当前位置:文档之家› 高效液相色谱法同时测定五指山绿茶中5种儿茶素类成分

高效液相色谱法同时测定五指山绿茶中5种儿茶素类成分

高效液相色谱法同时测定五指山绿茶中5种儿茶素类成分
高效液相色谱法同时测定五指山绿茶中5种儿茶素类成分

药物综述-黄酮类化合物

药物综述——黄酮类化合物 关键词:黄酮类;来源;发展史;药理作用;不足之处 摘要:黄酮类化合物分布广泛,具有多种生物活性,但目前,黄酮类药物仍有些不足之处。 正文: 1.发展史:黄酮类化合物的发现历史十分悠久。早在二十世30年代初,欧洲一 位药物化学家在研究柠檬皮的乙醇提取物时无意中得到一种白色结晶,将其命名为“维生素P”。动物试验证实:维生素P的抗坏血作用胜过维生素C10倍。2年后,这位科学家进一步发现:维生素 P实际上是一种由黄酮组成的混合物而非单一物质,故后来有人形象化地将维生素P更名为柠檬素。黄酮类化合物作为保健产品首次引起国际医药界的注意是在二十世纪八十年代末。法国一家保健食品厂商率先推出具有市场引导作用的黄酮类保健新品“碧萝芷”。它是从法国地中海沿岸地区生长的一种主要树种“滨海松”树皮中提取的一种黄酮混合物。由于碧萝芷能预防和治疗西方国家极为常见的冠心病与心肌梗塞等心血管疾病,故上市后销售情况极为红火。在上市10年以后,临床医学研究人员不断发现碧萝芷有不少令人感兴趣的新用途,其中包括抗哮喘、防止长期抽烟引起的脑动脉硬化与脑血栓形成以及降血压作用等。据科学家研究,法国生产的碧萝芷含有极其复杂的黄酮成分,其中包括:儿茶素、表倍儿茶素、紫杉素、原花青素及其单体、2倍体、3倍体与多倍体混合物。正是这些复杂的黄酮构成碧萝芷多样化药理作用的基础。 2.来源:天然黄酮类化合物是植物体多酚类的内信号分子及中间体或代谢物, 包括黄酮、异黄酮、黄酮醇、异黄酮醇、黄烷酮、异黄烷酮、查耳酮等,最集中分布于被子植物中。如黄酮类以唇形科、爵麻科、苦苣苔科、玄参科、菊科等植物中存在较多;黄酮醇类较广泛分布于双子叶植物;二氢黄酮类特别在蔷薇科、芸香科、豆科、杜鹃花科、菊科、姜科中分布较多;二氢黄酮醇类较普遍地存在于豆科植物中;异黄酮类以豆科蝶形花亚科和鸢尾科。 植物中存在较多。在裸子植物中也有存在,如双黄酮类多存在松柏纲、银杏纲和凤尾纲等植物中。黄酮类化合物具有能够改变机体对变能反应原、病毒及致癌物反应的能力,并保护机体组织不受氧化性侵袭的伤害,因此具有"天然生物反应调节剂"的美称。黄酮类化合物一般存在于蔬菜和水果的可食性果肉中。当把它们从中分离出来后,其味道有些发苦,如桔子、柠檬、葡萄和柚等这些柑桔类植物是黄酮类化合物特别丰富的来源。许多植物如樱桃、葡萄、蔷薇果、青椒、花茎甘蓝、洋葱和番茄等,以及许多草药如越桔、银杏、乳蓟等都含有高质量的黄酮类化合物。此外,多种植物的叶、干和根部也发现了一些黄酮类化合物,如山茶花报春黄甙(干燥后用来生产绿茶和黑茶)的叶子,松树皮和成熟和葡萄籽是各种黄酮类化合物的最好来源。 3.药理活性: a.心血管系统活性。不少治疗冠心病有效的中成药均含黄酮类化合物。研究发现黄酮类化合物不仅有明显的扩冠作用,对缺血性脑损伤有保护作用,对心肌缺血性损伤有保护作用,对心肌缺氧性损伤有明显保护作用,还有有抗心率失常作用。

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱法的标准操作规程

高效液相色谱法的标准操作规程 1 定义及概述: 1.1 高效液相色谱法是一种现代液体色谱法,其基本方法是将具不同极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 1.2 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子交换色谱;凝胶或玻璃微球等填充剂是有一定孔径的大孔填料,用于排阻色谱。 1.3 高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理组成。检测器最常用的为可变波长紫外检测器或紫外—可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求: 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无渗漏连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

