当前位置:文档之家› 荧光分析法检测原理及应用举例

荧光分析法检测原理及应用举例

荧光分析法检测原理及应用举例
荧光分析法检测原理及应用举例

1荧光定义

某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。

2荧光分类

由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。

3光致荧光机理

某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。

3.1 分子受激发过程

在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。

在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发

态中的三重态,T2即为第二激发态中的三重态,以此类推。

分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

图1表示激发态的分子释放能量的过程 传递途径

3.2分子的辐射跃迁过程

处于不稳定激发态的分子会跃迁至能量较低的能级, 发

和发射能级跃迁图。辐射跃迁的过程会发出荧光或磷光。

荧光过程(F ):当分子在激发态跃迁至此激发态的最低振动能级后, 仍不稳 定,继续跃迁至第一激发态的最低振动能级,并伴随着振动弛豫和能转换的发生。 到达第一激发态的最低振动能级, 进而再跃迁至基态,并伴随着能量辐射,此辐 射光即为荧光。图2中F 表示荧光辐射。由于分子在较高的能级跃迁至第一激发 态的最低振动能级时,消耗能量,因此,分子跃迁至基态发出荧光,能量小于激 发态的能量。荧光的发射波长大于荧光激发光的波长。

磷光过程(P ):如果分子在较高激发态释放能量跃迁至第一激发态的最低振 动能级,并没有继续跃迁至基态的不同振动能级,而是系间跨越至此激发态的一 个三重态,从三重态跃迁至基态的各个不同振动能级,发出磷光,如图

2中的P 过程。由于系间跨越消耗一定的能量,因此磷光发出的能量要小于荧光发出的能 量,磷光

具有比荧光长的发射光谱。

3.3分子的非辐射跃迁过程

处于不同激发态的分子,并不是所有的都进行辐射跃迁,有些过程属于非辐 射跃迁,如:系间跨越、各个激发态之间的内转换与外转换、激发态内部的振动 弛豫。

系间跨越(ISC ):表示分子在激发态的单重态跃迁至此激发态相同能级的三 重态,发生的原因为电子的自旋角动量之和不等于 0,系间跨越导致发射的荧光 强度非常微弱。并不是所有的分子都会发生系间跨越, 一些物质分子中含有质量 较重的原子,或分子中含有顺磁性物质(如氧分子),容易发生系间跨越。图 2 中ISC 为系间跨越过程。辐射跃迁

荧光 磷光

释放能量,如图2为激 图1分子释放能量方式

内转换(IC ):表示分子从某一激发态的最低振动能级跃迁至下一个激发态 的最高振动能级,并释放能量的过程。由于跃迁前后的两个能级能量差别较小, 因此内转换过程释放的能量较少,图 2中IC 为内转换过程。

外转换:表示溶液中的溶质分子在运动过程中与其他物质碰撞,

碰撞过程使 得溶质分子具有的能量降低,外转换出现于溶质分子由第一激发态的最低振动能 级向基态的最高振动能级跃迁的过程,导致发射的荧光或磷光强度衰减或猝灭。

振动弛豫(VR ):表示处于激发态的溶质分子,在运动过程中与其他介质的 分子相互碰撞,将能量传递给介质分子,并跃迁至相同激发态的最低振动能级。 图2中VR 为振动弛豫过程。

4影响荧光强度的因素

4.1分子内部因素对荧光强度的影响

有机物的种类繁多,并不是所有的有机物都具有光致荧光效应。 具有发射荧 光特

性的有机物,其分子结构比较特殊,在紫外 -可见光范围内能够对激发光有 吸收作用,而且物质分子具有发射荧光的量子效率,即量子产率。

4.1.1量子产率

S2

S1

V

SO

图2分子能级跃迁示意图

荧光物质的量子产率表示其发射荧光的能力,分子的量子产率越咼,发射荧光的能力就越强。量子产率的定义为:在激发光作用下,物质发射荧光的光子数与所吸收的激发光的光子数之比O F:

式中O F——量子产率;

N F---- 发射的荧光光子数;

N A――吸收的激发光光子数。

分子在激发光的照射下,吸收光能量,跃迁至激发态,并回到基态发出荧光,分子回到基态的过程分为辐射跃迁和非辐射跃迁返回两种形式。用辐射跃迁和非

辐射跃迁的分子数来表示荧光量子产率,可以表示为:

由式2可知,荧光的量子产率与分子的非辐射过程和辐射过程有关。当辐射

过程的荧光常数越大时,荧光量子产率越大;当非辐射过程的跃迁速率越大时,荧光量子产率越小。有光致荧光的原理可知,荧光量子产率总是小于1,物质的

荧光量子产率越大,说明有更多的分子参与辐射跃迁,发出的荧光强度就越强。

4.1.2分子结构

分子在基态吸收光能量,跃迁到激发态时,返回基态的形式有三种:辐射跃迁、非辐射跃迁以及光化学反应。这三种过程中,速率常数较大的途径起主要作用。当辐射跃迁中荧光发射阶段的速率常数大于另外两种途径时,物质分子发出的荧

光强度比较大。分子发射荧光的强度与分子结构密切相关,主要体现在:

(1)分子的结构含有后共轭的双键。共轭组分越大,双键电子越容易被激发。绝大多数的荧光类物质都具有环状结构,荧光峰值与环的结构有关,环的结构越大,峰值越容易出现红移,荧光峰值也越高。当环的总数相同,但结构不同时,呈线性的环,分子的荧光峰值要大于呈非线性的。

(2)能产生荧光的物质分子结构为刚性平面结构。平面的结构有利于分子的稳定性,不易于外界环境的其他分子发生碰撞,避免了荧光猝灭。

(3)荧光物质分子的结构中,取代基团为给电子取代基。这种结构有助于荧光峰值出现红移,使得荧光强度增强。

(4)分子的跃迁发生在紫外-可见光区,即为型跃迁,这种跃迁具有较高的荧光强度。

4.2环境因素对荧光强度的影响

影响荧光强度的环境因素主要包括溶剂、PH值和温度不同时的影响以及有

序介质和测量激发光源的不同等等,具体影响及产生原因如下所述。

4.2.1溶剂性质的影响

由于溶剂分子和溶质分子间存在静电作用,并且溶质分子具有不同的偶极、极化率,在混合溶液中荧光体分子与溶剂分子间的相互作用程度不同将会造成其光谱产生很大变化,即使光谱图像发生Stokes 位移。由于不同溶剂对荧光体的光谱图有着不同的影响,所以为了能够更好的实验检测,需要针对不同的被测物质选择适当的溶剂。

4.2.2 PH 值的影响

溶液酸碱性对荧光体荧光特性的影响主要是由于氢键造成的,当被测物是具有-H键或-OH键的有机物质时,在PH值不同时,-H键或-OH键会与其他分子发生反应形成复合物从而使荧光强度发生改变进而影响物质的荧光光谱。氢键的影响有两种情况:一种是吸收光谱和荧光光谱都受影响,这是因为氢键配合物的产生是在激发之前;另一种情况是只有荧光光谱受影响,这是因为氢键配合物的产生在激发之后。

4.2.3温度的影响

通常情况下,溶液的荧光量子产率和荧光强度与温度的变化都成反比关系,这主要是由于溶液中介质的黏度的变化引起的,当温度升高时会引起黏度的减小从而造成溶液溶剂分子与周围环境发生碰撞的几率和频率变大,分子通过其他形式释放能量,这样产生的荧光效应就会变弱;随着温度的降低,溶液溶剂分子与周围环境发生碰撞的几率变小,分子能量以荧光形式释放的几率变大,此时荧光效应变强。所以在实验时,应当保持室内温度的恒定,使测量结果稳定。

4.2.4有序介质的影响

常见的有序介质有表面活性剂或者环糊精溶液等等,将其加入到溶液当中后将对物质的荧光特性产生非常明显的影响。表面活性剂两端的粒子性质截然不同,一端具有极强的亲水性,一端具有极强的厌水性,因此加入活性剂的溶液不管是水还是油性溶剂都能够降低表面张力和表面自由能,使溶质易溶于溶液。表面活性剂一般是非光活性物质,毒性小,价格便宜,实用方便。目前胶束溶液主要用来提高测定的灵敏度。环糊精与表面活性剂相似,其分子结构中存在一个亲水的外缘和一个疏水的空腔,空腔能够与许多有机物结合形成稳定性特别好的主客体包合物,使荧光强度增强,故其得到了广泛的应用。

4.2.5激发光源的影响

激发光源对荧光光谱的影响作用主要是由激发光源的波长和强度不同所造成的。由于物质对光的吸收具有选择性,当激发物质的激发波长发生细小改变时很可能引起荧光效率的巨大改变;而当激发光的能量大于某一临界值时,可能引起某些荧光物质发生的光化学反应如光解变化,化学变化一旦发生就是不可逆的,并且改变了分子的结构,所以荧光光谱也会随之改变,荧光强度随光照射时间增加而逐渐下降,尤其对于浓度非常小的溶液来说,光化学分解所造成的影响尤其严重尤其是有毒化合物发生光化学分解后的产物还是有毒的。因此,进行荧光测量时应当针对不同的被测物选择不同大小的狭缝来改变摄入的激发光强。

5荧光强度与溶液浓度的关系

朗伯-比尔定律(Beer-Lambert law),是光吸收的基本定律,也是利用光谱进行物质浓度测量的理论基础,包括朗伯关系定律和比尔关系定律。

朗伯关系定律是对于物质对光的吸收程度和吸收介质厚度之间的关系的阐述,即在激发光的波长和被测荧光体的浓度不变的情况下,光的吸收强度只与它的光程长度成正比。比尔关系定律是指在介质厚度和激发光波长保持不变时,光的吸收强度与浓度成正比。

朗伯-比尔定律具体可表示为当一束单色光照射到吸收介质表面上,在通过一定厚度的介质后,由于介质吸收了一部分光能,透射光的强度就要减弱。吸收介质的浓度愈大,介质的厚度愈大,则光强度的减弱愈显著,其数学表达式为:

t 010 cl(3)

lg(t/ 0) cl (4)

