当前位置:文档之家› 第三章 塑性变形的基本规律

第三章 塑性变形的基本规律

第三章  塑性变形的基本规律
第三章  塑性变形的基本规律

第三章塑性变形的基本规律

1、体积不变定律的概念

在金属压力加工的理论研究和实际计算中,通常认为变形前后金属的体积保持不变,它是变形计算的基本依据之一。若设变形前金属的体积为V0,变形后的体积为V1,则有:

V0 = V1 =常数

2、最小阻力定律的内容

实践证明:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将是沿着阻力最小的方向移动,这就是通常所讲的最小阻力定律的定义。

3、弹塑性共存定律的概念和实际意义

A 概念

我们把金属塑性变形在加工中一定会有弹性变形存在的情况,称之为弹塑性共存定律。

B 实际意义

弹塑性共存定律在轧钢中具有很重要的实际意义,可用以指导我们生产的实践。

(1)用以选择工具

(2)由于弹塑性共存,轧件的轧后高度总比预先设计的尺寸要大

4、极限状态理论

A 极限状态的类型

第一种极限状态是屈服,第二种极限状态是破坏。屈服是金属由弹性变形转变为塑性变形的转折点,是塑性变形的开端。破坏则是金属塑性变形过程的终结。

B 金属屈服极限σs与金属屈服的概念

(1)金属屈服极限σs的概念:它是在特定条件下测得的,即是在室温下,慢速单向拉伸或单向压缩(线应力状态)时测定的金属发生屈服时的单向拉伸或单向压缩的应力值。

(2)金属的屈服:金属发生塑性变形时所需的外力大,则我们说金属难屈服,它的变形抗力就大,即不容易变形;金属发生塑性变形时所需的外力小,则我们说金属容易屈服,它的变形抗力就小,即容易变形。

C 在线应力状态下由拉伸实验建立的屈服条件

拉伸一试样,当主应力σ1的数值达到该材料的屈服极限(σ1=σs )时,试样开始发生塑性变形。

D 极限状态理论

它是研究弹性变形终了、塑性变形即将开始时主应力与屈服极限间关系的理论。

E 主应力差理论(Tresca 屈服条件)

Tresca 屈服条件为: (3-6) F 能量理论(Mises 屈服条件)

其屈服条件表达式为:

(3-7)

Mises 屈服条件的简化形式:

(3-8)

式中的m=1~1.155。

s

m σσσ=-31s σσσσσσσ=-+-+-21323222121)()()(s

σσσ=-31

3塑性变形的基本定律

3 塑性变形的基本定律 3.1 体积不变定律及应用 一、 体积不变定律内容 在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。若设变形前金属的体积为0V ,变形后的体积为1V ,则有: 0V =1V =常数 实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于: (1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。 (2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。例如,冷加工时金属的比重约减少0.1~0.2%。不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。 二、 体积不变定律的应用 1、确定轧制后轧件的尺寸 设矩形坯料的高、宽、长分别为L B H 、、,轧制以后的轧件的高、宽、长分别为l b h 、、(如图3-1所示),根据体积不变条件,则 HBL V =1 hbl V =2 即 hbl HBL = 在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即 图3-1 矩形断面工件加工前后的尺寸

hb HBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少? 解: 坯料体积 V 0=120×120×3000=4.32×107mm 3 50×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3 由体积不变定律可得 4.32×107=480×103×l 轧后长度 l ≈90m 2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。例题2:某轨梁轧机上轧制50Kg/m 重轨,其理论横截面积为6580mm 2,孔型设计时选定的钢坯断面尺寸为325×280mm 2,要求一根钢坯轧成三根定尺为25m 长的重轨,计算合理的钢坯长度应为多少? 根据生产实践经验,选择加热时的烧损率为2%,轧制后切头、切尾及重轨加工余量共长 1.9m ,根据标准选定由于钢坯断面的圆角损失的体积为2%。由此可得轧后轧件长度应为 =l (3×25+1.9)×103=76900mm 由体积不变定律可得 325×280L (1-2%)(1-2%)=76900×6580 由此可得钢坯长度 L = mm 567398 .02803256580769002=??? 故选择钢坯长度为5.7m 。 3、在连轧生产中,为了保证每架轧机之间不产生堆钢和拉钢,则必须使单位时间内金属从每架轧机间流过的体积保持相等,即 n n v F v F v F ===ΛΛ2211 式中 n F F F ΛΛ21、为每架轧机上轧件出口的断面积, n v v v ΛΛ21、为各架轧机上轧件的出口速度,它比轧辊的线速度稍大,但可看作近似相等。 如果轧制时n F F F ΛΛ21、为已知,只要知道其中某一架轧辊的速度(连轧时,成品机架的轧辊线速度是已知的),则其余的转数均可一一求出。 3.2 最小阻力定律及其应用

