当前位置:文档之家› 电力系统电压稳定性的基本概念

电力系统电压稳定性的基本概念

电力系统电压稳定性的基本概念
电力系统电压稳定性的基本概念

电压稳定基本概念

从80年代以来,电网运行越来越接近于极限状态。主要有几个原因:

?环保对电源建设和线路扩建的压力

?重负荷区域的用电消费增加

?电力市场下的新的系统负荷方式(潮流方式)

?。。。

无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾

用户负荷在增加<——> 电网扩建却面临着更大的问题

由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。

(介绍电压稳定的三本国际性的书籍:)

那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义:

电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。作者进一步解释道:

?电压:许多母线的电压发生明显的、不可控的下跌。

?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降

低了功率的消耗,这是电压失稳的关键。

?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差

分方程(离散变化)模拟。

?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷

不是仅有的角色。

?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是

电压失稳的开始。

?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳

定十分重要。

与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。

无功功率的角色

可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。

假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o :

o

L L P R I R -=2& 同时,我们知道最大的传输功率发生在R L = R : R

E P 42max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。

这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。

电压稳定VS 电力系统稳定

可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。

快速稳定问题:

? 暂态功角稳定:无同步力矩,缺乏阻尼

? 小扰动稳定:缺乏阻尼

? 短期电压稳定:感应电动机和受控负荷,包括HVDC 暂态

? 功角稳定和快速电压稳定很难分开,负荷(负荷模型)对功角稳定

有影响,而发电机(发电机模型)对电压稳定也有作用。

长过程稳定问题:

? 频率问题:主要原因是发电与负荷的不平衡

? 电压问题:主要原因是发电与负荷的距离,取决于网络结构。

传输网

我们先回顾电网传输的基本特性。为了理解的方便,我们利用简单的模型。

的。其中可计算受电端有:

X V Cos V V Q Sin P Sin X V V P 22122

1212max 12212-===

δδδ 同样送电端有:

X Cos V V V Q P Sin P Sin X V V P 122121

1212max 12211δδδ-====

有功功率传输

同时可以观察到最大的传输功率发生在δ=900。请注意稳定和不稳定的平衡点(SEP/UEP: Stable/Unstable Equilibrium Point ,这是电力系统稳定分析的直接法的二个重要的概念)。对于典型的功率传输和功率角,例如当δ=30o ,有Sin δ≈δ,可近似写作δmax P P =。因此,我们常说有功传输主要取决于功率角度。

无功功率传输

我们对无功功率传输特别感兴趣。如果V 1=V 2,这时两端发电机同时担任传输有功功率时所需用的无功功率。通常,我们还对二端电压幅值不同感兴趣。当Cos δ≈1时

X

V V V Q X V V V Q )(,)(21222111-=-= 因此,我们说无功传输主要联决于电压幅值,从较高电压端注下低电压端。但是,这样的假设在重负荷的情况下就不成立了。 无功功率不能通过大功角或过大的电压落差而传输,大功角差是由于长输电线(大X )和大功率传输,而电压必须保证在100±5%之内就难了,相比于有功功率,无功功率不可能得以长距离传输。

减少无功传输的另一个原因是减少有功损耗和无功损耗。减少有功损耗,提高经济性;减少无功损耗,减少无功设备投资。

在一些情况下,减少功频过电压是考虑的因素之一,当受端开关断开时,送端电压可能急剧上升,导致设备损坏。

?

?

减少有功损耗和无功损耗 ? 功频过电压

?

考虑容量更大的变压器和传输线

下面我们介绍二个基本概念:最大传输功率,负荷与网络电压关系。这二个基本特性与电压失稳有很大的关系。另外,简单介绍网络元件对传输功率的影响,包括串取补偿、并联补偿和有载调压等。

单负荷无穷大母线系统

我们可以将E 和Z=R+jX 看似从某负荷点看电网的戴维宁等值电路。负荷功

率因数为:?cos 22=+==Q

P P S P PF 最大传输功率

在开始,我们就介绍了电压失稳是因为负荷企图从传输网获得大于能提供的最大功率,下面我们介绍各种约束条件下的最大传输功率。

无约束的最大传输功率

简化起见,假设负荷为阻抗性:jXl Rl Zl +=,当 *=Z Zl 有极值。这时从电压源端来看,阻抗为纯电阻性,电流不产生任何无功功率,负荷功率为:

R E P 42max =,受端电压为2

max E V =。 这样的推导结果对电网不适合,因为部分电网中R 几乎可忽略,而这时的最大传输功率时电流会是无穷大;而且这时负荷具有高电容性,这又不符合实际。

给定功率因数下的最大传输功率

给定功率因数,这时负荷为)cos 1(?+=+=Rl jXl Rl Zl ,这时可导出最大传输功率发生在Z Zl =。

最大传输功率决于网络参数,与负荷特征无关。

功率-电压关系

如果说?tan P Q =,可得这样的一组曲线,也被称为鼻族曲线

失稳机理

网络对负荷的P-V特性

负荷随电压和频率变化。在电压稳定的研究中,负荷特性通常包括二部分:对电压的函数和对独立变量的函数。我们称负荷需求为:

