当前位置:文档之家› 实变函数论 第三版 课后答案 高等教育出版社

实变函数论 第三版 课后答案 高等教育出版社

实变函数论 第三版 课后答案 高等教育出版社
实变函数论 第三版 课后答案 高等教育出版社

1. 证明:()B A A B -=的充要条件是A B ?.

证明:若()

B A A B -=,则()A B A A B ?-?,故A B ?成立.

反之,若A B ?,则()

()B A A B A B B -?-?,又x B ?∈,若x A ∈,则

()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有()

x B A A ∈-.故

()B B A A ?-,从而有()B A A B -=。 证毕

2. 证明c A B A

B -=.

证明:x A B ?∈-,从而,x A x B ∈?,故,c

x A x B ∈∈,从而x A B ?∈-, 所以c A B A

B -?.

另一方面,c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-,

所以 c A

B A B ?-.

综合上两个包含式得c A B A

B -=. 证毕

3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧

∈∧

?

.

证:若x A λλ∈∧

,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧)成立

知x A B λλ∈?,故x B λλ∈∧

∈,这说明

A B λλλλ∈∧

∈∧

?

.

定理4中的(4):

()(

)(

)A B A B λλλλλλλ∈∧

∈∧

∈∧

=.

证:若()x A B λ

λλ∈∧

,则有'λ∈∧,使 ''()(

)(

)x A B A B λλλλλλ∈∧

∈∧

∈?.

反过来,若()(

)x A B λλλλ∈∧

∈∧

∈则x A λλ∈∧

或者x B λλ∈∧

∈.

不妨设x A λλ∈∧

∈,则有'λ∈∧使''

'()x A A B A B λλλλλλ∈∧

∈??

.

故(

)()()A B A B λλλ

λλλλ∈∧

∈∧

∈∧

?

.

综上所述有

()(

)(

)A B A B λ

λλλλλλ∈∧

∈∧

∈∧

=.

定理6中第二式(

)c c A A λλλλ∈∧

∈∧

=

.

证:()c x A λλ∈∧

?∈,则x A λλ∈∧

?

,故存在'λ∈∧ ,'x A λ?所以'c c x A A λλλ∈∧

??

从而有(

)c c A A λλλλ∈∧

∈∧

?

.

反过来,若c x A λλ∈∧

,则'λ?∈∧使'c x A λ?,故'x A λ?,

x A λλ∈∧

∴?

,从而(

)c x A λλ∈∧

(

)c c A A λλλλ∈∧

∈∧

∴?

. 证毕

定理9:若集合序列12,,,,

n A A A 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n

都成立,则 1

lim n n n A ∞→∞

==

(相应地)1

lim n n n A ∞→∞

==

.

证明:若1n n A A +?对n N ?∈成立,则i m i m

A A ∞==.故从定理8知

11

liminf n i m n m i m

m A A A ∞∞

∞→∞

====

=

另一方面,m n ?,令m i i m

S A ∞

==

,从1m m A A +?对m N ?∈成立知

1

11

1

1

(

)(

)m i m

i m i i m i m

i m i m i m S A A A A A A S ∞∞∞∞++==+=+=+=

=?=

=.故定理8表明

111

1limsup liminf n i m m n n n m i m

m m A A S S A A ∞

∞∞

∞→∞

→∞

=====

=

==

=

故1

lim limsup liminf n n n m n n n m A A A A ∞→∞

→∞

→∞

====

.

4. 证明()()A B B A B B -=-的充要条件是B =?.

证:充分性 若B =?,则()()A B B A A A A A -=-??=-?==?=?-?

必要性 若()()A B B A B B -=-,而B ≠?则存在x B ∈.

所以()()x A B B A B B ∈-=-即所以,x A B x B ∈?这与x B ∈矛盾,

所以x B ∈.

4. 设{}{}{}{}

1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,

,S n n ??==????

