当前位置:文档之家› 变压器损耗定义(精)

变压器损耗定义(精)

变压器的损耗包含两部分,空载损耗与负载损耗。

1.变压器的空载损耗

变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。

1.1空载损耗的组成

通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。

1.1.1磁滞损耗

磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算

21c m P C B f V =?? (1-1)

式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关);

B m ——交变磁通的最大磁密;

f ——频率;

V ——铁磁材料总体积。

注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。

1.1.2涡流损耗

由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算

2222m w B f t P C ρ??= (1-2)

式中,C 2——决定于硅钢片材料性质的系数;

t ——硅钢片的厚度;

ρ——硅钢片的电阻率。

1.1.3异常涡流损耗

在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3)

式中,C 3——取决于硅钢片材料的常数;

B s ——饱和磁通密度;

v ——交变磁化时硅钢片内磁壁的移动速度。

总的来说,硅钢片内部磁区的结晶粒的大小对异常涡流损耗的值影响较大,例如取向性硅钢片其结晶粒的直径为3~20um ,而无取向性硅钢片的结晶粒直径为0.02~0.2um ,相应地,在取向性硅钢片中,异常涡流损耗甚至可达到总铁损的50%,而无取向性的硅钢片中,异常涡流损耗甚至小到忽略不计的程度。

1.1.4铁磁材料单位质量的铁损

将式(1-1)、(1-2)、(1-3)综合成一个公式,即用单位质量的铁损耗来表示。这时,总基本铁损采用下式来计算

G f B p p m Fe ???? ?????? ??=3

.1250/1050100000 (1-4) 式中,p 10/50——比损耗值,W/kg ,它代表铁磁材料的损耗性能,这里它表示当f=50Hz ,B m =1.0T 时每公斤材料的损耗值。

G ——铁磁材料总重量。

1.1.5附加铁损

附加铁损是指实测的铁损与式(1-4)所得出基本铁损之差。它不完全决定于材料本身,而主要与变压器的结构及生产工艺等有关。所以无论什么类型的变压都存在附加铁损,只不过有大小的差别而已。

通常,引起附加损耗的原因主要有:

1) 磁通波形中有高次谐波分量,它们将引起附加涡流损耗;

2) 由于机械加工所引起的磁性能变坏所导致损耗增大;

3) 在铁芯接缝以及芯柱与铁軛的T 型区等部位所出现的局部损耗的增大等。

对于附加铁损的计算,常借助引入一个“附加损耗系数”的办法来处理,当然这纯粹是一个经验系数,不可能依靠理论推导来求得。

1.2空载损耗的计算

在实际设计中,空载损耗的计算是通过先计算出铁芯的总质量,再乘以单位质量的铁损去计算的。这里所说的铁芯质量是指硅钢片的总质量,包括铁芯柱质量G t 、铁軛质量G e 和转角质量G c 的总和。对于目前常用的铁芯柱和铁軛净截面积相等的铁心结构,其空载损耗为

t Fe p p G K P ??=00 (1-5)

式中,K p0——空载损耗附加系数;

G Fe ——硅钢片总质量,Kg ;

p t ——硅钢片单位质量损耗;按设计磁通密度,查表可得。

对于铁芯柱和铁軛净截面不相同的铁心结构,这时如铁芯柱与铁軛的磁密不等,则损耗应分别计算后相加,其具体计算公式为

????????? ??++??? ?

?+?=e c e t c t p P G G P G G K P 2200 (1-6) 式中,p t 、p e ——铁芯柱及铁軛的单位质量损耗,(W/kg ),分别按磁密B t 和B e 查表可得。

通常设计中所计算出的空载损耗值应不超过国家标准中所规定的15%,并最好是负的偏差。

1.2.1空载损耗附加系数k p0的决定因素

空载损耗附加系数k p0与硅钢片材质等级、毛刺大小、接缝型式、接缝大小、工艺孔、每叠片数、叠片工艺(是否叠上軛)和剪切时所受压力因数以及谐波的存在均有关,下面分别讨论。