P=μP o

对于特定的μ,它代表一条曲线并与V(P, Q)表面相交,相交点就是可能的运行点,当μ变化,则相交点也变化。如果将对所有的需求值求得交点,就得网络P-V特性。在(P, V)平面构画所有的交点,就得P-V曲线。

注意:不确定负荷功率如何随电压变化就不能确定网络特性。

失稳的现象

考虑需求μ增加的情况。在A点,高需求使得电压跌落,而负荷功率更大;在B点增加需求会更促使电压和负荷功率的同时跌落。如果负荷是静态的,则B 点运行是可以的,但由于有负荷控制器或负荷本身的特性,会增加需求以达到一定的功率,B点的运行就变得不稳定了。

(缺图)

现在我们考虑负荷在扰动之后的特性如上所述,但在很长时间内,恢复到恒功率的特性上,这根虚线就是负荷平衡点特性,或负荷静态特性。

网络稳定运行的前提是存在平衡点。有可能网络参数变化,导致平衡点的丧失,也可能是负荷增加,引起平衡点的丧失。

实际情况中,大扰动会引起失稳现象。扰动后,网络的特性会有突变,因而扰动后的网络特性曲线与负荷的无交点。

当负荷惭惭增加。曲线与网络特性曲线相切,如果继续再增加就没有交点了。

负载极限不一定与最大传输功率一致,这取决于负荷特性,对于某些数学模型的负荷可能没有负载极限。

无功补偿

一般来说,无功补偿包括注入无功功率,以改善电网运行,如维护电压;减少线路电抗因而减少网损,提高稳定性。

最常用的补偿是电容器,以平衡传输网的主导的电抗;也有用电抗器的时间,以吸收电容性无功。

除了负荷补偿之外,有网络补偿(分串取和并联补偿两类)

线路的串联补偿

串联补偿主要用于减少线路电抗、补偿后一般在0.3~0.8之间。它减少发电机与负荷的距离,于是,提高网络的最大传输功率,是暂态稳定和电压稳定的有利措施,具有的自适应的特性

并联补偿

并联电容器和电抗器是用之最广的最简单的补偿装置。并联补偿的投切可以是手动的,也可是自动的。相对于串联装置来说,动作更频繁。

向缺电的地区输送更多的功率时,必须配合更多的补偿,否则负荷端电压就没办法维护了。

补偿的另一种情况是防止超高压网的轻载过压现象,例如在500KV 线路轻载时,会产生大量的电容性无功,如果不投入电抗器进行补偿,过压现象不可避免。 SVC

所谓SVC 就是受电压控制的并联补偿装置。一般来说,SVC 装设在中压网,通过对高压网的电压测量控制并联导纳,从而控制母线电压。SVC 的昂贵成本对应着快速响应效果,对暂态功角稳定和快速电压稳定都非常重要。

在静态时,SVC 无功输出为:

2BV Q =

并联电纳按下式变化

)(0V V K B -=

其中V 为高压网的电压,V 0为设定值。

(缺图:控制特性)

在详细的仿真中应包括升压变压器的阻抗。放大系数一般为SVC 额定容量的25~100倍,抛物线部分为极限状态。

静补系统(SVS)是SVC 带一个机械的投切电容器,一方面可控制节点电压,同时可腾出更多的快速无功贮备。

从中可见,SVC 大大改变了网络的特性曲线。在极限情况下,SVC 及是常规的电容器或电抗器BV 2,这对电压稳定不利,就这一点来说SVC 不如极限状态下的发电机和调相机。

有载调压器

现代电网分成多个电压等级,超高网有220~735KV ,高压网有60~150KV 。有载调压器(LTC )的作用是保证正常的负荷端电压,因此从负荷端来看,电网具有恒定电压。

电网中的主要变压器有: ·配电变压器

·高压/中压变压器

·联络变压器,超高压/高压变压器 ·发电机升压变压器

第一类变压器对负荷的动态特性有很大的影响,后三种变压器对网络特性的影响较大。LTC 的电压控制作用是缩短电源和负荷的距离,有的系统有多级LTC 控制电压,原理是一样的。有的系统的电源和负荷的电气距离较远,如果没有LTC 的电压控制作用就不可能运行。各级LTC 的动态特性的互相影响对稳定有很大的影响。

电压崩溃的简单事例

我们来看一个简单的事例,这对于许多实际事例来说是具有代表性。

如图所示,负荷通过输电线供电,发电机G 1有较好的A VR 保持母线1的电压恒常,母线1通过其它方式联接到代表系统的无穷大母线2,母线2的频率和电压在任何情况下保持不变。

G2 2 P+jQ

G1 1

随着负荷继续上升,发电机G1供给更多无功,直到曲线的B点其无功出力达到极限,这样母线1的电压不能再为常数,系统转移到曲线2运行,只有母线2的电压为常数,原来的临界点C1转移到C2。如果负荷继续增加,就可能发生电压崩溃了。