01;A n ??=????为奇数,{}1111,,

,,321A i ??

??

??=??????-??????

,问()()01,F A F A 是什么. 解:若{}{}{}{}

1,2,3,4,1,2,3,4S A ==,则

(){}{}{}{},1,2,3,4,1,2,3,4F A =?.

若011111

;1,2,3,

,;1,,,,35

21

S n A n n i ??????====??????-??????

为奇数, 则从1111111,,,

,,,,3521242c

i i ????=????-????

, 易知()111111,,1,,,

,,,,,3521242F A S i i ??????=???????-??????

. {}1111,,

,,321A i ??

????=??????-?????

?

. 令1

1

;1,2,,;1,2,212B i C i i i

????

====?

???-?

???

. {}{}

{}

1,F A S A

K A B K C K A =?==?

为的子集,或.

证明: 因为{}111,,

,,,321A B i ??

??

∈????-??

??

的任何子集()1F A .

所以有()1B F A ∈,而c

B C =,故()1C F A ∈,又()1F A ?∈. 任取B 的一子集A ,()1A A F A ?=∈,且()1A C F A ∈.

显S A ∈,故只用证A 的确是一个σ-域.

(1) ,c c

S S A ?==?∈,且B ?的子集A ,若K =?,则

,c K

A A A C ?==

(B A -是B 的子集,故(

)()

c

c

A A C F A ?=∈)

又B ?的子集A ,()c

c

c c

A

C A C A B ==.

显然是B 的子集,所以()()c

c A

C A B A =?∈.

又若n A 为B 的子集()1,2,3,

,n n K C ==或?.

()1

11n

n n n n n n A K A K A K ∞

∞∞===????

== ? ?????

.

这里1

n n A A B ∞

==

?是B 的子集.

1n n K K C ∞==

=或?.

所以

()1

n n n A K A ∞=∈.

若n A 中除B 的子集外,还有S ,则()1

n n n A K S A ∞==∈.

若n A 中有?,不影响

1

n n A B ∞=?.

故A 是σ-域,且()1F A A =. 证毕.

6.对于S 的子集A ,定义A 的示性函数为()10A x A

x x A ?∈?=???

证明:(1)()()liminf liminf n n A A x x ??= (2)()()limsup limsup n n A A x x ??= 证明:x S ?∈,若()liminf n A x x ?∈

则()liminf 1n A x ?=。且只有有限个n ,使得n x A ? 所以? 00n > 使得 0n n ≥时 n x A ∈ 从而有

()1n

A x ?=

故()()liminf liminf 1n n A A x x ??==

若()liminf n A x x ??, 则()liminf 0n A x ?= 且有无限个().1,2,3,4k n N k ∈=

故()lim 0k A k x ?→∞

=

所以 ()()liminf liminf 0n n A A x x ??==. 故(1)成立.

(2)的证明: x S ?∈,若()limsup n A x x ?∈ 则()liminf 1n A x ?=.

且有无穷个 ().1,2,3,4

k n N k ∈=使得k

n

x A ∈ ,1n k

A ?=

所以 ()lim 1k A k x ?→∞

= 注意到()01k A x ?≤≤

所以 ()()limsup limsup 1n n A A x x ??==. 若()limsup n A x x ??,则()limsup 0n

A x ?=

且只有有限个n 使得n x A ∈

所以 ? 00n > 使得 0n n ≥时n x A ? ,()0n A x ?= 所以 ()()limsup limsup 0n n A A x x ??==. 所以(2)也成立.

也可以这样证(2):注意n A R ??

()()1c

A A x x ??=-.

()()

()

(

)

()()

()()

()

()()

()

limsup limsup liminf liminf 11liminf 1limsup limsup 1limsup c

c

n

n c

c

c

n

n c n

c n

c n n

A A A

A A A A A x x x x x x x x ??

?

?????===-=-=+-=-=.