黄酮含量的测定

黄酮含量的测定 1.提取(以麦苗粉为例) 根据仿生学原理,人体胃、小肠、大肠的体液酸度最佳pH分别为2.0,7.5,8.3。称取1g麦苗粉末,选用乙醇-水作为浸取剂,模拟胃肠道的pH,分别调pH值2.0,7.5,8.3,在60℃下超声50min,合并3次提取剂,,定容。 工艺流程:1g麦苗粉末→一次提取(加入10ml70﹪的乙醇,乙醇pH2.0)→抽滤→留渣继续二次提取,滤液保存→二次提取(加10ml70﹪的乙醇,提取剂pH7.5)→抽滤→留渣继续三次提取,滤液保存→三次提取(加入10ml70﹪的乙醇,乙醇pH8.3)→合并三次滤液→定容至30mL→黄酮类化合物含量的测定分光光度法测吸光值。 麦苗汁的提取 直接从榨汁后定容至100ml的麦苗汁中取36.5ml,加入85.2ml无水乙醇,60℃超声提取150min。 2.试剂配置 芦丁标准液:准确称取芦丁标准品7.5mg,用50%乙醇溶解并定容至25mL,得到浓度为300mg/mL的芦丁标准溶液。 10% Al(NO3)3溶液:称取5g Al(NO3)3,用蒸馏水溶解并定容至50mL。 5% NaOH 溶液:称取2.5g NaOH,用蒸馏水溶解并定容至50mL。 5% NaNO2 溶液:称取2.5g NaNO2,用蒸馏水溶解并定容至50mL。 0.05mol/L Tris-HCl缓冲液(pH=8.2):0.1mol/L Tris 50mL,加入0.1mol/L HCl 22.9mL,混匀,稀释定容至100mL。 3 mmol/L 邻苯三酚-HCl溶液:准确称取0.0189g邻苯三酚,用10 mmol/L HCl溶解并定容至100mL。 9mmol/L水杨酸-乙醇:准确称取1.2430g水杨酸,用95%乙醇溶解并定容到1000mL 容量瓶中。 9mmol/L FeSO4:准确称取1.3680g FeSO4,定容到1000mL容量瓶中。 10mmol/L HCl:准确量取83.3mL分析纯HCl,定容到100mL容量瓶中。 8.8 mmol/L H2O2 溶液:吸取0.109mL 30% H2O2,用蒸馏水溶解并定容至500mL。 3.标准曲线的绘制 准确称取芦丁标准品15mg,用50%乙醇溶解并定容至50mL,得到浓度为0.3mg/mL的芦丁标准溶液。取7支试管编号,分别按表1中所给的量加入各种试剂,并测定其吸光值。 表6 芦丁标准曲线的绘制 试剂0(mL) 1(mL) 2(mL) 3(mL) 4(mL) 5(mL) 6(mL) 芦丁标准溶液0 0.5 1.0 1.5 2.0 2.5 3.0 50%乙醇 3.0 2.5 2.0 1.5 1.0 0.5 0 5% NaNO2 溶液0.4 0.4 0.4 0.4 0.4 0.4 0.4 10% Al(NO3)3 溶液0.4 0.4 0.4 0.4 0.4 0.4 0.4 5% NaOH 溶液 4.0 4.0 4.0 4.0 4.0 4.0 4.0 蒸馏水 2.2 2.2 2.2 2.2 2.2 2.2 2.2 加入5% NaNO2 溶液0.4 mL后,摇匀,放置6min ;加入10% Al(NO3)3 溶液0.4 mL

高效液相色谱法测定氨基酸

脑蛋白水解物溶液氨基酸含量分析方法研究方案 1、仪器与试药 1.1 仪器 1525型高效液相色谱仪(美国Waters公司);Waters1525型泵,Waters2487型检测器,Waters5CH 型柱温箱,WatersBREEZE数据处理软件,水浴恒温器(精度±0.1℃),旋涡器,微量移液器,衍生专用管;CP225D型分析天平(德国);4umNora-Pak TM C18(3.9mm×150mm,5μm)色谱柱(美国) 1.2 药品与试剂 16种氨基酸(门冬氨酸、丝氨酸、谷氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、缬氨酸、甲硫氨酸、赖氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸)由中国药品生物制品检定所提供。 脑蛋白水解物注射液,云南盟生药业有限公司生产,规格10ml/支。批号:2013、2013、2013. 乙腈(HPLC级);EDTA(分析纯);磷酸(分析纯);二乙胺(分析纯);三水合乙酸钠(分析纯)。2、方法与结果 2.1色谱条件流动相A为AccQTag醋酸—磷酸盐缓冲液;由AccQTagEluent A浓缩制备AccQTag洗脱液,用前稀释10倍(或按以下方法配制:称19.04g三水合乙酸钠,加1000ml纯化水,搅拌,溶解,用50%H3PO4将pH调至5.2,加入1ml 1mg/ml的EDTA溶液,加入2.37ml二乙胺,用50%H3PO4滴定至pH4.95,用水溶性过滤器过滤,超声,脱气,备用。);流动相B为60% HPLC级乙腈,按梯度表梯度洗脱;流速1.0ml/min;检测波长为254nm;进样量5μl;柱温38℃。