1.2.1.1材质

变压器铁心的空载性能主要由所选的硅钢片决定。目前大型电力变压器主要使用的硅钢片有三种:晶粒取向硅钢片、高导磁晶粒取向硅钢片和激光照射或等离子表面处理高导磁晶粒取向硅钢片。从硅钢片的厚度来分为0.23mm、0.27mm、0.3mm。

1.2.1.2接缝型式

接缝型式分为:步进多级(阶梯)接缝和传统的交错接缝。采用多级步进接缝代替传统的交错损耗,即可消除铁芯中局部损耗增大的现象。

从过去的理论与广东顺德特种变压器厂的实验可以看出,采用多级步进接缝方式,接缝部位的刺磁通分布将大大得到改善,从而降低空载损耗、空载电流以及变压器的空载噪声(其中空载电流的降低最为明显甚至达到50%以上)。而且产品容量越大、硅钢片越薄,这种改善效果越明显。

而通过对不同级数的阶梯接缝处的磁性性能数据进行分析,可以看出:随着级数的不断增加,每增加一级,磁性能改善的幅度也越来越小,6级以后就不显著了。因此,3级阶梯接缝是较经济的选择。不过,在我国一些先进工艺装备的企业,也有采用5-6级阶梯接缝。

1.2.1.3接缝型式

接缝间隙增大,将引起接缝区域局部磁密升高,导致铁芯局部损耗增加。当接缝大小为2mm以上时,空载损耗附加系数会增加的很快。因此,减小这种影响也是降低损耗的一种途径。

1.2.1.4铁芯夹紧力大小

ABB公司曾经做过相关变压器实体实验,夹紧力对空载损耗附加系数的影响不到1%,因此变压器夹紧力对空载损耗的影响完全可以忽略不计,但是,夹紧力对铁芯的噪声影响很大。

1.2.1.5铁芯工艺孔

空载损耗和空载电流与工艺孔孔径的关系是非线性的,即空载损耗和空载电流随孔径加大而急剧的增加,这不仅是因为孔的周围磁通密度较高,而且是因为此处磁通弯曲所致。

由于工艺孔的影响,将引起三相三柱铁芯边柱空载损耗增加5.1%,引起三相三柱铁芯中柱空载损耗增加3.1%,引起三相三柱铁芯上下軛空载损耗增加5.5%。工艺孔直径越大,数目越多,空载损耗增加的就越多,尤其是对于较窄片宽的铁芯,工艺孔对空载损耗的增加就更加明显。

1.2.1.5电压谐波

谐波影响下变压器的磁滞损耗,将随谐波电压的增大而增大,其计算式为:

S

h h h B hU U P ???

? ??=∑∞=11cos ψ (1-7) 式中,P B ——谐波造成的磁滞损耗;

h ——谐波次数;

U h ——h 次谐波电压;

U 1——基波电压;

h ψ——h 次谐波电压初相角;

s ——铁芯材料系数。

而谐波影响下变压器的涡流损耗,也将随着谐波电压的增大而增大,其计算式为 eh h h I C U U P 2

111∑∞=???? ??+= (1-7) 上式中,C eh 取决于电磁波的投入深度,C eh 的表达式如下

61.30017.01ξ-=eh C ,

6.3<ξ (1-8) ξ3

=eh C ,6.3>ξ (1-9)

∏?

=hf u γξ (1-10) 其中,P I ——谐波造成的涡流损耗;

?——铁芯的厚度;

u ——铁芯的渗透率;

γ——铁芯的电导率;

f ——基波频率;

1.2.2空载损耗附加系数k p0的估算

晶粒取向硅钢片的电磁性能与加工关系较密切,在制造过程中,剪切和弯曲的曲率半径过小,磕碰等制造过程,均会使晶粒取向硅钢片的电磁性能变差。通常对于不同铁芯叠片,空载附加系数通常在如下范围内(铁芯直径越大,所选取的附加系数越小)

(1)卷铁心 k=0.7~1.2

单相1.05,三相1.15~1.20

(2)单相叠片铁芯

晶粒取向硅钢片 k=0.95~1.05

激光高导磁晶粒取向硅钢片 k=1.00~1.10

(3)三相三柱叠片铁芯

晶粒取向硅钢片 k=1.1~1.4

高导磁晶粒取向硅钢片 k=1.15~1.4

激光高导磁晶粒取向硅钢片 k=1.17~1.25

(3)三相五柱叠片铁芯 k=1.2~1.35 1.2.3通过实验计算空载损耗附加系数k p0

由式(1-5)可得,空载损耗附加系数的计算公式:

Fe

t o Po G p P k ?= (1-11) 利用试验统计分析的方法和式(1-11)可以获得k P0。空载损耗P 0可以通过实验获得;单位损耗p t 根据所选用的硅钢片牌号、额定工作频率和工作磁通密度来通过查表获得。为了提高实验数据的准确性,可以利用多台同型号的变压器试验数据进行分析计算。铁心重量既可以采用铁芯柱铁芯軛加角重计算获得,也可以通过铁心片图各种片形重量进行累加获得。最后,可以使用最小二乘法将试验数据进行拟合来求取k P0的经验值。

2.变压器的负载损耗

变压器在运行时,绕组内通过电流,会产生负载损耗。负载损耗又称铜损,除基本绕组直流损耗外,还包括附加损耗。附加损耗主要有,绕组涡流损耗、环流损耗和杂散损耗。

2.1基本铜损

对于小容量的变压器,负载损耗主要是指基本铜损,漏磁场引起的附加损耗比例很小。在额定情况下,负载损耗应由下式计算:

C N C N

D r I r I P ??+=75,22275,121

(1-12) 式中,I 1N ,I 2N ——原副绕组额定相电流,A ;

C C r r ??75,2,75,1——折合为75o C 时原副边绕组的总电阻,Ω。

另外,在实际的产品设计时,常用电流密度与导线重量来计算基本铜损,如下式所示 L

L G j K P N x DC ??=23 ,W (1-13) 式中,j ——绕组导线的电流密度,A/mm 2;

G x ——绕组裸导线的质量,kg ,对三相变压器 g A L G k x ??=3;

K ——系数,铜为2.4,铝为13.22;

g ——导线的比重,铜导线的密度为8.9g/cm 3, 铝导线为2.7g/cm 3;

A k ——导线截面积,cm 2。

2.2附加损耗

2.2.1绕组涡流损耗

大容量变压器运行时,绕组的安匝会产生很大的漏磁场。所谓漏磁场是指磁通有一部分通过空气,有一部分磁路是铁芯。由于绕组的导线处在漏磁场中,漏磁通会在导线中引起涡流损耗。

漏磁通在绕组的高度范围内,大部分是轴向的,但在绕组端部及安匝不平衡部分,漏磁通也有辐向的分量。不过横向漏抗电势比辐向漏抗电势小得多,只有在特大容量的变压器内才占一定比例,所以在变压器计算中,往往仅计算漏抗电势,然后再考虑一个横向漏抗电势影响系数。只有对特大容量变压器才计算辐向漏抗电势。

根据推导,在漏磁场中绕组导线的纵向涡流损耗占绕组直流损耗的百分数为

22)(10δm

w aB k k ?= (1-14)

式中,a ——导线厚度(mm );

δ——导线中的电流密度(A/mm 2);

B m ——绕组中漏磁密峰值(T);

k ——与ρ有关的系数,对铜导线75o C 时,k=2.99;85o C 时,k=2.8。 4102

4.0-?=H

IN B m π (1-15) 式中,I ——绕组的额定电流(A );

N ——绕组的匝数;

H ——绕组的高度(mm)。

绕组的涡流损耗为

D C w w P k P ?=% (1-16)

如变压器是三绕组变压器,运行方式是内绕组——外绕组运行,位于中间的绕组虽然没有电流流过,但这个绕组位于漏磁场内,也存在涡流损耗。而且此时中间绕组的涡流损耗是按式(1-14)算出的三倍。

以上只能大概的计算出绕组的涡流损耗,若要比较准确地计算绕组内的涡流损耗,需要计算出绕组区域的漏磁场分布,然后计算各线饼的轴向漏磁通和辐向漏磁通引起的损耗,最后综合得到绕组的涡流损耗。 2.2.2 引线损耗

引线损耗是变压器各引线电阻损耗的总和,引线按基本损耗的百分比来折算。其计算公式:

P lead =(0.01~0.02)?P DC (1-17)