式中,A是吸光度;I t、I o为透射光和入射光强度;c为吸光物质的浓度;&为摩尔吸光系数;l 为透射光程。

溶液的荧光发射强度是由荧光物质的荧光效率、溶液的吸光程度和液层厚度共同决定的。但是朗伯-比尔定律并不适用于所有范围内浓度的测定,在特定频率特定光强的照射下,只有当溶液浓度很稀时,物质的浓度与其产生的荧光强度才近似成正比关系,可以应用下面的朗伯-比尔定律的线性表达式:

c 2.3o3 c o cl kc (5)

当& cl>.05时,则荧光强度与溶液的浓度不成线性关系,此时应该考虑幕级

数中的二次方甚至三次方等高次项。

这一现象主要是由于浓度效应造成的,而浓度效应除了受到内滤效应的影响外,还受到激发态分子与其他状态分子形成的二聚合物或复合物有关,二聚合物或复合物能够引起光谱的改变或强度的下降。

6荧光分析方法分类及优点

6.1同步荧光分析( Synchronous Fluorescence Analysis ) 与常用荧光测定方法最大的不同就是同步扫描激发和发射两个单色器的波长,由测得荧光强度信号与对应的激发(发射)波长构成光谱图。根据激发和发射波长在荧光同步检测中保持关系的不同可以将同步荧光分析分为四种不同的类型,即恒波长同步、恒能量同步、可变角(或可变波长)同

步和恒基体同步荧光法。除了较高的灵敏度外,同步荧光法的优点主要有简化谱图、窄化谱带、减少光谱重叠、提高选择性和减少散射干扰等等。

6.2三维荧光光谱( Three Dimensional Fluorescence Spectrum ,TDFS )

是一种新型的荧光分析技术,由于获取手段和视角不同,其具有不同的命名,常见的有三维荧光光谱、总发光光谱以及激发—发射矩阵和等高线光谱等等。与普通的荧光分析法的不同主要是其能够获得激发波长与发射波长同时变化时的荧光强度信息。

6.3时间分辨荧光分析( Time -resolved Fluorescence Analysis) 是指在物质受激发后

不是立即检测,而是过段时间后再荧光检测,这样就可检测出荧光寿命不同的物质,这主要是由于不同荧光物质的荧光寿命不同所造成的。利用脉冲法测量荧光寿命主要可用脉冲取样法和光子计数法两种,在适当的激发光源和检测系统中,可以得到在固定波长的荧光强度—时间曲线和在固定时间的荧光发射光谱,可以用来实现那些混合物中荧光光谱重叠严重但其荧光寿命差异明显的组分之间的辨别测定;可以消除杂质和背景荧光来提高信噪比,同时也用于溶剂弛豫时间测量和自由基的存在检测等方面。

6.4导数荧光分析方法( The Derivative Fluorescence Analysis ) 由于在室温条件下,矿物油光谱的谱带普遍较宽,在其混合物的光谱图中,导数光谱技术的引入可以很好地解决谱带具有严重的重叠现象的问题。导数光谱具有大大减小光谱干扰、增强特征光谱的精细结构的分辨能力和区分光谱的细微变化等优点,但同时也存在信噪比降低的缺点。

导数光谱在进行定量测定时,其求值方法主要有基线法、峰距法和峰零法等等。

7数据处理分析方法

7.1 主成分分析法( PCA )

是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分,依次类推。

是希望用较少的变量去解释原来数据中的大部分变量,将许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分数据中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。

7.2BP 神经网络算法

是一种按误差逆传播算法训练的多层前馈网络,BP 网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer) 和输出层(output layer) 。

7.3 逐步回归分析法

基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行 F 检验,并对已经选入的解释变量逐个进行t 检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。

8荧光法检测矿物油的可行性分析

由关于荧光产生机理的分析研究可知,荧光能否产生与物质分子的结构之间存在着密切的关系,即物质的分子结构决定着其产生的激发光谱、发射光谱以及相对应的荧光强度。结合前面内容,可知物质能否发出荧光和利用荧光来进行测量必须满足以下条件:

第一,物质能够产生荧光,这要求物质发光内部要具有光吸收的结构,在受到光照射时可以吸收光能。通常情况下,能发出荧光的有机物主要是某种有机试剂或金属离子与脂肪族有机化合物之间形成的配合物或者是芳香族化合物等,这类化合物能够发出荧光主要是由于其吸光特性因其分子的价电子的重新排列(即

跃迁)而得到了增强。

第二,较高的荧光量子产率,这是因为无法定量定性地对产率过低的荧光物质进行光谱分析。在已知的众多的有机物中,仅有一小部分具有较高的荧光产率。通过对其分子结构的分析可知,在具备下列分子结构特点时,物质才能发出强荧光。⑴具有大的共轭n键结构;(2)具有刚性的平面结构;(3)取代基团为供电子取代基;(4)具有较低的单线电子激发态S i为n型。这样的分子结构有助于产生的较高荧光量子产率的主要解释如下。

(1)一般能够发生荧光的物质的分子都含有共轭双键n键体系。共轭键的存

在能够增大荧光物质的摩尔吸光系数,使其分子更容易被激发从而发生荧光。而且在能够发出荧光的物质中大都含有芳环或杂环结构,芳环的存在是荧光发生红移的原因。

(2)当物质分子具有刚性平面结构时,分子之间的振动将会减小,使溶剂和溶质分子之间的相互作用减小,可以减少激发态分子的非辐射跃迁几率,因而增加荧光产率。

(3)取代基有给电子基团和吸电子基团两种,给电子基团如-OH、-OR、-CN 等由于增强了电子的共轭程度可使荧光增强;吸电子基团如-COOH、-NO 等可以减弱甚至猝灭荧光。所以取代基的性质不同对物质的荧光产率有着明显不同。