7.设f(x)是定义于E 上的实函数,a 为一常数,证明 (1)()()11;;n E x f x a E x f x a n ∞

=?

?>=

≥+???????

? (2)()()11;;n E x f x a E x f x a n ∞

=?

?≥=

>-???????

?. 证明:(1)()0;x E x f x a ?∈>???? 我们有()0f x a >,故存在n N ∈ 使()01

f x a n

≥+ (因为()01

,n f x a n

?≤-使) 所以()011;n x E x f x a n ∞

=?

?∈

≥+???

?. 从而有()()11;;n E x f x a E x f x a n ∞

=?

?>?

≥+???????

?; 反过来: 若()011;n x E x f x a n ∞

=?

?∈

≥+???

?,则

()()()()000

011

1,,;1;;n n n f x a a n x E x f x a E x f x a E x f x a n ∞

=?≥?≥+>∴∈>?????

?∴

≥+?>???????

?使

所以(1)成立.

下证(2) ()0;x E x f x a ?∈≥???? 我们有

()()()()()00011

1;1;n f x a a n N n

x E x f x a n N n x E x f x a n ∞

=≥>-?∈?

?∈>-?∈?????

?∈

>-???

?所以故

从而有()()11;;n E x f x a E x f x a n ∞

=?

?≥?

>-???????

? 反过来,若()011;n x E x f x a n ∞

=?

?∈

>-???

? 8.若实函数序列(){}

n f x 在E 上收敛于()f x ,则对于任意常数a 都有

()()()1111;liminf ;liminf ;k k E x f x a E x f x a E x f x a k k ∞

∞==???

?≤=≤+=<+????????????

证明:先证第一个等式

由定理8知

()()()()111111liminf ;;11liminf ;;n i m i m n i k k m i m E x f x a E x f x a k k E x f x a E x f x a k k ∞∞==∞∞∞∞====?

???≤+=≤+????

?

???????≤+=≤+????

?

???所以

()0;x E x f x a ?∈≤???? 我们有()01

f x a a k

≤≤+

对k N ?∈成立。 又条件 ()(),lim n n x E f x f x →∞

?∈= , 有()()00lim n n f x f x →∞

= 故 对k N ?∈, ?()m m k =,使得 i m ≥ 时, , 这表明

()()()011111;1;;i k m i m i k m i m x E x f x a k E x f x a E x f x a k ∞

===∞

===?

?∈

≤+??

?

??

?≤?

≤+??????

?

?所以.

反过来 ()0111;i k m i m x E x f x a k ∞

===?

??∈

≤+???

?, 我们知对 k N ?∈,?() m m k =,

使得i m ≥ 时, ()01

i f x a k

≤+. 令 i →+∞, 得 ()01

f x a k

≤+

再令 k →+∞, 得 ()0f x a ≤ , 所以()0;x E x f x a ∈≤???? ,从而 故 (1)成立。

下证第二个等式,一样有

()()11111liminf ;;n i k k m i m E x f x a E x f x a k k ∞

∞∞∞====?

???<+=<+?????

??? , ()0;x E x f x a ?∈≤???? 我们有 ()0 f x a ≤

故 对k N ?∈,? ()m m k =, i m ≥ 时,

()()()()0000111i i f x f x f x f x a k k k

-<<+≤+,即.

()()()011111;1;;i k m i m i

k m i m x E x f x a k E x f x a E x f x a k ∞

===∞∞∞===?

?∈

<+??

?

??

?≤?<+????????

因为所以.

反过来 ()0111;i k m i m x E x f x a k ∞

===?

??∈

<+???

? ,我们知对k N ?∈,? ()m m k =,使得

i m ≥ 时,()01

i f x a k

<+ ,令 i →+∞, ,利用条件()()00lim i i f x f x →∞= ,有

()01

f x a k

≤+ , 再令k →+∞,得 ()0f x a ≤,所以()0;x E x f x a ∈≤???? ,

所以

()()111;;i k m i m E x f x a E x f x a k ∞

===?

