当前位置:文档之家› 薄壁组合结构的有限元快速建模技术

薄壁组合结构的有限元快速建模技术

薄壁组合结构的有限元快速建模技术
薄壁组合结构的有限元快速建模技术

薄壁组合结构的有限元快速建模技术

作者:北京航空制造工程研究所岳中第高光波

摘要:在并行设计过程中,面向数字化、无纸化的技术要求,如何实现复杂薄壁组合结构的有限元快速建模,是工程设计人员最为关心的重要技术问题之一。本文基于MSC的开放平台,综述了薄壁组合结构三维实体设计中FEA建模的特点与复杂性,探索了实现CAD/CAE集成与二次开发、FEA结构模型简化及快速建模的技术途径与方法。应用测试表明,它能有效地缩短薄壁组合结构的有限元建模周期,使有限元模型在简化上更能精确于CAD 数字化模型。

1 薄壁组合结构FEA建模的特点与复杂性

飞机与舰船都是复杂的薄壁组合结构,是MSC/NASTRAN系统的传统工程应用领域。如何快速有效地为MSC/NASTRAN系统建立有限元分析(FEA)模型,往往成为这些行业工程技术人员的日常工作。今天通过电子商务,我们能够容易地采购到现代化的数字化技术的基础平台,例如CAD/CAE/CAM/PDM等商用软件,包括IBM/CATIA、MSC/NASTRAN 等产品。在这方面,我们与国外同类公司相比,相差无几;但是,在应用这些基础平台解决复杂薄壁组合结构的分析方面,我们与国外同行确有不小的差距。例如,某些军民机要建立整机的有限元分析模型,需要集中近20多人,准备一年以上,而国外同行解决同样的问题所用的人力与时间却要少得多;在方案设计阶段要实现整机有限元分析模型,国外需要几个星期,而我们加班加点却还需要几个月。同样的软硬件技术环境,却有如此不同的结果,其原因在于我们缺乏在通用数字化平台基础上的实用开发技术与个性化的技术支持。

CAD软件商向我们推荐的整体解决方案,即三维CAD实体模型自动转换为三维有限元分析模型,在零件实体一级也许可以使用(例如,CATIA的FEA功能),但在复杂薄壁组合结构的部件级或整机级,这种方案往往导致几十万至几百万节点的FEA模型,而最终所得到的结果却无法让专家们相信它的正确性。在这种解决方案里,薄壁组合结构视为三维连续实体结构,CAD/3D模型直接转换为FEA/3D模型,“组合”变成“熔合”,“薄壁”变成“体元”,使结构的传力与力学特性受到扭曲。

正因为如此,复杂薄壁组合结构的FEA建模应该有它固有的力学方法和途径。我国工程技术人员利用薄壁组合结构(板杆梁)理论简化飞行器结构模型的基本实践,已经在航空航天领域极大地普及。自“九五”以来,我们按照传统的薄壁组合结构的模型简化方法,探索

了基于MSC/PATRAN的开发平台,利用CAD系统提供的数字化模型及薄壁组合结构的FEA特征设计,快速建立FEA模型的相关技术。部分实例表明,它能有效地缩短FEA建模周期,既能体现薄壁组合结构计算力学理论,也使FEA模型在几何上更加精确于CAD 模型。

2 薄壁组合结构的简化与FEA特征设计

在薄壁组合结构里,三类结构是非常典型的:盒段、框段、加筋壁板。这些典型结构具有特定的组合方式,可由一组参数描述,我们称为特征结构。一般来说,特征结构由外部的几何特征、内部的结构布置特征(剖分系数,或肋、框、长桁的位置)、材料与物理特性特征、边界协调特征等构成。飞行器与舰船的机体结构,大都可以通过这类特征结构来描述;不同特征结构将有不同的模式表达。这样,薄壁组合结构的FEA 建模变成按特征进行结构布置,结构组合变为按力学功能配置结构的有限元素。

盒段特征结构的几何特征是由区域定义所确定的边界确定(壁板与上下外表面的曲面片)。内部的结构布置特征是由长桁与肋的位置、长桁与肋板缘条以及支撑件的截面积、肋与翼展方向的壁板以及外表面曲面片蒙皮的厚度等参数确定的。材料与物理特性参数是由一组元素定义所要求的。边界协调特征将确定边界上的元素、节点特性以及与其它特征结构连接方式。不同类型的区域(四边形与三角形)决定着不同的盒段特征。飞行器的翼肋结构与舰船的双层结构,大都属于此类。

框段特征结构的几何特征是由一块外形曲面片(它可能是简单的等值面或直纹面,也可能是极为复杂的曲面)以及其梁框、长桁的位置参数确定的结构,其边界由区域定义所确定、并由对机身外形曲面进行区域求值得到的交线所围成。内部的结构布置是由长桁与框梁的位置、长桁的截面积、梁型材的类型、蒙皮的厚度等参数确定的。对于带开口的框段特征,具有与此相应的元素组合特性要求。飞行器的机身结构与舰船的单层船体结构,均属于此类。