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。答案:晶粒长大 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观) 8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。答案: 269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性________,韧性________。答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应________纤维方向。答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒长大 16、所谓冷加工是指金属在________以下进行的塑性变形。 答案:再结晶温度

弹性理论与塑性理论

弹性理论与塑性理论,弹性材料与塑性材料浅析 经过一学期,弹性与塑性力学这门课程的学习结束了。学习完弹性与塑性力学以后,我对弹性力学与塑性力学,弹性材料与塑性材料的区别与联系的认识进一步加深了。 首先谈一下有关弹性理论的基本知识。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法,就可求解。 数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变截面轴扭转,回转体轴对称变形等方面。 在近代,经典的弹性理论得到了新的发展。例如,把切应力的成对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 弹性力学的基本假定如下: 1.假定物体是连续的,就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。 2.假定物体是完全弹性的,就是假定物体完全服从胡克定律——应变与引起该应变的那个应力分量成比例。 3.假定物体是均匀的,就是整个物体是由同一材料组成的。 4.假定物体是各向同性的,就是物体内一点的弹性在所有各个方向都相同。5.假定位移和形变是微小的。 以下是塑性理论的基本知识:

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

第三章 金属的塑性变形与再结晶

第三章 金属的塑性变形与再结晶 塑性变形是塑性加工(如锻造、轧制、挤压、拉拔、冲压等)的基础。大多数钢和有色金属及其合金都有一定的塑性,因此它们均可在热态或冷态下进行塑性加工。 塑性变形不仅可使金属获得一定形状和尺寸的零件、毛坯或型材,而且还会引起金属内部组织与结构的变化,使铸态金属的组织与性能得到改善。因此,研究塑性变形过程中的组织、结构与性能的变化规律,对改进金属材料加工工艺,提高产品质量和合理使用金属材料都具有重要意义。 第一节 金属的塑性变形 一、单晶体的塑性变形 单晶体塑性变形的基本方式是滑移和孪生。 1畅滑移 滑移是指在切应力作用下,晶体的一部分相对于另一部分沿一定晶面(即滑移面)发生相对的滑动。 滑移是金属塑性变形的主要方式。 图3-1 单晶体滑移示意图单晶体受拉伸时,外力F 作用在滑移面上的应力f 可分解为正 应力σ和切应力τ,如图3-1所示。正应力只使晶体产生弹性伸 长,并在超过原子间结合力时将晶体拉断。切应力则使晶体产生弹 性歪扭,并在超过滑移抗力时引起滑移面两侧的晶体发生相对滑 移。 图3-2所示为单晶体在切应力作用下的变形情况。单晶体未 受到外力作用时,原子处于平衡位置(图3-2a)。当切应力较小 时,晶格发生弹性歪扭(图3-2b),若此时去除外力,则切应力消 失,晶格弹性歪扭也随之消失,晶体恢复到原始状态,即产生弹性变 形;若切应力继续增大到超过原子间的结合力,则在某个晶面两侧 的原子将发生相对滑移,滑移的距离为原子间距的整数倍(图3-2c)。此时如果使切应力消失,晶格歪扭可以恢复,但已经滑移的原子不能回复到变形前的位置,即产生塑性变形(图3-2d);如果切应力继续增大,其他晶面上的原子也产生滑移,从而使晶体塑性变形继续下去。许多晶面上都发生滑移后就形成了单晶体的整体塑性变形。 一般,在各种晶体中,滑移并不是沿着任意的晶面和晶向发生的,而总是沿晶体中原子排列最紧密的晶面和该晶面上原子排列最紧密的晶向进行的。这是因为最密晶面间的面间距和最密晶向间的原子间距最大,因而原子结合力最弱,故在较小切应力作用下便能引起它们之间的相对 3 3