?<+?≤???????

? 故(2)得证。

注意:实际上有:对E 撒谎能够任何实函数列(){}

n f x 有

()(){}()()111;lim ;n

i n k m i m x f x f x E x f x f x k ∞

→∞

===?

?==∴

-

?.

习题二 (p18)

1. 用解析式给出)(1,1-和)(

,-∞∞ 之间的一个11-对应。 解:)(

1,1x ?∈- ,令()tan 2

x x π

?= ,则())(,x ?∈-∞∞,且

()'2

2012

x x π

?π=

>??+ ???

,故?严格单调于)(1,1-,1

lim x →±=±∞,

所以()tan 2

x x π

?= 为)(1,1-和)(,-∞∞ 之间的一个11-对应。

2.证明只需a b <就有)()(

,~0,1a b 。 证明:)(

,x a b ?∈,令()x a

x x b

?-=

-,则())(0,1x ?∈,且显然为11-对应。

2. 证明平面上的任何不带圆周的圆上的点所作成的点集是和整个平面上的点所作成对等

的,进而证明平面上的任何非空的开集(开集的定义见数学分析或本书第二章)中的点所作成的点集和整个平面上的点所作成的点集对等。 证明:? 平面上一个开圆

第三章习题

1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12,n

r r r ,则平面上的有理点

)({}

1

,;,j j Q Q r s r Q s Q A ∞=?=∈∈=

,其中)({},;1,2,

j i

j

A r r i n

=

=为可列集,故作

为可数个j A 的并1

j j Q Q A ∞=?=

为可数集。

(第20页定理5)。 2. 以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素.

证明:设

这里Λ为某指标集。

则我们可在任意I α∈A 这一开区间中选定一个有理数r α,与之对应,从而给出一个对应,

A Q

I r αα

→→

由于I α互不相交,当αβαβ∈Λ≠,,时,显然r r αβ≠,故上述对应是11-的. 故A 与有理数集的一个子集对等,所以A 的势最多与Q 的势相同,不会超过Q 的势, 故A 要么为有限,要么为可数集.

3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0?. 事实上,? n 阶有理数

()()12

,,,,n

i n i i n i X x a x a Q a a a ==∈∑令与之对应,这一对应显然是11-的,即

0,m m

m Q Q Q Q ???

=?的势是,这是因为由第一题:已知2Q Q Q =?是可数集,利用

归纳法,设k

k

Q Q Q Q =??

是可数集,

, 待证1

k k Q Q Q +=?是可数集,

.

将Q 中的点排成一列12,,m γγγ,将k

Q 中的点排成一列12

,,m

l l l ,

则1

1

k k

j j Q

Q Q A ∞+==?=

,其中(){},,,1,2,3,

j i j A l i j γ==显然为可数集,故

1

1

k j j Q

A ∞+==

也是可数集,这表明0,n n ?≥阶有理多项式全体是一可数集,而全体有理多

项式

{}0

n n ∞

=全体阶有理多项式作为可数集的并也是可数集.

4. 如果()f x 是(),-∞∞上的单调函数,则()f x 的不连续点最多有可数多个.

证明:我们在数学分析中知道(),-∞∞上的单调函数的不连续点,只能是跳跃间断点,其任取(),-∞∞上的单调函数()f x ,设其可能的间断点为{};,A x αα=∈ΛΛ 为某指标集,在

x A α?∈,令()()lim ,lim ,x x

x x

f x y f x y αααα+

-

+-→→==则,y y αα+-=故A α?∈,有一1R 上的

开区间()

,y y αα-+与之对应.

不妨设x x αβ>,设0δ?>使x x αβδδ->+,()()

,,,x x x y x x ααββδδ?∈-?∈+, 有()()f x f y ≥,故()()lim lim x x

x x

f x y y f x αααα-

+

-

+

→→=≥=,

所以()(),,y y y

y ααα

β-+

-

+=?..