2.2.3 杂散损耗

杂散损耗是漏磁通穿过钢结构件(如板式夹件、钢压板、压钉螺栓及油箱壁等)

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

变压器损耗

(1)变压器损耗(按/ 计算)。 (2)线路损耗(按计量点1用网、上网抄见电量的0.1%;YJV-3*185电缆220米、R=0.022欧计算)。上述损耗的电量按各分类电量占抄见总电量的比例摊。 3.未分别计量的乙方用电量认定 /计量装置计量的电量包含多种电价类别的电量,对/ 电价类别的用电量,每月按以下第1种方式确定:(1)/ 电量定比为:/ %。 (2)/ 电量定量为:/ 千瓦时。 以上方式及核定值甲、乙双方每年至少可以提出重新核定一次,对方不得拒绝。 4.计量点计量装置如下: 计量点名称计量点类型计量设备名称精度倍率产权用网电量计量点大工业总表0.5S 6000 甲方计量点1 上网电量计量点光伏关口表0.5S 6000 甲方计量点2 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点3 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点4 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点5 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点6 用网电量计量点一般工商业及其他套表 1.0 240 甲方计量点7 用网电量计量点居民生活套表 1.0 120 甲方计量点8 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点9 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点10 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点11 用网电量计量点一般工商业及其他套表 1.0 240 甲方计量点12 发电量计量点光伏发电表1 1.0 160 甲方计量点13 发电量计量点光伏发电表2 1.0 160 甲方 第十条电量的抄录和计算 1.抄表周期为每月或甲方公布的秒表周期,抄表例日为甲方公布的抄表日。如有变动,甲方应提前一个抄表周期告知乙方和丙方。 2.抄表方式:人工及电能信息采集装置自动抄录方式。 3.结算依据: (1)三方约定光伏项目发电量以1方式消纳。 1)以余电上网方式消纳电量,甲方与乙方以计量点1、2、3、4、5、6、7、8、9、10、11计量装置抄录的用网示数为依据计算乙方用网电量,其中计量点2、3、4、5、6、7、8、9、10、11计量装置抄录有用网示数视为甲方所不间断供电量。甲方与丙方以计量点1计量装置(产权分界点)抄录的上网示数为依据计算丙方上网量。 2)全部上网方式消纳电量,甲方与丙方以/ 计量装置(并网点)的抄录的上网示数依据计算丙方上网电量。 (2)按照上网电量、用网电量和国家规定的上网电价、销售电价分别计算购、售电费。 (3)抄录数据作为电费的结算依据。以电能信息采集装置自动抄录的数据作为电费结算依据的,当装置发生故障时,以甲方人工抄录数据作为结算依据。 4.乙方的无功用电量为正反向无功电量绝对值的总量。 第十一条计量装置维护管理及计量失准处理 1.电能计量装置应在光伏项目发电设备并网前按要求安装完毕,并按规定进行调试。电能计量装置投运前,由合同三方依据《电能计量装置技术管理规程》(DL/T448-2000)的要求进行竣工验收。 2.当在同一计量点计量上网电量和用网电量时,应分别安装计量上网电量和用网电量的电能表,或安装具

变压器损耗计算公式

变压器损耗计算公式 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器. 将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比. 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比. UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示. 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比. 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比. PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损.其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示). 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗. 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率. 3、变压器节能技术推广 1) 推广使用低损耗变压器; (1)铁芯损耗的控制