加筋壁板特征结构是最简单的一类特征,机体结构的整体隔框,船体结构的舱壁板、单层甲板多属此类。

图1机翼特征结构图标图2 机身特征结构图标

图1、2 是飞机机体结构的特征结构图标,图3、4 是舰船船体结构的特征结构图标。针对这些特征结构的组合方法、受力特点及固有的规律性,我们容易建立参数化的FEA 模型,并自动产生它们的FEA 模型(见[1]、[2])。例如,对于双层底结构、双层舷结构、双层甲板结构等,其简化方法与飞机机翼结构类似,可采用CQUAD4,CTRIA3,CBEAM ,CROD ,CSHEAR 单元离散。主要的结构特征类型有:矩形特征、梯形特征、菱形特征、底边舱特征、顶边舱特征及双层舷特征等。对于单层底结构、单层舷结构及单层甲板结构等,其简化方法与飞机机身结构类似, 可采用CQUAD4,CTRIA3,CBEAM ,CROD 单元离散。主要的结构特征类型有:板、杆、梁组合特征;板、杆、肋骨板组合特征、单层底特征、单层矩型甲板特征等。

图3、双层结构特征图标图4、单层结构特征图标

3 基于结构特征的FEA快速建模技术

3.1 特征结构的FEA模型程序库

根据不同类型的特征结构,需要开发不同的FEA模型程序库。每个库由多个FEA模型程序组成;每个程序都实现特定区域形状的FEA模型的自动产生。如图1-4的结构特征图标所示,开发各个特征结构的FEA模型程序是最重要的基础工作。通过基本实践,其主要环节是:

·按照工程应用目标,定义一组结构特征;

·针对每一结构特征,定义特征参数,建立拓扑描述数据(包括:定义几何位置及曲面片的求值方法,定义结构组合的元素类型以及材料与型材特性参数,定义边界连接特征);·设计特征参数的输入接口与FEA模型的输出接口;

·使用MSC/PCL语言,开发结构特征的FEA模型生成的MSC/PCL类程序。

3.2 材料特性与物理型材特性库

我们通过与MSC合作建立了常用材料库。对于物理特性,建立了标准型材(如图5所示)的物理特性库及非标准型材的参数化物理特性模型,供用户调用。

图5 标准物理型材库的调用

3.3 几何特征的抽取与求值

基于MSC/PATRAN开放平台,实现CAD/CAE的紧密集成,最关键的是进行几何特征的抽取与求值。建立薄壁组合结构的FEA模型需要的是CAD 曲面/曲线模型,而现代CAD 系统提供的是三维实体CAD模型。因此,我们要:

·抽取三维实体CAD模型的外形曲面或控制截面的外形曲线,这需要按照规范在CAD系统里准备,作为CAD模型的子集;

·建立有效的几何求值方法,原则上讲,不同CAD系统就有不同的几何求值方法;

MSC/PATRAN建立了PCL可调用的几何求值函数,可对曲面求交线及计算投影点坐标;·对于一个结构特征来说,必需开发一个几何求值子程序,实现对边界的CAD曲面求值和区域内的结构网格坐标的求值;

·必需开发一个FEA组合元素族自动产生的子程序,它能完成对每种元素族的元素产生节点及连接参数、物理与材料特性等参数。

3.4 FEA快速建模运行流程

基于MSC /PATRAN 开发平台,我们建立了针对飞机结构特征的FEA自动化建模流程。它既能支持飞机方案设计的FEA建模,也能支持飞机详细设计的FEA建模。

图6表明了这两种基本流程。在方案设计阶段,飞机的外型是由通用的CATIA系统完成的。为了对结构进行优化布置与设计,往往要求在给定外型下对多种设计方案进行结构分析与比较,实现结构优化设计。这就要求在用户给出结构布置及元素的初始参数后快速给出FEA,结构元素的理想尺寸与物理特性参数将由结构优化程序综合给出。建立FEA的自动产生流程-QUICK方式,利用特性结构的参数模型文件,自动调用有关特征结构参数模型设计程序,便可形成方案设计的FEA模型。

图6. 飞机FEA快速建模的运行流程设计

在详细设计阶段,结构的外型与布置、元素的材料与物理特性参数均已完全确定,工程师需要进行结构的部件分析与整体分析,为生产与实验提供强度校核报告。建立产生FEA模型的图形交互定义的参数化流程,精确地定义特征结构的参数模型并进行修改,调用参数模型设计程序便能得到精确定义的FEA模型。

显然,建立飞机的CAD外形,特征结构区域求值,以及调用特征结构参数模型设计程序产生FEA模型,是流程的公用部分。建立FEA模型,对于飞机方案设计与详细设计来说具有不同流程。对于不同的特征结构,图形交互的用户界面相似,但其过程并不相同。