(4)第一电子激发态S i是n型,不含杂质原子(N、0、S等)的有机荧光体均属于这一

类,由n到n的跃迁属于电子的自旋允许跃迁,与其他跃迁类型的摩尔吸光系数相比,其摩尔吸光系数要大的多。

第三,有利的外部实验环境条件,知道不仅分子的结构能够影响物质分子荧光的产生和荧光量子产率的高低,外界工作条件如PH 值、温度、溶剂的选择等等的改变都会导致荧光体的分子结构和荧光特性的变化。

而要研究的矿物油恰恰满足以上要求,即矿物油主要是包括碳氢元素形成的烃类和非烃类构成,其中在能够产生荧光的物质中,共轭双键化合物和芳香族化合物占有主导地位,这些化合物都具有不饱和n键结构,具有很强的荧光特性。

并且针对于本文要检测研究的汽煤柴三种矿物油来说,它们本身在组成上含有的 C 原子多少就不同,即具有芳环或者杂环的个数有着明显的区别,即在激发光源相同的情况下,矿物油的荧光光谱的荧光强度及波形形状等荧光特性都是因油种的不同而有明显差异,这就是矿物油能够进行荧光测量的理论依据。

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征) 。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子: (1)形成单键的c电子;(2)形成双键的n电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (c)v(n)v( n) v(n * )v( c * ) c,冗是成键轨道,n是非键轨道, c* , n *是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含 有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。

紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的 横坐标表示吸收光的波长,用nm (纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用 A (吸光度)、T (透射比或透光率或透过率)、 1-T (吸收率)、?(吸收系数)中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置, 纵坐标为它的吸收强度。 250 A /nm 翠腔的紫外光谨图 四、紫外光 谱中常用的几个术语 1. 发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产 生吸收的基团,不论是否显示颜色 都称为发色基团。一般不饱和的基团都是发色基团( C=C C=O N=N 、三键、苯环等) 200 300

荧光分析法练习题82675

第十二章荧光分析法(药学) 一、A型题 1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。 A、荧光光度法 B、磷光光度法 C、化学发光法 D、X荧光光谱法 E、原子荧光光谱法 答案:A 2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。 A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱 B、能发射荧光的物质比较少 C、荧光波长比相应的吸收波长稍长 D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰 E、分子荧光分析线性范围更宽 答案:B 3荧光量子效率是指()。 A、荧光强度与吸收光强度之比 B、发射荧光的量子数与吸收激发光的量子数之比 C、发射荧光的分子数与物质的总分子数之比 D、激发态的分子数与基态的分子数之比 E、物质的总分子数与吸收激发光的分子数之比 答案:B 4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱

C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:C 5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:B 6.一种物质能否发出荧光主要取决于()。 A、分子结构 B、激发光的波长 C、温度 D、溶剂的极性 E、激发光的强度 答案:A 7.下列结构中荧光效率最高的物质是()。 A、苯酚 B、苯 C、硝基苯 D、苯甲酸 E、碘苯 答案:A

8.下列因素会导致荧光效率下降的有()。 A、激发光强度下降 B、溶剂极性变小 C、温度下降 D、溶剂中含有卤素离子 E、激发光强度增大 答案:D 9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。 A、激发光足够强 B、吸光系数足够大 C、试液浓度足够稀 D、仪器灵敏度足够高 E、仪器选择性足够好 答案:C 10.在测定物质的荧光强度时,荧光标准溶液的作用是()。 A、用做调整仪器的零点 B、用做参比溶液 C、用做定量标准 D、用做荧光测定的标度 E、以上都不是 答案:D 11.荧光分光光度计与分光光度计的主要区别在于()。 A、光源 B、光路 C、单色器 D、检测器

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

荧光分析法在生物领域的应用于发展

荧光分析法在生物领域的应用于发展摘要:本文对荧光分析法在检测细胞活性,测定生物样品,推断生物成虫日龄,研究生 物群落动态的应用与进展进行了综述与分析。并就其包含的不同方法进行一一介绍,展望了荧光分析法技术在生物领域中的应用前景。 关键词:荧光分析法生物领域应用发展 引言:利用某些物质被紫外光照射后所发生的能反映出该物质特性的荧光,可以进行定性或定量分析的方法。当照射停止后,如化合物的发射在10-9秒钟内停止,则称荧光超过此限度即称为磷光。特点:灵敏度更高10-10-10-12g/ml,应用不如UV广泛。SO2分子受特定光照射后处于激发态的SO2分子返回基态时发出荧光, 其荧光强度与SO2呈线性关系, 从而可测出气体浓度。当检测仪器系统确定后,荧光总光强I与SO2浓度的之间的关系可表示为:I=KC 在稳定的条件下,这些参数也随之确定,k可视为常数。因此,式I=kC 表示的紫外荧光光强I与样气的浓度C成线性关系。这是紫外荧光法进行定量检测的重要依据。 荧光色谱法相关内容 1.荧光色谱法的近期发展状况 (1)近10年来,由于微量分析的需要迅速增加,灵敏度高选择性强的荧光分析法日益受到重视。有关文献数量猛增,内容也从一般仪器及分析方法介绍发展到高精度、高灵敏度、自动化、多用途的新仪器新技术研究。荧光分析对象从以无机样品为主发展到以有机及生化样品为主,并从成分分析向化学结构、化学形式、微观分析、空间分布等状态分析发展,应用遍及各个领域。荧光光谱图册也陆续出版,美国费城Sadtler研究实验室自1974年起出版标准荧光光谱图及各专用荧光光谱图(如药物)。荧光分析法的应用范围与发射光谱法、火焰光度法、质谱法等相仿,成为一种重要的仪器分析方法。 (2)荧光分析法在纳米生物分析中的应用巨大。纳米荧光探针、纳米生物传感器等纳米生物分析材料器件的特性及其在生物分析中的应用。对发光量子点、复合型荧光纳米粒子和具有光学活性的金属纳米粒子作为生物分子的标记探针取得了成果。 2.荧光分析法基本原理分子角度 分子的激发态,单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”