变压器损耗原理及计算方法

变压器损耗原理及计算方法 变压器的损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器的损耗计算分析

变压器的损耗计算分析 在电力系统中变压器是利用效率最高的电气设备之一,一般中、小变压器都可达96~98%。在电力系统中,累积变压器的总损耗可占20~25%。 (一)变压器的空载损耗 此损耗包括铁芯中磁滞和涡流损耗及空载电流在初级线圈电阻上的损耗,前者称为铁损后者称为铜损。由于空载电流很小,后者可以略去不计,因此,空载损耗基本上就是铁损。 影响铁损的因素很多,以数学式表示,则 式中P n、P w——表示磁滞损耗和涡流损耗 k n、k w——常数 f——变压器外施电压的频率赫 B m——铁芯中最大磁通密度韦/米2 n——什捷因麦兹常数,对常用的硅钢片,当B m=(1.0~1.6)韦/米2时,n≈2,对目前使用的方向性硅钢片,取2.5~3.5。 根据变压器的理论分析,科假定初级感应电势为E1(伏),则: E1=K f B m(2) K为比例常数,由初级匝数及铁芯截面积而定,则铁损为: 由于初级漏阻抗压降很小,若忽略不计, E1=U1 (4) 可见,变压器的铁损与外施电压有很大关系如果电压V为一定值,则铁损不变,(因为f不变),又因为正常运行时U1=U1N,故空载损耗又称不变损耗.如果电压波动,则空载损耗即变化。 (二)负载损耗 此损耗是指变压器初、次级线圈中电流在电阻上产生的铜损耗及励磁电流在励磁电阻上产生的铁损耗。当电流为额定电流时,后者很小,可以不计,故主要是电流在初、次级线圈电阻上的铜损。 对三相变压器在任意负载时,铜耗表达式:

式中I1——初级线圈的负载电流 I2’——次级线圈折算到初级的电流 R1——初级线圈的电阻 R2’——次级线圈折算得初级的电阻 由上式可见,变压器的铜损和负载电流的平方成正比。考虑到负载运行时,负载电流的变化,故此损耗又称可变损耗。 若令β表示负载系数,即 则铜损 式中~线圈电流为额定值时的铜损。 (三)附加损耗 此损耗包括附加铁损及附加铜损,由于这两种损耗数量很小,又难以测定,可以不计。总之,变压器的损耗主要是不变损耗和可变损耗。 变压器的效率,其计算公式 如果负载的性质一定,令φ2表示功率因数角,则在额定电压下,三相变压器输出功率 S N——变压器的额定容量。输入功率,可根据功率平衡得到 (8)式表明变压器的效率和其额定容量初、负载的性质与大小以及变压器本身的损耗有关。

变压器空载损耗计算

变压器空载损耗计算 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)计算变压器应具备的损耗比。 关键字: 变压器 1、变压器损耗计算公式 (1)有功损耗: ΔP=P0+KTβ2PK-------(1) (2)无功损耗: ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗: ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中: Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA)

I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数: t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。

(整理)电感、变压器的高频特性与损耗、

绕组高频效应及其对损耗的影响 1.集肤效应 1.1集肤效应的原理 图1.1表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: (1.1) 其中:γ为导体的电导率,μ为导体的磁导率,f为工作频率。 图1.1.集肤效应产生过程示意图 图1.2.高频导体电路密度分布图

高频时的导体电流密度分布情形,大致如图1.2所示,由表面向中心处的电流密度逐渐减小。 由上图及式1.1可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2影响及应用 在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 2邻近效应 图2.1表示了邻近效应的产生过程。A、B两导体流过相同方向的电流IA和IB,当电流按图中箭头方向突增时,导体A产生的突变磁通ΦA-B在导体B中产生涡流,使其下表面的电流增大,上表面的电流减少。同样导体B产生的突变磁通ΦB-A在导体A中产生涡流,使其上表面的电流增大,下表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导体有效截面面积不同。研究表明:导体的相对面积越大则导体有效截面越大,损耗相对较小。

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 ''22 k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。为归算到二次侧的短路为相数;'' R k m 变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=?η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器外特性与效率特性