(完整word版)第六章 塑性变形习题集-附部分答案

1.简单立方晶体(100)面有1 个[]010=b 的刃位错 (a)在(001)面有1 个b =[010]的刃位错和它相截,相截后2 个位错产生扭折结还是割阶? (b)在(001)面有1 个b =[100]的螺位错和它相截,相截后2 个位错产生扭折还是割阶? 解:两位错相割后,在位错留下一个大小和方向与对方位错的柏氏矢量相同的一小段位错,如果这小段位错在原位错的滑移面上,则它是扭折;否则是割阶。为了讨论方便,设(100)面上[]010=b 的刃位错为A 位错,(001)面上b =[010]的刃位错为B 位错,(001)面上b =[100]的螺位错为C 位错。 (a) A 位错与B 位错相割后,A 位错产生方向为[010]的小段位错,A 位错的滑移面是(100),[010]?[100]=0,即小段位错是在A 位错的滑移面上,所以它是扭折;而在B 位错产生方向为[ 010 ]的小段位错,B 位错的滑移面是(001), [010]?[001]=0 ,即小段位错在B 位错的滑移面上,所以它是扭折。 (b)A 位错与C 位错相割后,A 位错产生方向为[100]的小段位错,A 位错的滑移面是(100),[100]?[100]≠0 ,即小段位错不在A 位错的滑移面上,所以它是割阶;而在C 位错产生方向为[]010的小段位错,C 位错的滑移面是(001),[] []0001010=?,即小段位错在B 位错的滑移面上,所以它是扭折。 2.下图表示在同一直线上有柏氏矢量相同的2 个同号刃位错AB 和CD ,距离为x ,他们作F-R 源开动。 (a)画出这2 个F-R 源增殖时的逐步过程,二者发生交互作用时,会发生什么情况? (b)若2 位错是异号位错时,情况又会怎样? 解:(a)两个位错是同号,当位错源开动时,两个位错向同一方向拱弯,如下图(b)所示。在外力作用下,位错继续拱弯,在相邻的位错段靠近,它们是反号的,互相吸引,如上图(c)中的P 处所示。两段反号位错相吸对消后,原来两个位错连接一起,即形成AD 位错,余下一段位错,即BC 位错,这段位错和原来的位错反号,如上图(d)所示。在外力作用下,BC 位错也作位错源开动,但它的拱弯方向与原来的相反,如上图(e)所示。两根位错继续拱弯在如图(f)的O 及O'处再相遇,因为在相遇处它们是反号的,所以相吸对消。最后,放出一个大位错环,并回复原来的AB 和CD 两段位错,如上图(g)所示。这个过程不断重复增值位错。

弹性变形与塑性变形

一、弹性与塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”与“塑性(P lasticity)”就是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形就是否可恢复 ........:弹性变形就是可以完全恢复的,即弹性变形过程就是一个可逆的过程;塑性变形则就是不可恢复的,塑性变形过程就是一个不可逆的过程。 2)应力与应变之间就是否一一对应 ..............:在弹性阶段,应力与应变之间存在一一对应的单值函数关系,而且通常还假设就是线性关系;在塑性阶段,应力与应变之间通常不存在一一对应的关系,而且就是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性与韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学就是固体力学的一个分支学科,它由弹性理论与塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

弹性变形与塑性变形

一、弹性和塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形是否可恢复 .......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性 变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应 .............:在弹性阶段,应力和应变之间存在一一对应的单值函数关 系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

(完整版)弹性与塑性力学第2,3章习题答案

第二章 2.1(曾海斌)物体上某点的应力张量σij 为σij =?? ?? ??????1003100031001000000 (应力单位) 求出: (a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位; (c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。 解答: (a)利用式(2.26)计算应力矢量的分量n T i ,得 n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 n T 3=σ3j n j =157.31 所以,应力矢量n T 的大小为 =n T [(n T 1 )2 +(n T 2 )2 +(n T 3)2]1/2=314.62 (b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0 其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。 从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3 其中得,σ1=400、σ2=σ3=0 是特征方程的根。 将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0) 注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。 (d )由式(2.96),可算 σotc =1/3(0+100+300)=133.3 τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56 (e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =200