防止电压失稳的措施初探

这里可见,防止电压失稳的保护从规则到实时运行都需要。

在规划期间,需要决定是否建新的线路和发电机,需要怎样的线路特性和发电机特性来供给予想负荷,这必须在建线路和发电机之前完成。其它的研究是决定无功源的按装地点,是否使用有载调压器,使用什么保护装置防止电压崩溃。同时需要培训发电厂和调度中心的工程人员,以便面对电压稳定问题时胸有成竹。

运行规划时,发电机、线路、补偿装置、保护设备去已安装好,也不可能再增加新的设备。调度人员需要熟悉和充分利用现有设备。他们必须考虑电压稳定问题出现的可能性,例如对发电机G1或线路紧急维修时,系统更薄弱,这时利用负荷预报和优化程序来指导在何处提供支授和最好的拓朴方式。

最后,如果在运行时发生了事故,所有的一切都依赖于保护装置和调度员。要对事件的发展过程有一个准确的预测是很难的,因为有许多非线性的事件发生,如果调度员没有电压稳定指标的帮助,很难判断其危害和决定应该做些什么。每一个决定需要时间执行,在面对事件时,时间是极关键的。投入一组电容器的效果与时间的前后有关(时间、空间和数量的问题),因为电容器的效率是电压幅值的平方的函数,而此时又电压正在下降。甚至在切负荷太晚时也会没有效果的。事先对运行人员进行培训是非常重要的,电厂的运行人员在电压崩溃时,会将本厂的发电机从系统中切除,然而保持在线运行将对系统稳定更有利。

另一种正出现的电压稳定和功角稳定问题

随着电力市场的出现,有些电力公司在网中向其它区域转送或输入更多的功率,这些潮流可能对电压稳定和安全有影响。我们以上图为例,发电端与负荷端距离较远,系统原来就有电压稳定问题,从邻近系统得到电压和无功支援有限,传输设备上的额外功率的加入将大大减低系统的安全性。