一、变压器的外特性及电压变化率 变压器空载运行时,若一次绕组电压U 1不变,则二次绕组电压U 2 也是不变的。 变压器加上负载之后,随着负载电流I 2的增加,I 2 在二次绕组内部的阻抗压降也 会增加,使二次绕组输出的电压U 2 随之发生变化。另一方面,由于一次绕组电 流I 1随U 2 增加,因此I 2 增加时,使一次绕组漏阻抗上的压降也增加,一次绕组 电动势E 1和二次绕组电动势E 2 也会有所下降,这也会影响二次绕组的输出电压 U 2。变压器的外特性是用来描述输出电压U 2 随负载电流I 2 的变化而变化的情况。 当一次绕组电压U 1和负载的功率因数cosφ 2 一定时,二次绕组电压U 2 与负载电 流I 2 的关系,称为变压器的外特性。它可以通过实验求得。功率因数不同时的 几条外特性绘于图2—17中,可以看出,当cosφ 2=1时,U 2 随I 2 的增加而下降 得并不多;当cosφ 2降低时,即在感性负载时,U 2 随I 2 增加而下降的程度加大, 这是因为滞后的无功电流对变压器磁路中的主磁通的去磁作用更为显著,而使 E 1和E 2 有所下降的缘故;但当cosφ 2 为负值时,即在容性负载时,超前的无功 电流有助磁作用,主磁通会有所增加,E 1和E 2 亦相应加大,使得U 2 会随I 2 的增 加而提高。以上叙述表明,负载的功率因数对变压器外特性的影响是很大的。 图2-17 变压器外特性 在图2—17中,纵坐标用U 2/U 2N 之值表示,而横坐标用I 2 /I 2N 表示,使得在坐 标轴上的数值都在0~1之间,或稍大于1,这样做是为了便于不同容量和不同电压的变压器相互比较。 一般情况下,变压器的负载大多数是感性负载,因而当负载增加时,输出电压U 2 总是下降的,其下降的程度常用电压变化率来描述。当变压器从空载到额定负 载(I 2=I 2N )运行时,二次绕组输出电压的变化值ΔU与空载电压(额定电压) U 2N 之比的百分值就称为变压器的电压变化率,用ΔU%来表示。

变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.doczj.com/doc/5f18752251.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

变压器损耗定义

变压器的损耗包含两部分,空载损耗与负载损耗。 1.变压器的空载损耗 变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。 1.1空载损耗的组成 通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。 1.1.1磁滞损耗 磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算 21c m P C B f V =?? (1-1) 式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关); B m ——交变磁通的最大磁密; f ——频率; V ——铁磁材料总体积。 注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。 1.1.2涡流损耗 由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算 2222m w B f t P C ρ??= (1-2) 式中,C 2——决定于硅钢片材料性质的系数; t ——硅钢片的厚度; ρ——硅钢片的电阻率。 1.1.3异常涡流损耗 在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3) 式中,C 3——取决于硅钢片材料的常数;

变压器空载损耗对照表

变压器空载损耗对照表 序号容量空载损耗S9—M S11—M系列SH15—M (KVA) (w)全封闭(防盗) 3409材料非晶合金材料 免维护系列全封闭(防盗) 节能变压器 1 10 2 20 3 30 130 100 33 4 50170 130 43 5 80 250 170 60 6 100 290 200 75 7 125 340 24085 8 160 400 280 100 9 200 480 330 120 10 250 560 400 140 11 315 670480 170 12 400 800 570 200 13 500 960 680 240 14 630 1200 810 320 15 800 1400 980 380 16 1000 1700 1150 450 17 18 变压器价格表 金额:人民币(元) 序号容量S9—M S11—M系列 SH15— M (KVA) 全封闭免维系列 3409材料 (非晶合金材料) (防盗型) (叠片式铁心) 节能变压器 1 10 7,884 2 20 10,468 3 30 13,782 16,06073,650

4 5017,330 23,014 28,394 5 80 23,914 27,63038,095 6 100 26,36 7 33,477 39,710 7 160 35,113 40,390 56,278 8 200 42,95349,532 66, 475 9 250 49,567 57,735 74,676 10 315 55,085 62,327 88,3 70 11 400 69,715 85,147 105,710 12 500 76,650 100,478 11 4,920 13 630 94,053 127,814 134, 835 14 800118,216 144,846 164,547 15 1000 140,000 175,200 19 8,268 16 1250 165,345 207,320 17 1600 187,610 235,20 6 182000 217,846 273,166 线路有载自动调压器价格表 (适应10KVA超远距离输电) 产品 有载自动调压变压器价格表 (适应10KVA超远距离受电)产品 金额:人民币(元) 容量线路有载自动调压器有载自动调压 变压器 (KVA) 200 ------------------------ ------------------- ------ 50,100 250 ------------------------------------------------- 56,500 315 ------------------------------------------------- 71,800 400 ------------------------------------------------- 79,100 500------------------------------------------------- 87,700