时间 (min) 流速 (ml/min) % A % B 曲线 起始 1.0 100 0 * 0.5 1.0 98 2 6 15.0 1.0 93 7 6 19.0 1.0 90 10 6 32.0 1.0 65 35 6 33.0 1.0 65 35 6 34.0 1.0 0 100 6 37.0 1.0 0 100 6 38.0 1.0 100 0 6 42.0 1.0 100 0 6 2.2对照品溶液、供试品溶液的制备分别精密称取16种氨基酸标准品,用纯化水配制成浓度如下表 所示的混合溶液。 名称浓度(mg/ml)名称浓度(mg/ml)名称浓度(mg/ml)门冬氨酸 4.80 苏氨酸 1.20 异亮氨酸 1.10 丝氨酸 2.60 丙氨酸 2.50 亮氨酸 2.70 谷氨酸 6.20 脯氨酸 2.00 苯丙氨酸 1.20 甘氨酸 2.40 缬氨酸 1.60 色氨酸0.40 组氨酸0.90 甲硫氨酸 1.00 精氨酸 1.20 赖氨酸 3.45 取上述溶液0.1ml,加纯化水0.9ml,旋涡器混匀,作为对照品溶液;取脑蛋白水解物注射液,加水稀释成含总氮为1mg/ml的溶液,取0.1ml,加纯化水0.9ml,旋涡器混匀,作为供试品溶液。 衍生剂配制将水浴锅设置55℃,加热,待温度稳定, 取AccQFluor衍生剂2A,轻轻弹击,确保AccQFluor 衍生剂2A粉末全落在瓶底,吸取AccQFluor衍生稀释剂2B 1ml并放掉,清洗移液器管,再吸取AccQFluor 衍生稀释剂2B 1ml,加入AccQFluor衍生剂2A的瓶中,振荡10秒钟,在恒温水浴锅中溶解,保持10分钟。于干燥器中室温保存一周,于干燥器中4℃保存二周。 2.3测定方法分别取20ul对照品溶液和供试品溶液加入衍生专用管底部,加入60uLAccQFluor硼酸

仪器分析之气相色谱法试题及答案

气相色谱法练习 一:选择题 1.在气相色谱分析中,用于定性分析的参数是 ( A ) A保留值 B峰面积 C分离度 D半峰宽 2.在气相色谱分析中,用于定量分析的参数是 ( D ) A保留时间 B保留体积 C半峰宽 D峰面积 3.良好的气-液色谱固定液为 ( D ) A蒸气压低、稳定性好 B化学性质稳定C溶解度大,对相邻两组分有一定的分离能力 D A、B和C 6.色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时 ( B ) A进入单独一个检测器的最小物质量 B进入色谱柱的最小物质量 C组分在气相中的最小物质量 D组分在液相中的最小物质量 7.在气-液色谱分析中,良好的载体为 ( D ) A粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C化学惰性、热稳定性好,有一定的机械强度 D A、B和C 8.热导池检测器是一种 ( A ) A浓度型检测器 B质量型检测器 C只对含碳、氢的有机化合物有响应的检测器 D只对含硫、磷化合物有响应的检测器10.下列因素中,对色谱分离效率最有影响的是 ( A ) A柱温 B载气的种类 C柱压 D固定液膜厚度 三:计算题 1. 热导池检测器的灵敏度测定:进纯苯1mL,苯的色谱峰高为4 mV,半峰宽为1 min,柱出口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为 0.88g/mL)。若仪器噪声为0.02 mV,计算其检测限。 解:mV·mL·mg-1 mg·mL-1 2.一根 2 m长的填充柱的操作条件及流出曲线的数据如下: 流量 20 mL/min( 50℃)柱温 50℃ 柱前压力:133.32 kpa 柱后压力101.32kPa

银杏叶中黄酮类化合物的含量测定

江苏畜牧兽医职业技术学院 毕业论文(设计) 专业药品质量检测技术班级药检071 学号200703123124 论文 (设计) 题目:银杏叶中黄酮类化合物的含量测定 学生姓名:刘江南 设计地点:江苏畜牧业兽医职业技术学院 指导教师:赵丽职称讲师 论文完成时间: 2010年5月20日