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

论电力系统稳定性

论电力系统稳定性 发表时间:2018-10-19T09:07:14.800Z 来源:《电力设备》2018年第17期作者:姚彦枝 [导读] 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。在当今电力作为推动社会飞速发展的主动力时代,电力网是否稳定对社会的生产、生活、发展起着决定性的影响。因此,研究电力系统在各种条件下的稳定性问题对社会的发展具有特别重要的意义。 关键词:电力系统;稳定性;措施 1电力系统稳定性的作用及要求 1.1电力系统稳定性的作用 (1)对于企业的调配与服务有优化作用。之所以说电力系统稳定性的提供对企业的调配与服务功能有一定程度的优化作用,是因为相关人员在电力系统应用中,可以根据具体运行情况来开展工作,根据不同类型的电力设备特点,来实现设备利用的最优化,为电力企业工作效率的提升做好准备。相关人员可以全面掌握设备的利用情况,以此来对设备进行合理而科学的配置,实现设备的高效率运行,从而还能降低企业成本的使用率。对于传统电力技术而言,稳定性技术式是一个大胆创新,相关人员在实际作业中可以利用该技术实现对电力设备的协调配置。 (2)有利于促进电力企业的高效发展。电力系统稳定性对电力企业的经济效益具有促进作业。众所周知,电对于人们的生活是何等重要,可以说生活处处都需要电。一旦电力系统稳定性受到冲击,便会发生大面积停电的安全事故,这种现状会导致电力系统的运行受到干扰,对企业的生产,人们的生活都起到了很大的影响。电力系统稳定性技术则可以在这种情况下,对相关干扰进行及时排除,保障用户的正常用电。 1.2电力系统稳定性的要求 电力系统稳定性要求电网结构与设备的选用必须科学合理,供电可靠性必须相对较高,工作人员的技术也必须相对过硬,以此来保证电力系统的正常运行,其中,工作人员的技术具有关键作用,他们必须在实际操作前,做好相关准备,采取有效措施来应对突发故障。 2确保电力系统稳定性的措施 目前,我国电力系统已步入大电网、大机组、超高压、远距离输电时代,随着电力系统的发展及其互联,电力系统稳定问题也将越来越突出。有关电力系统稳定问题的研究已成为国内外电力界的热门课题之一。因此,在当前,研究电力系统稳定问题的机理、以及提高电力系统稳定性的控制措施,具有重要的意义。 2.1对送电系统的控制 改善发电机励磁调节系统的特性:由电力系统功率极限的简单表达式可知,减小发电机的电抗,可以提高电力系统功率极限和输送能力。 改善原动机的调节特性:我们根据发电机功角变化对于再热式轮机可以采用快速调节轮机汽门与带有微机控制和带有功角检测仪的高速系统来消除故障后发电机输入以及输出功率之间的不平衡,交替关、开快速汽门,以缩短振荡时间,提高暂态稳定。 快速操作汽阀(快关):当系统受到较大干扰时,输出的电磁功率突变,这时,如果原动机的调节装置非常的准确、灵敏和快速,使得原动机自身的功率能跟上相应的变化的电磁功率,则能极大让系统稳定性得以提高[2]。 切机:提高系统暂态稳定的基本措施包括减小原发电机大轴不平衡功率。方法有两个一个是减少原发动机的输入功率,第二个是增大发电机发出的电磁功率,当系统有充足的备用电机时,我们同时切除故障线,同时切除部门联锁发电机,这样就能有效的增大系统稳定性。 2.2采用附加装置提高电力系统的稳定性 在输电线路串联电容:利用电容器容抗和输电线路感抗性质相反的特点,在输电线路中串联电容补偿线路中的电感来提高超高压远距离输电的功率极限,从而起到提高系统稳定的作用。 在输电线路中并联电抗:改善远距离输电系统稳定性的重要措施之一就是将电抗并联到输电线路中。因为随着输电线路长度的增加,产生的电抗就会越大,随之容抗也会变大,而增加的电容则会给线路带来大量的无功,当线路负荷较轻情况下,线路中大量的无功会造成线路末端电压过高。为改善这种情况,我们将电抗器并联到输电线路上来吸收由长距离线路所产生的大电容造成的无功功率,这样,可以减小发电机的运行功角,提高发电机的电势从而提高长距离输电系统的稳定性。 将变压器中性点改为小阻抗接地:电力系统发生接地短路情况时产生的暂态稳定和变压器中性点接地情况有着重要的联系。为了提高中性点直接接地系统的稳定性,我们利用电流流过阻抗会消耗有功功率原理将系统中变压器的中性点改为经小阻抗接地,这样系统短路时产生的零序电流经过变压器中性点小阻抗后消耗有功这就增加了发电机的输出电磁功率,减小了发电机转轴上存在的不平衡功率,进而提高了系统的暂态稳定。 2.3非线性控制技术在暂态稳定控制中的应用 为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设、采取紧急措施之外,最主要的就是对相关部件采取有效的控制手段。根据电力系统采用模型的不同可选取不同的方法。通常对非线性系统进行控制的方法有: Lyapunov直接法:在假设非线性控制系统的原点为平衡点,寻找一个正定Lyapunov函数,,且,在此基础上求出反馈控制规律,使得,这就是正定函数的思想,当时闭环系统才会逐渐的趋向稳定。由此可见,要想使受干扰后的系统动态过程以较快的速度趋向平衡点则需要V越负越大。自适应、滑膜等控制设计都可以用Lyapunov直接法。 变结构控制方法:20世纪70年代中期科学研究者们开始研究变结构控制方法,该方法不但能有很好的全局渐进稳定性,而且它有很强的鲁棒性,能抗外部干扰和参数的摄动。该方法的基本思想是:预先选定一个超平面,利用切换函数和高速开关将电力系统的相轨迹按照一定的规律驱动到超平面上,我们将该运动定义为滑动模态,其基本思想是,利用高速开关和切换函数将系统的相轨迹按一定的趋近律驱动到一个预先选定的超平面S(X)=0(称滑行面或切换面)上,超平面上的系统运动称为滑动模态(Slidingmode),且系统的滑动模态

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

关于电力系统电压稳定的探讨

关于电力系统电压稳定的探讨 现如今,社会经济的发展越来越快,人们对电力的需求量也越来越多,电力系统的电压稳定性不仅与整个电力系统运行的稳定、安全密切相关,还会影响到人们的生产和生活,因而变得越来越重要。本文首先对电力系统电压稳定性问题进行了分析,然后阐述了电力系统的电压稳定分析方法及其控制措施。 【关键词】电力系统电压稳定 电力系统是一个庞大复杂的多变量非线性动态系统,确保电力系统正常运行的基本条件是安全以及稳定。随着电力市场化改革的不断深入,电网规模越来越大,远距离重负荷输电的局面会越来越明显,使得电力系统越来越频繁地在接近网络极限输送能力的状态下运行。所以,加强电压稳定性的研究具有非常重要的理论意义与现实意义。 1 电压稳定性问题的分析 电压稳定性问题是电力研究工作中发展比较晚的分支,电压的稳定性开发研究工作是发电机在所有情况下同步运行的分析,但是在电力系统产生电压的时候无法满足于负荷无功需求时的稳定情况,所以电压的稳定与否主要是由电力系统的无功不足引起的。电力系统属于动态系统,对于电压稳定性可以从以下几个方面进行研究:

(1)电压小干扰时候电力系统的稳定性; (2)电压大干扰时候电力系统稳定性以及系统电压失稳过程; (3)电力系统中稳态平衡点能够存在的可能性; (4)分析系统中电压稳定性的概率,因此对系统中电压是否稳定的分析方法也有很多种。 2 电力系统电压稳定分析方法 对电力系统电压稳定性进行预防与控制的基础条件就是分析电力系统的电压稳定性,电力系统电压稳定性的分析方法包括动态电压法以及静态电压法两类。 2.1 静态电压稳定分析 在静态电压稳定分析方法中比较常用的方法主要有奇异值分解(特征值分析)法、潮流多解法、灵敏度分析法、最大功率法、崩溃点法这几种,它们都是在潮流方程或者是经过修改的潮流方程的基础上的,静态电压稳定的临界点在本质上都由电力网络的潮流极限来做,在线性化当前运行点处后再进行分析和计算;不同的地方是使用极限运行状态下不同特征的电压崩溃的判据与采用的求取临界点的方法。静态电压稳定分析法的好处是用一个简单的非线性代数方程实数解的存在性研究代替复杂的微分方程解的性态研究,它的坏处是把小干扰电压稳定的极限点用电力系统的潮流极限来做,并且静态电压分析法无法反映各元件的动态特性。