故()f x 的间断点的集合A 与1R 上的一族互不相交的开区间11-对应,而后者的势为0?,故()f x 的间断点至多为可数多个.

5.设A 是一无穷集合,证明必有A A *?,使~A A *,且A A *-可数. 证明:若A 为可数集,则不妨设{};1,2,

i A a i n

==,令{}2;1,2,

i A a i n

*==,则

~A A *,且{}21,1,2,

,

i A A a i n *+-==.

显然仍为可数集,故此时结论成立.

若A 为无穷集,且不是可数集,则由P19定理1,A 中包含一个可数子集B ,令A A B *

=-,则由于A 是无穷集,且不是可数集,A B -是无穷集. 由P21定理7和B 为可数集知:.A A

B

A *

*= 证毕

6. 若A 为一可数集合,则A 的所有有限子集构成的集合也是可数集.

证明:由第一,第三题的证明已知,m m

m N Q Q Q Q ?∈??

?=(Q 为有理数集).由于A

是可数集,故m 个由全体A 中的一个元素组成的集合{}{}

1;A a a A N =∈,1A 是可数集.

由全体A 中的两个元素组成的集合{}{}221

2

1

2

,;,A a a a a

A N =∈,2A 是可数集

若{}{}1

2

,,

,;,1,2,

m m i A a a a a A i n =

∈=,

记A 中的m 个元素组成的子集全体,则m

m m A N N N N ??

?=

故是可数集.

显然A 的所有有限子集构成的集合可表示为

1

m m A ∞=,m A 为可数集,故

1

m m A ∞=作为可数个可

数集的并也是可数集.

注意:A 的全体子集构成的集合不是可数集.

7. 若A 是有非蜕化的(即左,右端点不相等的)开区间组成的不可数无穷集合,则有0δ>,使A 中无穷多个区间的长度大于δ.

证明:设Λ为一指标集,{}

;,A I I ααα=∈Λ为非蜕化的开区间, 记I α的长度为I α.

若本题的结论不成立,则n N ?∈,只有有限个12

,,n m I I I ∈Λ,使1,I n

α>

{

}

12

,,n n m A I I I =记,由于A 中的区间都是非蜕化的,,0I A I αα?∈>,

{}1

;0n n A A I I αα∞==

=>

由于n A 是有限集,故作为可数个可数集的并,A 也是可数集,这与A 是不可数无穷集矛盾. 故0,δ?>,使A 中有无穷多个区间的长度大于0δ>. 事实上,A 中有不可数无穷多个区间的长度大于δ.

8. 如果空间中的长方形(){}1

21212,,;,,I x y z a

x a b y b c z c =

<<<<<<,中的

121212,,,,,a a b b c c ()121212,,a a b b c c <<<都是有理数,则称I 为有理长方形,证明全体有

理长方形构成一可数集合.

证明:由前面题3,6中已知m

m

Q Q Q Q =??

?是可数集(Q 为有理数组成的集合)

设{};A I I =为有理长方形,任取(){}1

21212,,;,,I x y z a

x a b y b c z c A =

<<<<<<∈,

记之为()1212126

,,,,,121212,,,,,,a a b b c c I a a b b c c Q ∈. 与之对应,由于两有理长方形1212121

21212

,,,,,,,,,,,a a b b c c a a

b b

c c I I 相等

112211221122,,,,,a a a a b b b b c c c c ?======,故上述对应是单射,

故A 与6

Q 这一可数集的一个子集Q 11-对应.

反过来,01111,

,r I r Q ∈与Q 显然11-对应,故6

Q 与01111,

,r I r Q ??∈???

?

11-对应

所以6

Q 与A 的一个子集对等.

由Berrstein 定理 6A Q 对等

所以A 是可数集.

