国风电设备制造业技术升级和国际化进程加快。目前1.5-2兆瓦风电机组形成充足供应能力,3兆瓦风电机组已投入商业运行,5-6兆瓦风电机组样机已下线。风电未来进一步规模化发展需要解决并网和消纳问题。 (3)太阳能发电:得益于国际市场尤其是欧洲市场的推动,中国太阳能光伏产业在2005年后迅速发展,从硅材料到光伏系统集成的光伏全产业链基本形成。2010年中国光伏电池产量占全球市场的50%。2009年后,由于光伏发电成本显著下降,中国开始启动太阳能发电市场,2011年新增光伏发电容量55万千瓦,总装机容量86万千瓦。今后太阳能发电市场规模的扩大仍有赖于其成本下降,同时如果实现上千万千瓦的规模化发展,并网和消纳问题也必须考虑。 (4)太阳能热利用:中国太阳能热水器走的是基本不依赖政策支持的市场化发展的道路。中国是世界上最大的太阳能热水器生产和消费国,产量和市场应用量均占全球一半以上。2005年后,中国太阳能热水器普及率和利用规模稳步提高,到2010年底,太阳能热水器使用量为1.68亿平方米,年产量为4200万平方米。但是,先进的集中式太阳能热利用技术仍有待突破产业瓶颈。 (5)生物质能:中国生物质能实现了多元化发展。生物质发电技术成熟,2010年发电装机670万千瓦,主要是秸秆、稻壳、垃圾、蔗渣发电和沼气发电等。沼气年利用量约140亿立方米,生物燃料乙醇产量186万吨,生物柴油利用量约50万吨。各类生物质能利用的

全球可再生能源发展现状与趋势 (上)

全球可再生能源发展现状与趋势 (上) 二十一世纪可再生能源政策网是一个面向各种各样的利益相关者的全球性政策网。该网与政府、国际机构、非政府组织、产业协会和其它合作伙伴及项目发起者建立起了广博的联系,登载全世界对可再生能源的意见,提供发展中国家和工业化国家广博使用可再生能源的政策。为可再生能源方面的信息搜集、技术交流和政策制定创造了一个全球性的信息平台。 该网于2006年下半年公布了英文版《全球可再生能源状况报告》,为使国内相关人士更便当地了解全球可再生能源状况以及有关国家与地区的政策,笔者翻译整理了该报告,以飨读者。1报告摘要投资和产能双增长 2005年全球在新的可再生能源产能方面的投资为380亿美元,高于2004 年的300亿美元。德国和中国是主要的投资国,每国大约投资了70亿美元,其次是美国、西班牙、日本和印度。风力发电量增长24%,达到59吉瓦1,居新增容量的第二位,接近第一位的水力发电增加的容量。风力发电新增量超过300兆瓦的国家有10个,而2004年只有5个。生物柴油产量增长85%,太阳能并网光伏发电量增长55%。中国的太阳能热水器增长23%,欧洲也达到了创记录的水平。美国和西班牙开始建造世界上首批大容量的太阳能热发电厂。 主导国家有所变化 德国的太阳能并网光伏发电量增加600兆瓦(MW)2,超过了日本。美国自1992年以来首次成为风力发电增加的先导者,燃料乙醇产量也赶上了长期位居世界领先地位的巴西。 印度的风力发电量超过了风力发电先驱者丹麦,全部可再生能源发电量也超过了日本。 三个欧盟新成员国开始生产燃料乙醇,九个欧盟新成员国开始生产生物柴油。 可再生能源企业快速发展