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

电力系统电压稳定性的再认识

电力系统电压稳定性的再认识 近年来随着电力系统从发电、输电的一体化体制演变到开放和竞争的环境,电力系统规划和运行的不确定性和不安全因素增加,电压不安全已经成为限制电力传输的主要因素之一。世界上许多国家相继发生由电压稳定问题导致的大面积停电事件,世界各国目前对电压稳定性的研究十分重视,IEEE和CIGRE还成立了专门工作组调查和研究电压稳定性问题,并进行了大量的研究工作。 早期研究普遍认为电压稳定问题是一个静态问题,或者认为系统的动态对电压稳定的影响很慢,从而将电压稳定问题转换为平衡点的存在性问题"研究集中在以潮流为工具的静态方法上。随着研究的深入,人们正在逐渐认识电压稳定性的动态本质,从而开始重点研究电压崩溃的动态机理和系统模型的需求,并提出了一些有关电压稳定性的分析方法和防止电压崩溃的对策。 对电力系统电压稳定性及分岔理论的学习已有8个多月,本学期的课程也上了过半,下面我将就此问题谈谈我的认识。 一、电压不稳定现象及其解释 对于电压稳定性,IEEE和CIGRE工作组已经给出了简明的定义,然而对于这类已有的概念,有必要对“电压不稳定”进行定义。 电压不稳定性源自负荷动态具有使耗电量恢复到超过传输系统和发电系统容量的趋势。 下面逐字的解释这个描述性的定义: ●电压:在许多的网络节点上,以大的、不可控的电压降落的形式所揭示 的现象。 ●不稳定性:已经超过最大传输功率的限制,负荷功率恢复机制变得不稳 定,所消耗的功率减少而不是上升。这个机制是电压不稳定性的核心。 ●动态:任何稳定性问题都涉及到动态。这些动态行为可以通过微分方程 (连续动态)或者差分方程(离散动态)来建模。 ●负荷电压是不稳定性的驱动源,就这个原因而言,这个现象也成为负荷 不稳定性。 ●传输系统,对能量传递来说,正如从电路理论所知,有一个有限的容量。 这个限制(也受到发电系统的影响)标志着电压不稳定性的开始。 ●发电:发电机并不是理想的电压源。发电机的精确建模(包括控制器) 对于正确地评估电压稳定性是非常重要的。 二、电压稳定性研究方法 1、早期基于静态的研究方法 早期人们简单地将电力系统电压失稳问题看作系统过载引起,从而将其视为静态问题。利用代数方程研究电压的稳定性,大体上可以归纳为最大传输功率法、

电力系统电压稳定的研究

毕业设计 学生姓名学号 系(部) 机电工程系 专业电气自动化技术 题目电力系统电压稳定的研究指导教师

摘要:电力系统是一个具有高度非线性的复杂系统,随着电力工业发展和商业化运营,电网规模不断扩大,对电力系统稳定性要求也越来越高。在现代大型电力系统中,电压不稳定/电压崩溃事故已成为电力系统丧失稳定性的一个重要方面。因此,对电压稳定性问题进行深入研究,仍然是电力系统工作者面临的一项重要任务。 从国内外一些大的电力系统事故的分析来看,发生电压崩溃的一个主要原因就是无法预计负荷增长或事故发生后可能导致的电压失稳的程度和范围,难以拟定预防和校正的具体措施。所以,我们有必要在负荷模型基础上考虑采用更好的方法来进行电压稳定性评的研究。矚慫润厲钐瘗睞枥庑赖。 关键词:电力系统,电压崩溃,电压失稳,稳定性 Abstract:Power system is a highly complex systems, nonlinear with the power industry and commercial operation scale constantly expanding, network, the power system stability requirements is also high. in large power system, voltage instability of the voltage of power system of stability has become an important aspect. therefore, the voltage stability problems and in-depth study is still the power systems are faced with an important task.聞創沟燴鐺險爱氇谴净。From home and abroad some big power systems analysis of the accident, there is a major cause of the voltage is not expected to load up or after the accident may lead to the loss of degree and scope, to work out specific measures to prevent and correct. Therefore, we have to consider adopting the model on the basis of better ways to make a stability assessment study.残骛楼諍锩瀨濟溆塹籟。 Keywords:Power systems,V oltage collapse,In a voltage,Stability酽锕极額閉镇桧猪訣锥。