P25 习题

1. 证明[]0,1上的全体无理数构成一不可数无穷集合. 证明:记[]0,1上的全体有理数的集合为()12,,

,,

n Q r r r =.

[]0,1全体无理数的集合为R ,则[]0,1Q

R =.

由于Q 是一可数集合,R 显然是无穷集合(否则[]0,1为可数集,Q R 是可数集,得矛盾).

故从P21定理7得 []0,1Q

R R =.

所以R =?,R 为不可数无穷集合.

2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即

非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P . 则上节习题3,已知Q P 是可数集,而z Q P P ?,故z P 至多是可数集,()

z Q P P ≤, 而z P 显然为无穷集合,故z P 必为可数集.,0

z z m m P P ∞==.

任取一,0,z f P m ∈?≥有,z m f P ∈.

f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.

(){},;0z m

f P z f z ∈=至多为可数集,所以全体代数数之集

(){},0;0z m

m f P z f z ∞=∈=

也是至多可数集.

又{},1;1,2,

n N nx n ?∈+=是可数集,1

10nx x n

+=?=

. 带市数显然有无穷个,故全体代数数之集为一可数集.

3. 证明如果a 是可数基数,则2a

c =.

证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数

()()()10A

A A n n A

n n n A

???=∈??=?=???当当 {}2N A N ?∈的子集所构成的集

令()()()0.1,2A A J A x ??==

则()()0,1J A x =∈

若()()J A J B =,则()(),1,2,

A B n n n ??=?=

故A B =(否则()()0000,10A B n A n B n n ???∈??=≠=)

故2N

与()0,1的一个子集对等(()20,1N

≤)

另一方面,()0,1x ?∈.令{}

0;,x A r r x r R =≤∈ (这里0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠

x A 是0R 这一与N 对等的集合的子集.

故()0,1与0R 的全体子集组成的集合的一个子集对等(()00,1R ≤的全体子集组成集的势,即()()0,120,1N

≤≤)

也就与2N

的一个子集对等. 由Berrstein 定理()0,12N

所以2a

c =. 4. 证明如果A B c =,则,A B 中至少一个为c . 证明:E A

B c ==,故不妨认为

(){},;01,01E x y x y =<<<<,,A B 为E 的子集.

若存在x ,01x <<使得(){},;01x A E x y y ?=<<.

则由于x E c =(显然()0,1x

E )

故A c ≥,而,A E A E c ?≤=.

由Berrsrein 定理A c =.

若,01,x x x E A ?<

B ?=知

(){},;01x B E B

x y y =<<≠?

所以(),x x y B ?∈,则显然(){},;01x

x y x <<具有势c

故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕

5. 设F 是[]0,1上全体实函数所构成的集合,证明2c

F =

证明:[]0,1?的子集A ,作A 的示性函数

()10A x A

x x A ?∈?=?

??

则映射()A A

x ?规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一

个对应,且若A ,B ?[]0,1使得()()[],0,1A B x x x ??=?∈成立 则必有A B = 所以[]

0,12

与F 的一个子集对等.

反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,f

A

是f 在2R 中的图象,是2

R 中的

一个子集.

且若,f g F ∈,使f g A A =

则[]0,1t ?∈,()()

,f g t f t A A ∈= 表明[]10,1t ?∈使()()()()

11,,t f t t g t =

()()1,,t t f t g t t ?==?

故f g =.

所以F 与2

R 的全体子集所组成的集合的一个子集对等,故从[]2

0,1R

[

]

2

0,122R F ≤=

即F 与[]

0,12

的一个子集对等.

所以由Berstein 定理[]0,1

22c F ==.

第二章习题

1.证明'

0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,

恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ?.

证明:先设'

0p E ∈,则()

00,,N p E δδ?>中有无穷多个点。现在设()00,p N p δ∈,

这表明()00,p p ηρδ≤=<,

故()0,y N p δη?∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-? 故()

0,N p E δη-有无穷个点,自然有异于0p 的点()10,p N p E δη∈-

(),N p δ?.这就证明了必要性,事实上,(){}00,N p E p δη--是无穷集,故()

,N p δ中有无穷多个异于0p 的E 中的点.