最新中国新能源行业发展分析

中国新能源行业发展分析 发展替代能源是我国经济实现可持续发展的前提。十一五期间,在现有的能源和资源边界的约束下,能源替代这一有助于解决经济可持续发展瓶颈问题的产业,孕育着重大投资机会。 在我国现有能源供给的约束条件下,我国面临着能源供需结构性矛盾,能源自给安全压力以及巨大的环保压力。发展替代能源,实现传统能源之间、传统能源和新能源之间的替代是解决我国能源供需瓶颈,供需结构性矛盾以及减轻环境压力的有效途径。 在我国未来的能源消费格局中,决定不同形式能源的应用及发展前景的决定因素有两点,一是能源使用过程中的内外部成本,二是后继储量以及是否可再生。《国家中长期科学和技术发展规划纲要》指出可再生能源再2020年我国能源消费中的比重将达到16%。 一、各种能源形式发电成本比较 风电是目前最具成本优势的可再生能源,风力资源较好的地区的风力发电成本与燃油发电或燃气发电相比,已经具备成本竞争力。目前我国风力发电装机容量仅占我国可利用风力资源0.1%风电到2020年很可能超越核电,成为我国第三大发电形式。2006年到2015年风机设备市场容量总计达到1000亿元以上,目前我国风机设备的国产化率仅有25%,目前对风电场招标有70%国产化率的要求,本土风机制造商面临巨大市场空间。 太阳能是最丰富的可再生能源形式,是所有化石能源及多种可再生能源的源头。多晶硅价格上涨对于多晶硅太阳能电池行业的影响并非完全负面,行业内不具备竞争优势的厂商的电池片产能和组件产能成为无效产能,避免了电池片和组件价格的恶性竞争,行业优胜劣汰得以更快的实现。高价多晶硅的压力下,优势企业也会有极强的动力削减成本,比如应用更先进的硅片切割技术,提高太阳能电池转换效率等,以求获得成本优势和竞争力。,多晶硅太阳能行业有可能08-09年重新进入黄金发展期。 在我国能源消费新格局中,中国富煤少油的能源禀赋格局决定了煤变

中国新能源产业现状和发展趋势分析(精)

中国新能源产业现状和发展趋势分析 https://www.doczj.com/doc/5f13403960.html,2011年12月12日09:52电源在线网 导读:中国风电资源主要是在东北、西北和内蒙古等地区,煤电资源主要在黑龙江、山西、内蒙古和甘肃西北等地。水电资源主要集中在西南地区,川渝云贵以及两湖两广地区。但是电力消费的中心却是在沿海地区,所以说我国能源的产生地区和电力消费中心是不匹配的,这对电网搭设和能源的利用都具有一定的考验。 一、中国经济整体概况 1.中国经济现状 目前世界经济危机并没有改变中国高速经济增长的趋势。中国未来经济依然表现为高储蓄、高投资、高资本与高速度,如表1所示。对于中国经济的分析,主要从出口、房地产、内需三个部分剖析,这三个部分被称为中国的三驾马车,同时日益和国外接轨是中国经济的主流趋势。产业的发展是一个平滑增长的过程,它和消费能力、需求能力紧密相关。产业弥补式的增长特性使得在对待一个产业时需要有收放自如的控制力,不能过分的打压。但是中国经济增长轨迹的变化将被缓慢启动,调整的模式具有明显的需求先导型、产业内部深化等特点。此外,中国经济将步入一个较长时期的“次高速经济增长时期”,人们原来所想象的各种增长模式大转变并非想象得那么迅猛。 表1 2009年~2013年我国GDP的增长情况(数据来源:ICTresearch,2011.08

2.重点关注的新兴战略产业领域 1新能源领域:重点关注的对象包括水电、核电、风力发电、太阳能发电、沼气发电、地热利用、煤的洁净利用、和新能源汽车。此外,核电重大专项、大型油气田和煤层气开发、大型先进压水堆及高温气冷堆核电站也颇受关注。 2新材料领域:重点关注的对象包括微电子和光电子材料和器件、新型功能材料、高性能结构材料、纳米材料和器件。 3信息通信领域:重点关注的对象包括传感网、物联网,集成电路、平板显示、软件和信息服务,核心电子器件、高端通用芯片及基础软件产品,新一代宽带无线移动通信网,极大规模集成电路制造装备和成套工艺等专项。 4生命科学领域:关注的对象包括转基因育种、干细胞研究,生物医药、生物育种,转基因生物新品种培育、重大新药创新、重大传染病防治。 二、新能源分类与特征 全国科学技术名词审定委员会审定公布新能源定义为:在新技术基础上,系统地开发利用的可再生能源。如核能、太阳能、风能、生物质能、地热能、海洋能、氢能等。具体来说,包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。所以概括的说新能源的两个重要的特点就是新技术和可再生。 世界新能源的分类可以分为三类:传统生物质能,大中型水电和新可再生能源。其中新可再生能源具体包括小水电、太阳能、风能、现代生物质能、地热