银杏叶中黄酮类化合物的含量测定 刘江南 药品质量检测技术 摘要:黄酮类化合物是银杏叶的主要药用成分,其黄酮含量在很大程度上决定着银杏叶的利用价值。以十二烷基硫酸钠(SDS)一正丁醇一正庚烷一水 微乳系统为流动相,预制聚酰胺薄层板为固定相,通过调节微乳系统的 极性,较好地分离出十几种银杏叶黄酮。与传统的流动相系统—有机溶 液系统相比,微乳系统显示出较强的分离优势。通过对大龄银杏叶不同 生长时期黄酮含量的测定与比较,分析银杏叶中黄酮含量随生长期的变 化规律,揭示出大龄银杏树采摘叶片的最佳时期。试验结果表明:不同 生长时期的银杏叶黄酮含量变化幅度较大,在1年中黄酮含量出现2次峰 值,8月份出现第1个峰值,黄酮含量为0.884%, 以后下降较快,10月叶 色发黄后又上升到最高值 0.977%。 关键词:银杏叶黄酮含量薄层色谱生长时期高效液相色谱 Title:In Gingko leaf flavonoid content determination Liujiangnan Drug quality testing technology Abstract:Flavonoids are the main medicinal components of ginkgo biloba,its flavonoid content to a large extent determines the value of ginkgo biloba use. Sodium dodecyl sulfate (SDS) 1-butanol 1-heptane microemulsion system of water as the mobile phase, pre-polyamide thin-layer plate as the stationary phase, by adjusting the polarity of the microemulsion system, well separated a dozen of flavonoids. Mobile phase with the traditional system - the organic solution systems, the microemulsion system showed strong separation advantage.Leaves of Ginkgo biloba on older growth and flavonoids content during the comparison, analysis of flavonoids of Ginkgo biloba in the variation with growth phase, revealing the older leaves of ginkgo trees picking the best time. The results showed that: different growth stages of the content of flavonoids in a significant reduction in 1 year in the flavonoid content of 2 times the

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

高效液相色谱(HPLC)法测定邻苯二甲酸酯

高效液相色谱(HPLC )法测定邻苯二甲酸酯 一、实验目的: 1. 了解高效液相色谱仪原理; 2. 学习高效液相色谱仪的基本操作方法; 3. 利用高效液相色谱仪测定邻苯二甲酸酯、邻苯二乙酸酯、邻苯二丁酸酯的峰图和含量。 二、实验原理: ① 高效液相色谱法(High Performance Liquid Chromatography \ HPLC )是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。高效液相色谱法有“四高一广”的特点:高压、高速、高效、高灵敏度和应用范围广。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R )的计算公式为: R = 2[t (R2)-t (R1)] /1.7*(W 1+W 2) //式中 t (R2)为相邻两峰中后一峰的保留时间;t (R1)为相邻两峰中前一峰的保留时间; W 1 及W 2为此相邻两峰的半峰宽。 除另外有规定外,分离度应大于1.5。 ② 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE ,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。 但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。同时也有一定的致癌作用。 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC 分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul 微量注射器。 2、试剂 甲醇(色谱专用) ,高纯水,样品。 出峰次序 样品组成 1 邻苯二甲酸二甲酯(DMP ) 2 邻苯二甲酸二乙酯(DEP) 3 邻苯二甲酸二丁酯(DBP)

仪器分析气相色谱分析习题+答案.doc

气相色谱习题 一 . 选择题 ( ) 1.色谱图上一个色谱峰的正确描述是( ) A. 仅代表一种组分 ; B. 代表所有未分离组分 ; C. 可能代表一种或一种以上组分; D. 仅代表检测信号变化( )2.下列保留参数中完全体现色谱柱固定相对组分滞留作用的是( ) A. 死时间 ; B. 保留时间 ; C.调整保留时间; D.相对保留时间 ( )3.气-液色谱系统中,待分离组分的k值越大,则其保留值: A. 越大; B. 越小; C.不受影响; D.与载气流量成反比 ( )4.关于范第姆特方程式,正确的说法是: A. 最佳线速这一点,塔板高度最大; B. 最佳线速这一点,塔板高度最小; C. 塔板高度最小时,线速最小; D.塔板高度最小时,线速最大 ( )5.根据范第姆特方程式H=A+B/u+Cu,下列说法正确的是: A.H 越大,则柱效越高,色谱峰越窄,对分离有利; B. 固定相颗粒填充越均匀,则柱效越高; C. 载气线速越高,柱效越高; D. 载气线速越低,柱效越高 ( )6.在范第姆特方程式中,涡流扩散项主要受下列哪个因素影响 A. 载体填充的均匀程度 ; B.载气的流速大小; C.载气的摩尔质量; D.固定液的液膜厚度