反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ?>,

(),N p δ中,有异于0p 的点1p 属于E ,

记()101,p p ρδ=,则显然1δδ<

由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=< 由归纳法易知,有{}11,1,2,

,n n n n δδδδ+?=<<<和()01,n n p E

N p δ-∈,

0,1,2,

n p p n ≠=

这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'

0x E ∈

若0p 为E 的内点,则0,δ?>使()0,N p E δ?,故必要性是显然的. 若存在邻域(),N p E δ?,使()0,p N p δ∈,则从前面的证明知

()()()00,,,N p p p N p E δρδ-??,故0p 为E 的内点.

2.设1n R R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .

解:[]0,1x ?∈,由有理数的稠密性知,()()0,,,N x x x εεεε?>=-+中有无穷个1E 中的点,故'

1x E ∈,故[]'10,1E ?.

而另一方面,[]0,1x ??,必有0δ>,使()[]0,0,1N x δ=?,故'01x E ?

故[]'10,1E ?,所以[][]'10,10,1E ??. 表明[]'

10,1E =

而[][]'

11

110,10,1E E E E ===

故[]'

110,1E E ==.

3. 设2n R R =是普通的xy 平面(){}2

22,;1E x y x

y =+<,求'22,E E .

解:(){}'2

22,;1E x y x

y =

+≤

事实上,若()'

0002,p x y E =∈,则由于()2

2

,f x y x y =+是2R 上的连续函数,必存在

0δ>,使()()0,,x y N p δ?∈有()22,1f x y x y =+>.

故()

02,N p E δ=?,故0p 不是'2E 中的点矛盾.

故22

001x y +≤时(){}2

20,;1p x y x

y ∈

+≤

反过来,若()(){}2

2000,,;1p x y x y x y =∈

+≤

则0δ?>,作[]0,1上的函数()()00,f t tp p ρ==

t =

=-

则()f t 是[]0,1上的连续函数,()01f =

≤,()10f =,01δ?<<,

[]0,1t δ?∈使()f t δδ=

现在任取()0,0min 1,ηδη>?<<,使()()00,,N p N p δη?. 由上面的结论,存在01t δ<<,使()1f t δδ=<.

故0t p δ满足(1)00t p p δ≠;(2

)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈ 所以()

{}020,t p N p E p δη∈-

由习题1的结论知'

02p E ∈,所以(){}'2

22,;1E x y x

y =

+≤.

而(){}'

'222222,;1E E E E x y x y ===+≤.

4. 设2n R R =是普通的xy 平面,3E 是函数1sin

00

x y x

x ?≠?=??=?的图形上的点所作成的集

合,求'

3E . 解:设函数的图形是

()(){

}

{}'1

31,;,,sin ;0x f x x R E x x R x ????∈=∈-?? ?

????

(){}0,0.

下证(){}

'

330,;11E E δδ=

-≤≤

()'0003,p x y E =∈?存在()(){}300,,n n n p x y E x y =∈-, ()000,,n n n n n p x y p x x y y =→?→→,()0,0n p p ρ→

设()'

0003,p x y E =∈,则存在()(){}30

,,n n x y E x y ∈-

使00,n

n x

x y y →→

若00x ≠,则0n x ≠(当n 充分大) 则00

11

sin

sin n n y y x x =→= 所以()003,x y E ∈

若00x ≠,则0n x →,01

sin

n n

y y x =→,011y -≤≤ 所以()(){}

00,0,;11x y δδ∈-≤≤ 故(){}

'

330,;11E E δδ?