浅谈影响我国新能源发展的因素

浅谈影响我国新能源发展的主要因素 摘要:我国的新能源资源十分丰富,但目前开发利用的程度十分有限,具有很大上升空间。本文通过详细的分析,指出目前影响我国新能源发展的六个因素:新能源的成本、利用的难易程度、环境问题、能源供应安全的需要、技术问题以及国家政策。最后提出了一些有利于新能源发展的合理建议。 新能源是在新技术基础上,系统地开发利用的可再生能源,如核能、太阳能、风能、生物质能、地热能、潮汐能等。我国新能源资源丰富,主要铀矿有5个,已探明的铀储量居世界9大产铀国(储量超过10万吨)之列;每年我国陆地接收的太阳辐射总量相当于24 000亿吨标准煤;可供开发利用的风能资源总量为2.54亿kW;生物能资源丰富,包括农作物秸秆、薪柴和各种有机废物,可供发展沼气电力;已探明的地热储量相当于4 626亿t标准煤,现已开发利用的仅为10万分之一;可开发的潮汐能也在2 000万kW以上。因此,我国新能源的发展还有很大的上升空间,但目前受到了以下六个因素的制约: 一新能源的成本 近年来新能源的成本在不断降低,而传统能源的成本在不断升高,这正是新能源的发展的一个基本动力。然而,就目前而言,新能源的成本同常规能源相比明显偏高。新能源的主要利用方式是转化为电能使用,我们可以比对一下目前各类能源的发电上网价格[1](单位元/kWh):水电0.266,火电0.355,核电0.449,风电0.542,太阳能发电约1.5。新能源发电的成本明显高于传统的水电和火电,太阳能发电的成本更是高出三倍左右。高成本的现状,严重制约了我国新能源的发展。近年来,关于新能源发电的投资上涨很快,但其中很大程度上与政府的大力补贴在一定程度上降低了新能源发电的成本有关,以目前新能源的发展速度看,这种大力补贴无法持续太久,一旦补贴减少,成本问题将会再次浮出水面。 二利用的难易程度 同常规能源相比,新能源的利用要困难许多。利用核电[2]必须建立复杂的核反应堆,并做好严密的安全措施,同时必须妥善处理各种核废料;太阳能[3]和风能[4]发电往往具有间歇性、随机性、低同时率(60%左右)、低发电小时数(2000以下)等特性,给电力并网带来一系列的技术难题,这使得太阳能和风能发电只能作为传统发电方式的补充,另外,太阳能和风能主要集中在西部地区,而能源需求则主要在东部,太阳能和风能发电的电力输送也存在很大的难题,以致出现了发出的电由于无法输送出去而白白浪费的局面。生物能[5]技术并不成熟,目前比较普及的是制沼气,且仅限于农村地区使用,利用生物能制备各种燃料供人类利用还存在许多技术难题,有待进一步发展。地热能[6]利用受到热水分布区域的限制,因为地热蒸汽与热水难以远距离输送,另外,地热发电也存在电力无法输送出去的窘况。潮汐能[7]的利用首先必须具备较好的地质条件,可以建立水库,发电机结构也必须适应低水头、大流量的特点,这一切都给其利用带来了很大问题。新能源利用较传统能源更难是肯定的,如何解决新能源利用难的问题,将是新能源得以发展的关键所在。 三环境问题 作为一种名义上的清洁能源,新能源的利用依旧会带来多种环境问题。核能作为一种极富潜力的能源,其最大的诟病就是放射性污染,尽管核电站有极为严密的安全措施,但前苏联切诺贝利,美国三里岛,日本福岛核电站还是发生了核泄漏,造成的环境污染

相关主题
文本预览
相关文档 最新文档