荧光分析法基本概念

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,就是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱就是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要就是三种电子: (1)形成单键的σ电子;(2)形成双键的π电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致就是: (σ)<(π)<(n)<(π*)<( σ* ) σ,π就是成键轨道,n 就是非键轨道,σ* ,π* 就是反键轨道 由于电子能级间跃迁的同时总伴随有振动与转动能级间的跃迁。即电子光谱中总包含有振动能级与转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法 紫外光谱图就是由横坐标、纵坐标与吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。

纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、 (吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。 四、紫外光谱中常用的几个术语

1、发色基团与助色基团 发色基团:就是能导致化合物在紫外及可见光区产生吸收的基团,不论就是否显示颜色都称为发色基团。一般不饱与的基团都就是发色基团(C=C、C=O、N=N 、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基团通常就是由含有孤对电子的元素所组成(-NH2, -NR2, -OH , -OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。 2.红移、蓝移、增色效应与减色效应 由于有机化合物分子中引入了助色基团或其她发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。 由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、分子荧光分析法 一、荧光的产生 物质分子的能级包括一系列电子能级、振动能级与转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重

原子荧光复习题

原子荧光法复习题 一、填空: 1.原子荧光分析中,荧光类型有、、、热助线荧光和敏化原子荧光等。 答案:共振荧光、直跃线荧光、阶跃线荧光 2.原子荧光光谱仪中,目前有和两类仪器。 答案:色散系统、非色散系统 3.七十年代末,由于、及各种高效原子化器的使用,AFS技术得到了较大发展。 答案:高强度空心阴极灯、激光器 4.荧光猝灭的程度与及有关。 答案:被测元素、猝灭剂的种类 5.在原子荧光分析中,原子浓度较高时容易发生,它可使荧光信号变化和荧光谱线,从而峰值强度。 答案:自吸、变宽、减少 6.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围。答案:越宽 7.原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 8.在原子荧光分析中,石英原子化器炉温过高会使降低、增高,但较高的炉温又有利于消除干扰,所以应根据实际情况确定原子化温度。 答案:灵敏度、噪声、气相 9.在原子荧光分析中,测定灵敏度随观测高度增加而,观测高度太低时,会增加,观测高度太高时,会使和下降。 答案:降低、噪声、灵敏度、精度 10.原子荧光光谱仪中,以供电的空心阴极灯,可以使增强几十至几百倍。 答案:脉冲、谱线 11.在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 12.在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 13.在原子荧光分析中,当光电倍增管的负高压增加时,和水平同时增加,当灵敏度可以满足要求时,应尽量采用的负高压。 答案:信号、噪声、较低 14. 原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 15.石英原子化器的外屏蔽气是用以防止周围的进入,产生,以保证较高及稳定的。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

荧光分析法在生物领域应用

荧光分析法在生物领域的应用与进展 班级:姓名:学号: 摘要:本文综述了荧光分析法在生物领域的研究进展,其中包括检测细胞活性,测定生物样品,研究生物群落动态,研究蛋白质、核酸等生物大分子与药物小分子的相互作用等,并展望了荧光分析法在生物领域的应用前景。 关键词:荧光分析法研究进展应用发展前景 0.引言 分子受光子激发后,由第一电子激发单重态回到基态的任一振动能级伴随的光辐射称为分子荧光。利用某些物质被紫外光照射后所发生的能反映出该物质特性的荧光,可以进行定性或定量分析的方法。它有如下特点:灵敏度高,选择性优于吸收光谱法,试样量小,操作简便,发光检测的灵敏度高,发光参数多。正是因为这些优点,荧光分析法在生物领域内获得了广泛的应用。 1.荧光分析法的发展状况 1.1近十年发展状况 近10年来,由于微量分析的需要迅速增加,灵敏度高选择性强的荧光分析法日益受到重视。有关文献数量猛增,内容也从一般仪器及分析方法介绍发展到高精度、高灵敏度、自动化、多用途的新仪器新技术研究。荧光分析对象从以无机样品为主发展到以有机及生化样品为主,并从成分分析向化学结构、化学形式、微观分析、空间分布等状态分析发展,应用遍及各个领域。荧光分析法的应用范围与发射光谱法、火焰光度法、质谱法等相仿,成为一种重要的仪器分析方法。 1.2荧光分析法在药物分析中被广泛应用 荧光分析法以其灵敏度高、选择性好、操作简便等优点受到分析工作者的青睐,将荧光分析法应用于药物分析,已在药物有效成分分析鉴定、药物代谢动力学研究、临床药物与药效分析等方面取得长足发展,并广泛应用于生化分析、生物医学等领域的痕量分析。 常规荧光分析法最早被应用与分析抗疟疾药物奎宁,随着荧光分析法的发展,其应用范围日益扩大,被广泛用于抗菌素药物、止痛药、镇静剂、止血药等的分析。由于自身具有发射荧光特性的物质相对较少,并且受到拉曼峰和散射光等背景的干扰,常规荧光分析法在药物分析中的应用受到限制。为使荧光