电力系统暂态稳定性

10 电力系统暂态稳定性 10. 1习题 1) 什么是电力系统暂态稳定性? 2)电力系统大扰动产生的原因是什么? 3)为什么正常、短路、短路切除三种状态各自的总电抗不同?对单机无限大供电系统为什么Ⅰ<Ⅲ<Ⅱ?PⅠ·max>PⅢ·max>PⅡ·max? 4)短路情况下Ⅱ如何计算? 5)什么是加速面积?什么是减速面积?什么是等面积定则? 6)单机无限大供电系统,设系统侧发生三相短路,试问短路时功率极限是多少? 7)什么是极限切除角? 8)若系统发生不对称短路,短路切除后最大可能减速面积大于短路切除前的加速面积,系统能否暂态稳定?若最大可能减速面积小于加速面积发生什么不稳定? 9)分段法中t=0时和故障切除时过剩功率如何确定? 10)写出分段法的计算步骤。 11)为什么说欧拉法是折线法?每段折线如何确定? 12)改进欧拉法在何处做了改进? 13)写出改进欧拉法的计算步骤。 14)用图解说明单相自动重合闸为什么可以提高暂态稳定性? 15)试说明快关汽轮机汽门、连锁切机有何相同与不同? 16)提高电力系统暂态稳定的具体措施有哪些种?原理是什么? 17)提高电力系统暂态稳定的措施在正常运行时是否投入运行? 18)解列点的选择应满足什么要求? 19)异步运行时为什么系统需要有充足的无功功率?什么是振荡中心? 设已知系统短路前、短路时、短路切除后三种情况的以标幺值表示的功角特性曲线:=2、=0.5、=1.5及输入发电机的机械功率=1。 求极限切除角。 20)供电系统如图10- 1所示,各元件参数: 发电机G:P N=240MW,U N=10.5kV,,,X2=0.44,T J =6S,发 电机G电势以E‘表示;变器T1的S N为300MVA,U N为10.5/242kV,X T1=0.14 T2的S N为 280MVA,U N为220/121kV,X T2=0.14电力线路长l=230km每回单位长度的正序电抗X1= 0.42Ω/km,零序电抗X0=4X1。 P=220MW

电力系统电压稳定问题的初步研究

绪论 电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。电压稳定性问题与发电系统,传输系统和负荷系统都有关系。电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力 引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动; ④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。 电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。 为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压 稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策 电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。 电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。 负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研 页脚内容1

关于电力系统电压稳定性的研究

龙源期刊网 https://www.doczj.com/doc/6211073742.html, 关于电力系统电压稳定性的研究 作者:赵崇宇阎惊奇 来源:《中国科技博览》2015年第35期 [摘要]随着我国经济的飞速发展,电力作为经济发展的强劲推动力,对于其的研究已经比较深入。由于人们物质生活水平的不断提高,对于电力的需求更加的严格,而电力系统的电压稳定性更是我们现如今研究的重点,而如何有效的解决实际运营过程中电压不稳定的现象,是我们需要积极研究的课题。文章首先系统的分析了电力系统电压稳定性的基本理论与方法,以及一些电力系统运营的现状,然后对如何提高电力系统的稳定性作了一定的分析和探讨,最后分析得到一些提高电压稳定性的对策。 [关键词]电力系统电压稳定性电力需求 中图分类号:TM421.1 文献标识码:A 文章编号:1009-914X(2015)35-0328-01 伴随着人们对于电力的极大需求,使得现代化的电网产生了巨大的经济效益,也给电力系统的发展提供了契机。但是由于现在的电网规模的日益巨大,结构越来越复杂,使得其电力系统的不稳定性问题逐渐显现出来。由于电力系统在人们的日常的生产生活过程中已经占据了举足轻重的地位,一旦电力系统出现稳定性的破坏,一定会给正常的生产生活产生巨大的影响,导致严重的经济损失。电压稳定性作为电力系统稳定问题中最为重要的研究课题,目前在电力工业的飞速发展过程中,由于电压稳定问题导致的财产损失已经不胜枚举,使得电力系统所面临其稳定性的强大挑战,如何解决这一问题已经日益迫切了。 1 电力系统的电压稳定性 本节主要对电力系统的电压稳定性做了比较准确的定义和分析。考虑到部分的工程技术人员对于电压稳定问题相对比较不了解,本节会首先对其做一定的描述和分析。 1.1 电压稳定性的基本定义 电力系统维持其自身电压的能力即电压稳定性。电压的安全性主要是指在一些可控的运行问题中,还能够保证系统的稳定运行的能力。 1.2 电压崩溃的过程 由于系统在实际的运营过程中,其所负荷的电压会不断地变化和传递引起的衰落,当保证系统运营的工作人员无法控制这些电压变化时,就会使得系统电压进入一个极不稳定的工作状态,甚至导致电力系统的崩溃,即我们常说的电压崩溃。电压崩溃的主要特征是失去电力负载能力,无法自身恢复系统的正常电压以及其导致的区域化的停电情况。只有将用户工作点的电压保持在一个相对稳定的水平,才能保证系统的稳定性需求。