-≤≤

反过来:()(){

}

0003,0,;11

p x y E δδ?=∈-≤≤ ,

若00x ≠,00

1sin

y x =, 故存在0n x x ≠,使0n x ≠,0n x x → 从而0

11sin

sin n x x → 即存在()001,sin

,n n x x y x ??

→ ???

故'

03p E ∈.

若()(){}

000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()0

1

0,1,2,

2k x k k x π=

≠=+.

则()0001

sin

sin 2sin k

k x x y x π=+==, 所以()3011,sin

,,sin 0,k k

k

k x E x y x x ????

∈→ ? ??

???

,()()00,0,k x y y → ()()00,0,k x y y ≠

故'

03p E ∈

故结论成立.

5. 证明当E 是n R 中的不可数无穷点集时,'

E 不可能是有限集. 证明:记B 为E 的孤立点集,则'

E B E -= 所以()

'

E E B B E B =-?.

若能证明B 是至多可数集,则若'

E 是有限集或可列集知'

E B E ?为至多可数集,这将与

E 是n R 中的不可数无穷点集矛盾.

故只用证E 的孤立点集B 是至多可数集

p B ?∈,0p δ?>使(){},p N p E p δ=

故(),n p p

N p R δ?是B 到n R 中的一个互不相交的开球邻域组成的集的11-对应.

而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点

p A α∈,则从,A A α

βαβ=?≠则{},A αα∈Λ与Q 11-对应

故{},A αα∈Λ是至多可数集. 证毕

第二章第二节习题

1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F =,若F 为闭集,则'F F ? 所以'F F F F

F F F =?=?

故F F = 反过来,若'F F F F =?,则必有'F F ?

从而F 为闭集.

2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){}

;x f x a >都是开集,

(){};x f x a ≥都是闭集.

证明:任取常数a ,若 (){}

0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ?>, 使()(){

}

00,,;a x x N x x f x a δ∈?≥. 这表明(){

}

;x f x a >是开集.

任取常数a ,若{}(){}

;n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知

()()0lim n n f x f x a →∞

=≥

故(){}

0;x x f x a ∈≥

这表明(){}(){

}

'

;;x f x a x f x a ≥?≥. 故(){}

;x f x a ≥是闭集.

3.证明任何邻域(),N p δ都是开集,而且()(

){

}

'

'

,;,N p p p p δρδ=<(N 通常称为一闭

邻域)

证明:()0,p N p δ?∈,则()00,p p η

ρδ≤<

()0,Q N p δη?∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=

故()()0,,N p N p δηδ-?. 故(),N p δ是开集得证.

(){}(){}

'''';,,;,n p p p p p p p p ρδρδ?∈≤∈≤且n p p →

则()

(),0,,n n p p p p ρρδ→≤

()()()()

,,,,n n n p p p p p p p p ρρρρδ≤+≤+.

令n →∞得()

,0p p ρδ≤+. 故(

){

}(){}'

'

'

'

'

;,;,p p p p p p ρδ

ρδ≤?≤.

表明(

){

}

'

'

;,p p p ρδ≤是闭集. 又(

){

}

'

'

;,p p p p ρδ?∈≤ 令11k p x p k k ??

=

+- ???

, 则()()

111,1,1,1k p x p p p p p k k k k ρρρδδ????????

=+-=-≤-< ? ? ?

?????

????.

()

(

)

1

,,0k x p p p k

ρρ=

→ 故(),,k k x N p x p δ∈→

这表明(

){

}()()'

'

'

;,,,p p p N p N p ρδδδ≤??

而()(

){}

'

'

,;,N p p p p δρδ?≤

故()(

){

}(

){

}

()'

'

'

'

,;,;,,N p p p p p p p N p δρδρδδ?≤=≤?

这表明()(

){

}

'

'

,;,N p p p p δρδ=≤.

4.设?是一有限闭区间,()1,2,3,

n F n =都是?的闭子集,证明如果1n n F ∞

==?,则必有

相关主题
文本预览
相关文档 最新文档