荧光分析法在药物分析中的应用

荧光分析法在药物分析中的应用The Application of Fluorimetry in Pharmaceutical Analysis 摘要 药物分析主要应用在药物的质量控制、新药研究、药物代谢、体内药物分析等方面。荧光分析法以其灵敏度高、选择性好、方法简便、重现性好、取样量少、仪器设备简单且不昂贵等特点,近年来被广泛地运用于各种药物制剂和生物体液中的药物分析工作中.本文对荧光分析法在药物分析中的应用现状及其进展进行了综述。 关键词药物分析;荧光分析法 ABSTRACT Pharmaceutical analysis mainly used in the quality control, research, metabolism, and drug analysis in vivo. Fluorescence analysis method with its high sensitivity, good selectivity, simple method, equipment simple and inexpensive, in recent years is widely used in various pharmaceutical formulations and biological fluids works. In this paper, we will illustrate the progress of the fluorescence analysis and the application of the method in pharmaceutical analysis. Key word: Pharmaceutical analysis, Fluorescence analysis

浅谈荧光分析法的特点及在环境分析中的应用

荧光分析法的特点及在环境分析中的应用 摘要:论文综述了荧光分析法的特点及在环境分析中的应用。重点分析了荧光分析法的原理、特点,以及常用的荧光分析法的讨论。分析了荧光分析法在环境监测中的应用,测定范围和发展情况。 关键词:荧光分析;环境分析;应用 1.引言 环境中分析、监测的对象往往是微量、超微量的物质,有很多还具有时间性和空间性,因此对分析技术要求越来越高。荧光分析法和分光光度法以其灵敏度高、检测限低、准确性好等优点在近年来得到了迅速发展。荧光分子探针的设计合成以及荧光分析法在环境分析化学中的应用是方兴未艾的研究方向[1]。 分子荧光分析具有检测限低,灵敏度高,选择性好,取样量少,方法简捷快速等特点,是一种重要的光谱化学分析手段,其中荧光分子探针检测技术在环境分析化学中占有重要的地位[2]。因此,在对环境的分析中,荧光分析法应用非常广泛,从天然水、饮用水到废水、污水;从土壤、大气到动植物;从人的头发、骨骼、血液到内脏等各个器官,涉及到的样品和应用范围几乎无所不有[3]。 2.荧光分析法的原理和特点 2.1.荧光分析法 2.1.1荧光及荧光分析 荧光是荧光化合物在受到紫外光、电和化学等能量激发后,电子从基态跃迁到激发态,然后通过辐射衰变释放出光子而回复到基态,即产生荧光。这些物质会在极短的时间内(8-10秒)发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,所发射的光线也随之很快地消失。 荧光分析是指利用某些物质在紫外光照射下产生荧光的特性及其强度进行物质的定性和定量的分析的方法。1852年G.G.斯托克斯(G.G.Strokes)发现荧光,真正的荧光光谱测量则始于本世纪60年代。 2.1.2荧光激发光谱和发射光谱 荧光是一种光致发光现象,由于分子对光的选择性吸收,不同波长的入射光便具有不同的激发效率。如果固定荧光的发射波长不断改变激发光的波长,并记

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

第四章原子吸收光谱法与原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19 J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