变压器的损耗和效率

变压器的损耗和效率 一、变压器简介 变压器是利用电磁感应原理传输电能或电信号的器件,它具有电压变换、电流变化和阻抗变换及电气隔离的作用。 1、理想变压器工作原理 理想变压器基于下述两个假设: 1、变压器效率等于1,无任何能量损耗。即忽略了实际铁芯变压器线圈的电阻以及铁芯在交变磁场作用下所产生的能量损耗。 2、铁芯的磁导率μ趋近于无穷大,没有漏磁通。线圈的互感磁通等于自感磁通,耦合系数K为1,线圈自感系数L1、L2趋于无穷大,但是,L1/L2为常数,数值上等于原副边匝数比的平方。 理想变压器的工作原理如下: 图1理想变压器工作原理(变压器) 变压器的主要部件是一个铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电连接。在一次绕组中施加交变电压,交变电压产生交变电流,交变电流产生交链一、二次绕组的交变磁通Φ,在一次和二次绕组中分别感应出电动势E1、 E2。 理想变压器的绕组电阻为零,有:

E1=-U1,E2=-U2 假设一次和二次线圈的匝数分别为N1和N2,一次和二次绕组铰链的磁链分别为Ψ1和Ψ2,根据电磁感应定律,下述方程组成立: U1=-E1=-dΨ1/dt=d(N1Φ)/dt=N1dΦ/dt(a) U2=-E2=-dΨ2/dt=d(N2Φ)/dt=N2dΦ/dt(b) (a)式除以(b)式,可得: U1/U2=N1/N2(1) 理想变压器效率等于1,一次与二次绕组之间在能量传输过程中没有损耗,可知: U1I1=U2I2 联立式(1)可得: I1/I2=N2/N1(2) (1)式除以(2)式,可得: (U1/I1)/(U2/I2)=(N1/N2)2 U1/I1及U2/I2分别为一次和二次绕组的阻抗,分别记为Z1和Z2,则: Z1/Z2=(N1/N2)2(3) (1)、(2)、(3)三式分别表示了理想变压器的电压变换、电流变换和阻抗变换关系。 2、实际变压器工作原理 实际变压器绕组电阻不为零; 实际变压器交变磁通在铁芯中会产生涡流损耗和磁滞损耗; 实际变压器铁芯磁导率为有限值,一次绕组产生的磁通会有部分与空气形成磁路,不与二次绕组铰链,称为漏磁通Φσ1,同样,二次绕组也会产生漏磁通Φσ2。 因此: E1≠U1、E2≠U2。 同时铰链一次绕组和二次绕组的磁通称为主磁通Φ。由于空气的磁滞很大,一般主磁通远远大于漏磁通。 实际变压器效率小于1,其工作原理如下:

变压器的技术、电压比及效率

变压器的技术、电压比及效率 变压器技术 对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示。如电源变压器的主要技术参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽、静电屏蔽、效率等。 变压器电压比 变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2N2,U1>U2,该变压器为降压变压器。反之则为升压变压器. 另有电流之比I1/I2=N2/N1 电功率P1=P2 注意:上面的式子,只在理想变压器只有一个副线圈时成立。当有两个副线圈时,P1=P2+P3,U1/N1=U2/N2=U3/N3,电流则须利用电功率的关系式去求,有多个时,依此类推。 变压器效率

在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即: η=(P2÷P1)x100% 式中,η为变压器的效率;P1为输入功率,P2为输出功率。当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗。但实际上这种变压器是没有的。变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。 铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。 变压器的铁损包括两个方面:一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时,铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。 变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高。反之,功率越小,效率也就越低。

变压器空载损耗计算

变压器空载损耗计算 简介:负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取 1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比。 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0PC 变压器的损耗比=PC/P0

变压器效率特性

变压器运行特性分析与效率曲线二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 '' 2 2k Fe Cu Fe R mI p p p P+ = + = ∑ 式中,电阻。 为归算到二次侧的短路 为相数;''R k m 变压器的输入有功功率为1P,输出功率为2P,总损耗功率为P ∑,所以效率 为 P P P P P ∑ + = = 2 2 1 2 η 由于电力变压器的效率很高,用直接负载法测量1P和2P在算出效率,很难 得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2 2 2 2 2 2 1 cos 1 1 * * * + + + - = ∑ - = ? η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器损耗计算的