电力系统电压稳定性研究综述

电力系统电压稳定性研究综述 摘要: 电力需求的快速发展对电压稳定性提出了更高的要求,本文以对电压稳定性的研究为基础,综述电压稳定性的本质和机理, 以及电力系统电压稳定性的研究现状。研究用于防止系统电压失稳的控制策略及电力系统优化理论。 关键词: 电力系统;有功功率;电压稳定性 中途分类号:F407.61文献标识码:A-E文章编号:2095-2104(2011)12-015—01 近十几年经济快速发展,用电量急剧增加,给电力系统的安全运行带来了新的问题,一些大型电力系统相继发生大面积停电事故,网络建设速度跟不上用电量的增长速度,网架建设的薄弱也给电压稳定带来很大的安全隐患。同时,电力市场竞争机制使各种电源竞价上网, 给庞大的极限运行的网络带来很多不确定的因素,使电压稳定性问题成为影响电网安全的一大因素。迫切要求对电压稳定性问题进行深入研究。 1 电压稳定性的本质 1.1 电压稳定性机理 随着电力系统规模的扩大,系统越来越朝极限方式运行,电压稳定性面临新的挑战,此时其本质开始受到重视。有学者从线路和负荷的关系出发,认为电压稳定性的本质不仅跟无功功率有关,而且跟有功功率有关,特别是当系统在极限附近运行时,有功功率和负荷性质均对电压有重要影响,从某种意义上说,电压稳定性就是负荷稳定性。另外一部分学者从非线性系统理论出发,以分岔及中心流形理论来描述电压稳定性的本质,把电压稳定性划分为短期和中长期稳定性。 1.2 近期研究动态 由于电压稳定性与功角稳定性之间并不是孤立作用的,近期对电压稳定性的研究开始围绕短期电压稳定与功角稳定相互作用的机理展开。用微分代数方程的奇异性研究暂态电压崩溃的机理过程,动态负荷在时间常数、负荷功率、负荷成分等方面对功角稳定和电压稳定相互影响的关系。结论为: 对于时间常数小、有功负荷重、恒功率负荷比重大的动态负荷,一般由于其电压失稳而导致功角失稳。这种分析方法对暂态电压稳定和功角稳定之间的机理联系分析有一定的参考作用。 2 电压稳定性研究方法及现状 2.1 电压稳定性的研究方法

电力系统电压稳定性的基本概念

电压稳定基本概念 从80年代以来,电网运行越来越接近于极限状态。主要有几个原因: ?环保对电源建设和线路扩建的压力 ?重负荷区域的用电消费增加 ?电力市场下的新的系统负荷方式(潮流方式) ?。。。 无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾 用户负荷在增加<——> 电网扩建却面临着更大的问题 由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。 (介绍电压稳定的三本国际性的书籍:) 那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义: 电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。作者进一步解释道: ?电压:许多母线的电压发生明显的、不可控的下跌。 ?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降 低了功率的消耗,这是电压失稳的关键。 ?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差 分方程(离散变化)模拟。 ?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷 不是仅有的角色。 ?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是 电压失稳的开始。 ?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳 定十分重要。 与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。

无功功率的角色 可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。 假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o : o L L P R I R -=2& 同时,我们知道最大的传输功率发生在R L = R : R E P 42max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。 这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。 电压稳定VS 电力系统稳定 可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。 快速稳定问题:

电力系统静态稳定实验

姓名:郑疆 学号:2013141441114 班级:107 学院:电气信息学院

系统静态稳定实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。 图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验 在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验 按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。 表3-1