塑性力学和弹性力学的区别和联系

塑性力学与弹性力学的区别与联系固体力学就是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正就是固体力学中的两个重要分支。 弹性力学就是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)与位移的分布,以及与之相关的原理、理论与方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性与塑性性质,当外载较小时,材料呈现为弹性的或基本上就是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性与塑性,只就是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体就是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性与塑性性质,特别就是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料与结构在外部干扰下力学响应的基本原理、理论与方法。以及相应的“破坏”准则或失效难则。 塑性力学与弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;与流变学的区别在于,塑性力学考虑的永久变形只与应力与应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 一、基本假定 1、弹性力学: (1)假设物体就是连续的。就就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体就是线弹性的。就就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体就是均匀的。就就是说整个物体就是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量与泊松比才不随位置坐标而变。 (4)假设物体就是各向同性的。也就就是物体内每一点各个不同方向的物理性质与机械性质都就是相同的。 2、塑性力学: (1)材料就是连续的,均匀的。 (2)平均正应力(静水压力)不影响屈服条件与加载条件。 (3)体积的变化就是弹性的。 (4)不考虑时间因素对材料性质的影响。 二、基本内容 (一)弹性力学 弹性力学问题的求解主要就是基于以下几个理论基础。 1、Newton定律 弹性力学就是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。质点力学与刚体力学就是从Newton定律演绎出来的,而弹性力学不同于理论力学,它还有新假设与新定律。

第五章 金属及合金的塑性变形 -答案

第五章金属及合金的塑性变形与断裂一名词解释 固溶强化,应变时效,孪生,临界分切应力,变形织构 固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象; 应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况; 孪生:金属塑性变形的重要方式。晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。形成孪晶的过程称为孪生; 临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小

分切应力; 变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。 二填空题 1.从刃型位错的结构模型分析,滑移的 移面为{111},滑移系方向为<110>,构成12 个滑移系。P166. 3. 加工硬化现象是指随变形度的增 大,金属强度和硬度显著 提高而塑性和韧性显著下降的现象 ,加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的

根本原因是位错密度提高,变形抗 力增大。 4.影响多晶体塑性变形的两个主要因素是晶界、晶格位向差。 5.金属塑性变形的基本方式是滑移和孪生,冷变形后金属的 强度增大,塑性降低。6.常温下使用的金属材料以细小晶粒为好,而高温下使用的金属材 料以粗一些晶粒为好。对于在高温下工作的金属材料,晶粒应粗一些。因为在高温下原子沿晶界 的扩散比晶内快,晶界对变形的阻 力大为减弱而致 7.内应力可分为宏观内应力、微观内应力、点阵畸变三种。 三判断题 1.晶体滑移所需的临界分切应力实测值比理论值小得多。(√) 2 在体心立方晶格中,滑移面为{111}×6,滑移方向为〈110〉×2,所以其滑

弹塑性力学试题

考试科目 :弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+- =+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

轧制变形基本原理 (1)

1 第四章 轧制变形基本原理 金属塑性加工是利用金属能够产生永久变形的能力,使其在外力作用下进行塑性成型的一种金属加工技术,也常叫金属压力加工。基本加工变形方式可以分为:锻造、轧制、挤压、分为:热加工、冷加工、温加工。 金属塑性加工的优点 (1)因无废屑,可以节约大量的金属,成材率较高; (2)可改善金属的内部组织和与之相关联的性能; (3)生产率高,适于大量生产。 第一节 轧钢的分类 轧钢是利用金属的塑性使金属在两个旋转的轧辊之间受到压缩产生塑性变形,从而得到具有一定形状、尺寸和性能的钢材的加工过程。被轧制的金属叫轧件;使轧件实现塑性变形的机械设备叫轧钢机;轧制后的成品叫钢材。 一、根据轧件纵轴线与轧辊轴线的相对位置分类 轧制可分为横轧、纵轧和斜轧。如图1、2、3。 横轧:轧辊转动方向相同,轧件的纵向轴线与轧辊 的纵向轴线平行或成一定锥角,轧制时轧件随着轧辊作 相应的转动。它主要用来轧制生产回转体轧件,如变断 面轴坯、齿轮坯等。 纵轧:轧辊的转动方向相反,轧件的纵向轴线与轧 辊的水平轴线在水平面上的投影相互垂直,轧制后的轧 件不仅断面减小、形状改变,长度亦有较大的增长。它 是轧钢生产中应用最广泛的一种轧制方法,如各种型材和板材的轧制。 斜轧:轧辊转动方向相同,其轴线与轧件纵向轴线在水平面上的投影相互平行,但在垂直面上的投影各与轧件纵轴成一交角,因而轧制时轧件既旋转,又前进,作螺旋运动。它主要用来生产管材和回转体型材。 图1 横轧简图 1—轧辊;2—轧件;3—支撑辊