荧光分析法在药物分析中的应用

荧光分析法在药物分析中的应用 【摘要】文章首先以胶束增敏荧光分析法以及同步荧光光谱法为例分析了荧光分析法在药物分析中的应用,然后分析了荧光分析法在药物分析中的应用进展,其中主要介绍了化学计量方法以及色谱-荧光联用技术这两种新型荧光分析法,然后在此基础上预测了荧光分析法未来的发展方向。 【关键词】荧光分析法;应用;药物分析;检测 药物分析是分析化学和药物化学的结合,主要分析化学原理、技术以及方法在生命科学以及药学研究中的具体应用。常见的药物分析法包括滴定分析法、重量分析法、电化学分析法、光化学分析法、以及色谱分析法等。其中光化学分析法又包括可见分光光度法、原子吸收光谱法以及荧光光谱法等。荧光分析法指的是利用物质的荧光特性来定性以及定量分析物质样品的方法,其具有选择性高、灵敏度高、检测限低以及信息量丰富等优点。由于很多有机药物分析都具有特征性的荧光光谱,因此在药物分析中得到了广泛应用,目前的主要应用方向有药物代谢动力学研究、药效分析、药物有效成分分析鉴定以及临床药理等。将荧光分析法应用到药物分析中具有很大的优越性,可以有效检测出药物的各项性质。 1.荧光分析法在药物分析中的应用 1.1胶束增敏荧光分析法 胶束增敏荧光分析法的基本原理如下:主客观分子的结构特征、表面电荷以及温度等所形成的微观环境有利于形成胶束,其降低了荧光分子非辐射过程的速率,但是速度常数不会发生变化,因此量子效率就会随之增加,客体分子吸附、穿入以及包络在胶束外,限制其行动。因此,客体分子的摩尔光系数以及有效吸光面积都会增加,激发态获得保护,荧光增强。胶束增敏荧光分析法利用这一点让荧光分子和表面活性剂在溶液中缔合,然后利用专属性荧光基团以及溶液化学等方法来改进荧光法专属性以及检测精度的分析法,具有操作简便、灵敏度高以及选择性好等优点,主要用来测定药物中氟罗沙星的含量。 1.2同步荧光光谱法 同步荧光法按照扫描方式的不同可以分为可变角法、恒能量法、恒基本法和横波长法,本文主要以恒波长法为例进行分析。 恒波长同步荧光分析法指的是在扫描过程中保持发射波长和激发波长固定间距的分析方法。该方法的使用需要注意波长间距△λ的选择,因为它会直接影响到荧光光谱的宽带、形状以及信号强度,继而对药物分析的结果造成影响。该方法主要用于测定多组分多环芳烃,这是因为多环芳烃的性质比较相似,各种化合物的发射和激发光谱会出现严重的光谱重叠现象,使用经典荧光法很难将混合物区分开来。而恒波长同步荧光分析法具有灵敏度高、干扰少等优点,用来测定

原子荧光光谱仪的构造原理

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。 原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有: 共振荧光 处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与激发光源辐射相同波长的荧光,这种荧光称为共振荧光。 直跃线荧光

当处于基态的价电子受激跃迁至高能态(E2),处于高能态的激发态电子在跃迁到低能态(E1)(但不是基态)所发射出的荧光被称为直跃线。 阶跃线荧光 当价电子从基态跃迁至高能态(E2)后, 由于受激碰撞损失部分能量而降至较低的能态(E1)。从较低能态(E1)回到基态(E0)时所发出的荧光称为阶跃线荧光。 热助阶跃线荧光

基态原子通过吸收光辐射跃迁至高能态(E2), 处于高能态的价电子在热能的作用下进一步激发, 电子跃迁至与能级E2相近的更高能态E3。当去激发至低能态(E1)(不是基态)时所发出的次级光被称为热助阶跃线荧光. 敏化荧光 当受激的第一种原子与第二种原子发生非弹性碰撞时, 可能把能量传给第二种原子, 从而使第二个原子被激发, 受激的第二种原子去激发过程中所产生的荧光叫敏化荧光.

原子吸收和原子荧光结构类似,也可以分成四部分:激发光源、原子化器、光学系统和检测器。

1、激发光源: 可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便,寿命长,能用于多元素同时分析,但检出限较差。锐线光源辐射强度高,稳定,可得到更好的检出限。 空心阴极灯-工作原理 空心阴极灯是一种特殊的低压放电现象,在阴阳两极之间加以300~500V的电压,这样两极之间形成一个电场,电子在电场中运动,并与周围充入的惰性气体分子发生碰撞, 使这些惰性气体电离。气体中的正离子高速移向阴极,阴极在高速离子碰撞的过程中溅射出阴极元素的基态原子,这些基态原子与周围的的离子发生碰撞被激发到激发态,这些被激发的高能态原子在返回基态的过程中会发射出该元素的特征谱线 . 空心阴极灯–特点 ?灯结构简单、空心阴极灯制作工艺成熟; ?工作性能稳定,寿命一般可以大于3000mA?h ,发光稳定性1小时漂移在±2%以内发射强度基本可以满足常规分析要求; ?对仪器的光源部分的电源无特别要求,也不需要其他辅助设施; ?价格便宜.

激发光谱与发射光谱原理及应用-学生讲义

@ 激发光谱与发射光谱原理及应用 (一)实验目的与要求 目的:1、了解激发光谱与发射光谱在物质定性及定量分析中的原理和方法 2、学习荧光光度计的使用方法 要求:1、掌握激发光谱与发射光谱测定的原理; 2、理解激发光谱与发射光谱在物质定性及定量分析中的基本应用; 3、了解荧光光光度计的基本组成,各部件的作用; 4、学习利用Origin软件处理实验数据。 、 (二)实验原理 利用某些物质受光照射时所发生的荧光的特性和强度,进行物质的定性分析或定量分析的方法,称为荧光光谱分析。当物质吸收了特征频率的光子,就由原来的基态能级跃迁至电子激发态的各个不同振动能级。激发态分子经与周围分子撞击而消耗了部分能量,迅速下降至第一电子激发态的最低振动能级,并停留约10-9秒之后,直接以光的形式释放出多余的能量,下降至电子基态的各个不同振动能级,此时所发射的光即是荧光。产生荧光的第一个必要条件是该物质的分子必须具有能吸收激发光的结构,通常是共轭双键结构;第二个条件是该分子必须具有一定程度的荧光效率,即荧光物质吸光后所发射的荧光量子数与吸收的激发光的量子数的比值。使激发光的波长和强度保持不变,而让荧光物质所发生的荧光通过发射单色器照射于检测器上,调节发射单色器至各种不同波长处,由检测器测出相应的荧光强度,然后以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱。荧光发射光谱反映物质下能级的信息。让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标,所绘制的图即为荧光激发光谱,又称激发光谱。荧光激发光谱反映物质上能级的信息。 紫外-可见光区荧光的产生,是由第一电子激发态的最低振动能级跃迁至电子基态的各个不同振动能级所致,而与荧光物质分子被激发至哪一个能级无关。因此,荧光光谱的形状与激发光的波长无关。