( )7.用气相色谱法定量分析试样组分时,要求分离达98%,分离度至少为: ( )8.在气相色谱中,当两组分未能完全分离时,我们说: A. 柱效太低; B. 柱的选择性差; C.柱的分离度低; D. 柱的容量因子大 ( )9.分离非极性组分和极性组分混合物时,一般选用极性固定液,这是利用极性固定液的: A. 氢键作用; B. 诱导效应; C.色散作用; D.共轭效应 ( )10.苯和环已烷的沸点分别是80.10 °C 和 80.81 ° C,都是非极性分子。气相色谱分析中,若采用极性固定 液,则保留时间关系是: A. 苯比环已烷长; B. 环已烷比苯长; C. 二者相同; D. 无法确定 ( )11. 已知苯的沸点为80.10 ° C,环已烷的沸点为80.81 °C。当用邻苯二甲酸二壬酯作固定液分析这二种组 分时,环已烷比苯先出峰,其原因是固定液与被测组分间的: A. 静电力; B. 诱导力; C.色散力; D.氢键力 ( )12.使用热导池检测器时,一般选用H 2或He作载气,这是因为它们: A. 扩散系数大; B. 热导系数大; C.电阻小; D. 流量大 ( )13.氢火焰离子化检测器优于热导检测器的主要原因是: A. 装置简单; B. 更灵敏; C.可以检出许多有机化合物; D.较短的柱能够完成同样的分离

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关;

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

高效液相色谱测定法标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 1 目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2 适用围:适用于高效液相色谱测定法检验操作全过程。 3 责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据 处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μ m。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1. 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合 物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分 离物质的性质来选择合适的色谱柱。温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2? 8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2 或大于8 的流动相。

气相色谱分析实例

永久性气体色谱分析 1.方法原理 以13X或5A分子筛为固定相,用气固色谱法分析混合气中的氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分的含量。 2.仪器和试剂 ①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表。 ②试剂13X或5A分子筛(60~80目);使用前预先在高温炉内,于350℃活化4h后备用。纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中。氢气装在高压钢瓶内。3.色谱分析条件 固定相:13X或5A分子筛(60~80目);不锈钢填充柱管φ4mm×2m;柱温:室温。 载气:氢气,流量30mL/min 检测器:热导池检测器,桥流200mA;衰减1/2~1/8,检测室温度:室温。 气化室:室温,进样量用六通阀进样,定量管0.5mL。 4.定性分析 记录各组分从色谱柱流出的保留时间,用纯物质进行对照。 5.定量分析 由谱图中测得各个组分的峰高和半峰宽计算各组分的峰面积。已知氧、氮、甲烷、一氧化碳的相对摩尔校正因子分别为2.50、2.38、2.80、2.38。再用峰面积归一法就可计算出各个组分的体积百分数(%)。

白酒中主要成分的色谱分析 1.方法原理 白酒的主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测。 为分离白酒中的主要成分可使用填充柱或毛细管柱,常用的填充柱固定相为GDX-102;16%邻苯二甲酸二壬酯+7%吐温-60/硅烷化101白色载体(60~80目);10%聚乙二醇20M/有机载体402(80~100目);15%吐温-60+15%司班-60/6201红色载体(60~80目)等。也可使用以聚乙二醇20M或FFAP交联制备的石英弹性毛细管柱。 2.仪器和试剂 ①仪器带有分流进样器和氢火焰离子化检测器的气相色谱仪、皂膜流量计、微处理机。 ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应的醛、醇、酯的色谱纯标样。 3.色谱分析条件 色谱柱:冠醚+FFAP交联石英弹性毛细管柱φ0.25mm×30m,固定液液膜厚度df=0.5um。程序升温:50℃(6min)以40℃/min升温至220℃(1min)。 载气:氮气,流量1mL/min。燃气:氢气,流量50mL/min。助燃气:压缩空气,流量500mL/min。 检测器:氢火焰离子化检测器,高阻1010Ω,衰减1/4~1/16,检测室温度200℃。 气化室:250℃,分流进样分流比1:100,进样量0.2uL。 4.定性分析 记录各组分的保留时间和保留温度,用标准样品对照。 5.定量分析 以乙酸正丁酯作内标,用内标法定量。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

相关主题
文本预览
相关文档 最新文档