电力系统电压稳定问题分析研究

电力系统电压稳定问题分析研究 发表时间:2018-11-11T12:30:30.640Z 来源:《电力设备》2018年第20期作者:王有军 [导读] 摘要:在改革开放的新时期,随着社会经济的不断发展、电力需求的不断增长和电力网络系统的连接,受到各种因素的影响,电力系统的运行已经接近极限状态,电压的稳定问题日益凸显。 (国网滁州供电公司安徽滁州 239000) 摘要:在改革开放的新时期,随着社会经济的不断发展、电力需求的不断增长和电力网络系统的连接,受到各种因素的影响,电力系统的运行已经接近极限状态,电压的稳定问题日益凸显。电压的稳定一般是在静态和动态的情况下发生。本文将从电力系统电压稳定方面进行分析,针对具体的运行情况提出相应的措施。 关键词:电力系统;电压稳定;措施 引言 电力系统属于复杂的庞大非线性多变量动态系统,其中稳定与安全是电力系统运行的基本条件与必备条件。伴随着电网规模的不断扩大,以及电力市场化的深入改革,远距离的重负荷输电状况将会更加突出,这就使得电力系统运行将会愈来愈接近网络的极限输送能力。所以,鉴于国外出现的恶性电压崩溃事件与我国部分区域出现的电压失稳现象,强化电力系统的电压稳定及控制研究具有重要的现实意义与理论价值。 1电压稳定性 电压稳定性时整个电力系统正常运作的保障,它是電力系统在额定的运行条件下和遭受外部干扰后系统中所有的母线都能持续地保持可接受的电压的能力。当有外部干扰或改变系统条件下,从而造成了渐进的、不可控制的电压降落,那么电压就处于不稳定状态了。电压不稳定通常情况下是局部现象,但这容易导致连锁反应,从而导致整个电力系统的电压崩溃。在功角稳定性中,同步发电机的转矩平衡而决定其稳定性;在电压稳定性中,所有母线都持续保持可接受的电压时,功角失稳并不能影响电压的稳定性,但持续能力的消退会引起功角失稳,从而导致电压的不稳定。 2电力系统的电压稳定分析方法 2.1静态分析法 静态电压稳定分析主要以平衡点间的稳定性研究为主,其要求电力系统受到的干扰幅度尽可能小,或者电力系统的演化过程尽可能的缓慢,以至于可以忽略电力系统模型的动态化过程,这时的电力系统运行轨迹主要由稳定的平衡点所构成。一旦电力系统的实际功率难以平衡,即不存在所谓的稳定平衡点,则可以确定电力系统存在电压失稳的隐患,这一失稳机理能够通过Q-V曲线或者P-V曲线得到科学合理的解释。从本质上讲,静态分析法就是将网络传输极限功率时的实际运行状态,当作成静态电压稳定的最高极限状态。静态电压分析法重点从静态观点对电压崩溃机理进行揭示,用代数方程对系统微分方程进行代替,用静态模型对负荷进行描述。其能够显示出电压稳定的裕度指标,且能通过灵敏度分析法显示出电力系统的弱区域以及其他信息。静态分析法因方便快捷而得到了广泛的应用与发展,是当前电力系统的电压稳定研究中成效最为显著的一项,且相关研究成果已被应用到了电力领域之中。 2.2动态电压稳定分析方法 当系统受到小扰动时,可以利用动态电压稳定分析方法进行电压稳定性分析,该种分析方法主要是研究与有关元件的动态性分析,对于影响电压稳定性的因素,考虑到发电机、无功无常设备以及负荷存在的状态,其中还有OLTC技术对网络输送功率的影响,通过提高网络的最大输送功率,来保证电压的稳定性。电压稳定是一个动态问题,系统中的发电机和负荷的动态特性都对电压的稳定有一定的影响,小扰动分析方法的研究,建立动态化的分析模型,方便各元件的有效使用。 3电力系统电压稳定的有效控制 3.1变压器分接头的紧急控制 OLTC的应用主要是对母线中存在的电压负荷进行调节,保证系统的正常运行,能够将运行控制在一定的范围内,一般电力系统中存在的接头地方,不利于电压的稳定。如果电力系统发生紧急状态,OLTC就会起到一定的作用,防止电压系统的崩溃,电力系统中的分接头动作有利于增强电压的稳定性,当负荷处于一种恒定状态时,电压的变动会降低网络中功率的损耗。分接头紧急控制措施包括分接头调节闭锁和分接头的逆调节,在发生紧急的情况下,通过暂时停止或者是延缓电压的方式防止电压的崩溃。 3.2无功电源对电压稳定的控制 静止的无功发生器具有连续输出从额定感性无功到额定容性无功的能力,且具有输出无功电流谐波小、输出无功动态响应速度快的特点;装置具有完善的分级保护,在系统和装置自身故障时能够正确动作,对装置自身起到保护作用。静止的无功发生器是通过从电力网中吸收或者是向电力网中输送可连续条件的无功功率来达到维持电压平衡的。通常情况下,静止无功发生器吸收电网中的无功功率,当电力系统发生扰动时,静止无功发生器的功能发生转变,由吸收无功功率转变为输出无功功率。静止无功发生器的响应速度也高于其他电压调节装置,响应时间一般在0.1S-0.5S左右。 3.3电压安全监控系统 伴随着计算机技术发展的深入,其已经渗透到社会生活的方方面面,不无例外的也可以应用到保证电力系统的电压稳定性中去。我们可以通过建立电压安全监控系统,更加便捷和合理的调度电力需求,使得电力的输送更加符合实际的电力需求。还可以通过开发出功能更加强大电压安全监控软件,从而使得电压系统的安全监测更加的全面和有效,这样将会对电力系统的稳定运行起到积极地推动作用。使得电力系统更加及时发现导致电压失稳的原因,以便及时的将其排除,从而最大化电力企业的经济效益。 3.4科学规划设计 要提升电力系统的电压稳定及控制成效,就必须对电力系统进行科学合理的规划与设计。其中,对电压、负荷以及传输网络的规划,应尽可能的提升网络传输能力,强化负荷中线电源调控电压的能力。同时,电网结构还应确保运行过程中的灵活性,最大程度做好电网结构的无功功率规划工作等。 3.5切除负荷 当电力系统的电压出现失稳的情况时,可以通过切除负荷的方法制止电压发生崩溃,能够保证电力系统的安全运行。在电力系统中需

相关主题
文本预览
相关文档 最新文档