原子荧光的最基本原理

原子荧光的最基本原理 上一篇/ 下一篇 2008-11-21 11:26:52 / 个人分类:原子光谱 查看( 83 ) / 评论( 2 ) / 评分( 0 / 0 ) 原子荧光光谱的产生 气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。 原子荧光的类型 原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。图为原子荧光产生的过程。 其中,对(a)~(d)的详解见下表。 (a) (b) (c) (d) A 起源于基态的共振荧光起源于基态正常阶跃荧光起源于亚稳态 B 热助共振荧光起源于亚稳态热助阶跃荧光起源于基态 ⑴共振荧光 气态原子吸收共振线被激发后,再发射与原吸收线波长相同的荧光即是共振荧光。它的特点是激发线与荧光线的高低能级相同,其产生过程见图中之A。如锌原子吸收213.86nm 的光,它发射荧光的波长也为213.861 nm。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。见图(a)中之B。 ⑵非共振荧光 当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。 (i)直跃线荧光 激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光,见图(b)。由于荧光的能级间隔小于激发线的能级间隔,所以荧光的波长大于激发线的波长。如铅原子吸收283.31nm的光,而发射405.78nm的荧光。它是激发线和荧光线具有相同的高能级,而低能级不同。如果荧光线激发能大于荧光能,即荧光线的波长大于激发线的波长称为Stokes

原子荧光光谱的研究及应用进展

Advances in Analytical Chemistry 分析化学进展, 2018, 8(3), 137-145 Published Online August 2018 in Hans. https://www.doczj.com/doc/6016657084.html,/journal/aac https://https://www.doczj.com/doc/6016657084.html,/10.12677/aac.2018.83017 Advances in Research and Application of Atomic Fluorescence Spectrometry Yue Sun College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu Sichuan Received: Jul. 21st, 2018; accepted: Aug. 9th, 2018; published: Aug. 16th, 2018 Abstract Atomic fluorescence spectrometry has the advantages of high sensitivity, low detection limit, sim-ple spectral line, wide linear range and simultaneous determination of multiple elements. In this paper, the research progress of atomic fluorescence spectrometry is described in detail from the aspects of development history, instrument research and technology research. The application progress of atomic fluorescence spectrometry in the field of food safety and environmental detec-tion in recent years is summarized briefly. Additionally, the deficiencies and future development trend is discussed. Keywords Atomic Fluorescence Spectrometry, Research Progress, Application 原子荧光光谱的研究及应用进展 孙悦 西南石油大学化学化工学院,四川成都 收稿日期:2018年7月21日;录用日期:2018年8月9日;发布日期:2018年8月16日 摘要 原子荧光光谱法具有灵敏度高、检出限低、谱线简单、线性范围宽、多元素同时测定等诸多优点,是一种性能优异的痕量分析检测技术。本文从发展历史、仪器研究、技术研究等不同方面具体阐述了原子荧光光谱法的研究进展,简要梳理了近年来该方法在食品安全和环境检测领域的应用情况,并对原子荧光光谱法的不足之处和未来发展趋势做了简要探讨。

X射线荧光光谱仪原理及主要用途

X荧光光谱仪主要使用领域 X荧光光谱仪原理 仪器是较新型X射线荧光光谱仪,具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分析时间短。薄膜分析软件FP-MULT1能作镀层分析,薄膜分析。测量样品的最大尺寸要求为直径51mm,高40mm. 仪器类别:0303040903 /仪器仪表/成份分析仪器/荧光光度计指标信息:1.发射源是Rh靶X光管,最大电流125mA,电压60kV,最大功率3kW2.仪器在真空条件下工作,真空度<13pascals 3.5块分析晶体,可以分析元素周期表F~U 之间所有元素,含量范围是ppm~100%4.分析软件是Philips公司(现为PANalytical)最新版软件,既可作半定量,也可定量分析。精密度:在计算率 N=1483870时,RSD=0.08%稳定性计算率Nmax=6134524,Nmin=6115920,N平均=6125704,相对误差为0.03% 附件信息:循环水致冷单元,计算机P10气体瓶空气压缩机 分析对象主要有各种磁性材料(NdFeB、SmCo合金、FeTbDy)、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,以及各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,结果接近于定量分析的准确度。X荧光分析快速,某些样品当天就可以得到分析结果。适合课题研究和生产监控。 X射线荧光光谱仪分为波长色散、能量色散、非色散X荧光、全反射X荧光。 波长色散X射线荧光光谱采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相

相关主题
文本预览
相关文档 最新文档