《装备制造技术》2012年第11期 电力变压器是电力网中重要元件之一,其损耗是电力网电能损耗的主要部分。因此,准确计算出变压器在实际运行中的电能损耗有着重要的意义。但目前较普遍运用的损耗系数法不能准确计算其真实损耗,因为其损耗量除了与其本身的特性(由材料、制作工艺等多种因素决定)有关外,还与其负荷特性有关。而损耗系数法简单地按抄见电量的一定比例加一固定损耗量计算,即:电能损耗量=固定铁芯损耗+抄见有功电量×铜损系数(%),未能考虑负荷特性的影响。而采取均方根电流法或平均电流法计算,不仅考虑了变压器的固有特性,还充分考虑了其负荷特性,能很准确地反映其电能损耗。 1常见的变压器损耗电量及电费的计算方法 1.1公式计算法 公式计算法就是根据当月抄录的有功、无功电量和变压器容量及铭牌参数,按照上述相关公式,计算出该月变压器的有功损耗电量和无功损耗电量,据此计算变损费用。这种办法的优点是计算结果准确,符合公平、透明的原则,针对特定的变压器计算损耗电量比较合适,但是,由于目前的用电营销管理水平参差不齐,变压器基础档案是否齐全、技术性能参数是否准确难以保证,而且计算工作量较大,对用户的解释工作也比较繁琐,不适合用电营销MIS系统大范围对大批量用户计算损耗电量。 1.2固定系数法 固定系数法就是变压器实际用电量乘以某一固定比例求得变压器损耗电量,据此计算变损费用。其优点是计算方法简单,便于向用户解释,能够反映损耗电量随用电量增加而增加的规律,但是缺点也是明显的,变压器损耗电量与实际用电量不是完全的线性关系,尤其是用电量较低时不能准确反映变压器的固定损耗电量。 1.3固定费用法 固定费用法就是按照预先设定的条件,计算出不同容量变压器对应的损耗费用,按容量每月收取固定费用。这种方法的优点也是计算方法简单、便于向用户解释,而且能够反映变压器固定损耗的特性,不过缺点就是不能反映损耗电量随用电量增长的关系,损耗电量难以按实际不同用电类别合理分摊,也无法统计准确,更重要的是由于电价调整比较频繁,固定费用法也不能及时、准确反映损耗电量与损耗费用的相关性。1.4查表法 查表法就是依照国家标准规定的变压器参数和预先合理设定的条件,计算出不同容量变压器在不同用电情况下对应的有功和无功损耗电量,进行合理归并后得到变损电量速算表,然后根据变压器额定容量和实际用电量查表求得当月变压器损耗电量,据此计算变损费用。这种方法能较准确地反映出变压器固定损耗的固定性和可变损耗随用电量变化的可变性,计算过程相对比较简单、规范、透明,也比较容易被用户理解、接受,虽然准确度较公式计算法稍差,但能够满足一般要求,也符合用电营销MIS系统的要求。但拟定变损速算表的前期准备工作量较大。 综上所述,用电营销MIS系统一般推荐采用查表法计算变压器损耗电量。在运行容量、运行时间有变化及计算特定型号的变压器损耗电量时,可采用公式计算法。 2变损的计算 高供高量用户,变压器的铜损、铁损,在有功电表、无功电表里已经包括,不再另加变损。由于变压器容量小或表计设备来源的限制,对于高供低量用户,特别是在上世纪80年代前规定315kVA(原320kVA)要高 变压器损耗计算的探析 刘静 (武汉市汉口供电公司,湖北武汉430012) 摘要:分析了几种常见的变压器损耗电量及电费的计算方法,通过实证分析得出变损计算应根据变压器的参数及负荷特性,结合查表法来进行变损计算。 关键字:变压器;损耗;计算 中图分类号:TM41文献标识码:B文章编号:1672-545X(2012)11-0165-03收稿日期:2012-08-09 作者简介:刘静(1969—),湖北武汉人,工程师,本科学历,研究方向电力系统及其自动化。 165

相关主题
文本预览
相关文档 最新文档