二、根据轧制温度不同又可分为热轧和冷轧。 所有的固态金属和合金都是晶体。温度和加工变形程度对金属的晶体组织结构及性能都有不可忽视的影响。 金属在常温下的加工变形过程中,其内部晶体发生变形和压碎,而引起金属的强度、硬度和脆性升高,塑性和韧性下降的现象,叫做金属的加工硬化。把一根金属丝固定于某一点在手中来回弯曲多次后,钢丝就会变硬、变脆进而断裂,这就是加工硬化现象的一个例子。 经加工变形后的金属,随着温度的升高,其晶体组织又重新改组为新晶粒的现象,称为金属的再结晶。再结晶无晶体类型的变化。金属进行再结晶的最低温度称为金属的再结晶温度。金属的再结晶可以消除在加工变形过程中产生的加工硬化,恢复其加工变形前的塑性和韧性。金属的再结晶温度的高低,主要受金属材质和变形程度的影响。 将金属加热到再结晶温度以上进行轧制叫热轧。热轧的优点是可以消除加工硬化,能使金属的硬度、强度、脆性降低,塑性、韧性增加,而易于加工。这是因为金属在再结晶温度以上产生塑性变形(即产生加工硬化)的同时,产生了非常完善的再结晶。但在高温下钢件表面易生成氧化铁皮,使产品表面粗糙度增大,尺寸不够精确。 金属在再结晶温度以下进行的轧制叫冷轧。冷轧的优点与热轧相反。 第三节 金属塑性变形的力学条件 一、 内力与外力 材料(入轧件)由于外力(如轧辊的轧制力)的作用,其内部产生的抵抗外力的抗力,叫内力。材料单位面积上的内力叫应力。当应力分布均匀时,或者应力虽不均匀分布,但为例计算简便时: σ=P/F 式中:σ——平均应力,Mpa ; F ——材料的截面积, 图2 纵轧示意图 图3 斜轧简图 1—轧辊;2—坯料;3—毛管;4—顶头;5—顶杆

塑性力学和弹性力学的区别和联系

塑性力学和弹性力学的区别和联系固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 一、基本假定 1、弹性力学: (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 2、塑性力学: (1)材料是连续的,均匀的。 (2)平均正应力(静水压力)不影响屈服条件和加载条件。 (3)体积的变化是弹性的。 (4)不考虑时间因素对材料性质的影响。 二、基本内容 (一)弹性力学 弹性力学问题的求解主要是基于以下几个理论基础。 1.Newton定律 弹性力学是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。质点力学和刚体力学是从Newton定律演绎出来的,而弹性力学不同

弹性变形与塑性变形

、弹性和塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段: 当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。弹性(Elasticity)”和塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:1)变形是否可恢复: 弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性....... 变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应: 在弹性阶段,应力和应变之间存在一一对应的单值函数关............. 系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存 在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。 通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型

弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型”。在弹性理论中,实际固体即被抽象为所谓的“ 理想弹性体”,它是一个近似于真实固体的简化模型。“理想弹性”的特征是: 在一定的温度下,应力和应变之间存在一一对应的关系,而且与加载过程无关,与时间无关。 在塑性理论中,由于实际固体材料在塑性阶段的应力-应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类,即理想塑性模型和强化模型。 1.理想塑性模型 在单向应力状态下,理想塑性模型的特征如图 0.1 所示。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。当所研究的问题具有明显的弹性变形时,常采用理想弹塑性模型。 在总变形较大、而且弹性变形部分远小于塑性变形部分时,为简化计算,常常忽略弹性变形部分,而采用理想刚塑性模型;另外,在计算结构塑性极限荷载时,也常采用理想刚塑性模型。 2.强化模型 在单向应力状态下,强化模型的特征如图 0.2 所示。强化模型又分为线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型三种。

多晶体的塑性变形

第三节多晶体的塑性变形 多晶体的塑性变形也是以滑移和孪生为其塑性变形的基本方式 多晶体塑性变形区别于单晶体塑性变形的原因: 许多形状大小取向各不相同的单晶体晶粒组成 多晶体塑性变形区别于单晶体塑性变形的特点: 1.多晶体的塑性变形受到晶界的阻碍和不同位向晶粒的影响 2.任何一个晶粒的塑性变形都不是处于独立的自由变形状态,需要周围晶粒配合,才能保证 a)晶粒之间的结合 b)整个物体的连续性 多晶体的塑性变形要比单晶体的塑性变形复杂的多 多晶体的塑性变形过程 一, 多晶体各晶粒变形的不同时性 1.原因: 晶粒位向不同滑移系取向不同滑移系的分切应力值不同 2.具体: 位向最有利的晶粒,取向因子最大的滑移系最先发生塑性变形,此时位向不利的晶粒仍然处于弹性变形状态 此时虽然金属的塑性变形已经开始但并没有造成明显的宏观塑性变形效果晶界处形成位错平面塞积群:

1.位向有利的晶粒发生塑性变形,滑移面上的位错源开动,位错环沿滑移面运动 2.位错环不能越过晶界发展到相邻晶粒中去: 因为晶粒位向不同滑移系不同 3.因此位错在晶界处受阻形成位错平面塞积群 相邻晶粒开始塑性变形 1.位错塞积群在附近区域造成很大的应力集中 2.外加载荷增加应力集中增加 3.两者相互叠加后在相邻晶粒某些滑移面上的分切应力达到临界分切应力,于是位错源开动开始塑性变形 相邻晶粒塑性变形特点: 1.相邻晶粒的变形 a)不能是孤立的和任意的 b)必须与周围晶粒协调配合 c)否则难以变形 d)否则不能保持晶粒之间的连续性造成孔隙而使材料破裂 2.相邻晶粒不只是在位向最有利的滑移系中进行滑移,在取向并非有利的滑移系中也要进行滑移 3.也就是说为了协调已塑性变形晶粒的形状,相邻晶粒必须进行多滑移 4.根据理论计算,每个晶粒至少需要5个独立的滑移系开动 在外加应力和应力集中的作用下越来越多的晶粒参与塑性变形: 宏观塑性变形效果:

弹塑性力学基本理论及应用刘士光著

弹塑性力学基本理论及应用 刘士光著 华中科技大学

第一章绪论 1.1弹塑性力学的任务 固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效准则。 以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只 不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上,当结构内的局部材料进入塑性变形阶段,在继续增加外载荷时,结构的内力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布,这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大约变形,

多晶体的塑性变形

多晶体的塑性变形 塑性变形过程 由于各晶粒间存在位相差,在外力作用下,位向最有利的少数晶粒开始发生塑形变形,随后这些已变形晶粒中的平面位错群在晶界塞积导致应力集中,这一应力集中和外力叠加,使相邻晶粒的位错源开动,驱动相邻晶粒进行协调的(多滑移)塑形变形。 多晶体塑性变形特点: ①各晶粒的变形不是同时进行的; ②为了协调先发生塑性变形的晶粒形状的改变,相邻各晶粒必须进行多滑移,其中包括取向并不有利的滑移系上同时进行滑移,这样才能保证其形状作各种相应地改变.根据理论计算,每个晶粒至少需要5个独立的滑移系启动; ③受晶界及各晶粒位向不同的影响,各晶粒间、晶粒内的变形是不均匀的。 细晶强化 ①由于晶界的存在,使变形晶粒中的位错在晶界处受阻,滑移带终止于晶界; ②由于各晶粒间存在位相差,为了协调变形,要求每个晶粒必须进行多滑移,而滑移时必然要发生位错的相互交割.这两者均将大大提高金属材料的强度.显然,晶界越多,即晶粒越细小,则其强化效果越显著。这种用细化晶粒增加晶界提高金属强度的方法称为细晶强化。 多晶体的塑性变形与单晶体塑性变形的区别 单晶体产生塑性变形,只与其晶体内部位错滑移有关; 多晶体不仅需要考虑晶粒内部的位错滑移,还要考虑晶粒之间的变形协调,即要考虑晶间变形。晶界在塑性变形中的作用可分2个部分来说:协调作用,多晶体在塑性变形时,各晶粒都要通过滑移或孪生而变形,而个晶粒的变形不能是任意的,必须相互协调,以保证晶界处变形的连续;阻碍作用,晶界之间存在位相差,阻碍位错的运动;多晶体的塑性变形受到晶界的阻碍和不同位向晶粒的影响,使得其变形抗力比单晶体

高得多。但是归根到底,其塑性变形方式仍是滑移和孪生。 细化晶粒的方法 1、增加过冷度:过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。 2、变质处理:向金属液中添加少量活性物质,促进液体金属内部生核或改变晶体成长过程的一种方法,生产中常用的变质剂有形核变质剂和吸附变质剂。(加快形核) 3、振动与搅拌。(晶粒破碎) 4、对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。 这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。通过细化晶粒,金属材料力学性得到了提高:细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小。(晶粒越大位相差越大,变形越不均匀)

相关主题
文本预览
相关文档 最新文档