4 工程应用实例

我们在MSC/PATRAN的开发平台下,采用飞机特征建模技术,应用MSC/PCL以及相关二次开发工具,在武器装备的数字化建模技术研究方面取得了一定的进展,使FEA快速建模技术的支撑软件达到了预期的阶段开发目标。图7、8表明了用于军民机机翼的两个实例;图9表明了翼身组合及整机应用方面的前景;图10表明这种技术应用舰船的可行性。

图7 一种典型机翼的FEM模型

图8、由两个机翼段组成的机翼模型

图9、飞机机体的多部件组合建模

图10 船体结构的特征组合模型

在CAD模型处理方面,我们能够处理MSC/PATRAN 的CAD接口所接收的几何模型。同

时,也能接受用户准备的型值曲线,自动产生出CAD原始模型(机翼或机身结构的曲线或曲面模型),并在此基础上,进行用薄壁组合结构的FEA快速建模。

在飞机结构特征方面,我们已经开发了机翼与机身等机体结构的基本特征模型库,能够处理一般机翼与机身部件的有关建模问题。但是实际的飞机结构十分复杂,因此,这些特征只能是基本的。针对具体的飞机型号,应进行应用性开发,补充适当的特征结构,这是成功应用不可缺少的工作。

在美国MSC北京办事处的大力支持下,航空工业第一集团公司第625所与第603所积极协作,以机翼与部分机身结构的自动化有限元建模为基本应用对象,进行了CAD/CAE的集成测试,成功地实现了CATIA+PATRAN+NASTRAN的数字化转换。实践表明,这是实现航空工程CAD/CAE紧密集成与自动化的重要途径之一,可极大地提高飞机有限元建模效率。

5参考资料

1. 岳中第,“面向数字化设计的飞机快速有限元建模技术”,MSC年会文集,1998.10。2.岳中第等,“基于MSC平台实现CCS船舶结构有限元快速建模的设想”,2000.10。(end)

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

三维有限元建模方法的研究现状

三维有限元建模方法的研究现状 作者:陈琼 作者单位:复旦大学附属华山医院口腔科,上海,200040 刊名: 口腔医学 英文刊名:STOMATOLOGY 年,卷(期):2006,26(2) 被引用次数:18次 参考文献(25条) 1.李青奕;董寅生;陈文静预加载"L"形曲力学行为的有限元分析[期刊论文]-口腔医学 2004(01) 2.Hirabayashi M;Motoyoshi M;Ishimarn T Stresses in mandibular cortical bone during mastication:biomechanical considerations using a three-dimensional finite element method 2002(01) 3.许文翠;陈文静;董寅生垂直曲的力学行为的研究[期刊论文]-口腔医学 2002(01) 4.周学军;赵志河;赵美英包括下颌骨的颞下颌关节三维有限元模型的建立[期刊论文]-实用口腔医学杂志 2000(01) 5.李玲;张睿;于力牛基于CT断层影像的下颌骨及下牙列三维几何学仿真[期刊论文]-上海口腔医学 2000(04) 6.于力牛;常伟;王成焘基于实体模型的牙颌组织三维有限元建模问题探讨[期刊论文]-机械设计与研究 2002(02) 7.张富强;魏斌;李玲牙颌组织及修复体三维几何学、有限元模型的设计[期刊论文]-上海口腔医学 2002(03) 8.陈剑虹一种基于断层测量的快速反求系统关键技术研究[学位论文] 2000 9.魏洪涛;张天夫;曾晨光牙颌三维有限元模型生成方法的探讨[期刊论文]-白求恩医科大学学报 2000(02) 10.朱静有限元分析方法在口腔临床中的应用进展[期刊论文]-上海生物医学工程 2003(03) 11.Huiskes R;Chao EY A survey of finite element analysis in orthopedic biomechanics:the first decade [外文期刊] 1983(06) 12.王宁;吴凤鸣;周小陆金属烤瓷冠瓷颈缘与金属颈缘的三维有限元应力分析[期刊论文]-口腔医学 2004(04) 13.龚璐璐口腔修复生物力学中三维有限元法应用的研究进展及展望[期刊论文]-医用生物力学 2002(02) 14.Aydin AK;Tekkaya AE Stresses induced by different loading around weak abutments[外文期刊] 1992(06) 15.Verdonschot N;Fennis WM;Kuijs R Generation of three-dimensional finite models of restored human teeth using micro-CT techniques 2001(04) 16.张富强;魏斌;于力牛个性化牙颌组织三维有限元模型库的建立[期刊论文]-上海口腔医学 2004(02) 17.于力牛;尚鹏;王成焘适用于口腔修复学的模块化牙列有限元建模[期刊论文]-上海交通大学学报 2002(08) 18.于力牛;张睿;李玲模块化牙列三维有限元模型的建立[期刊论文]-上海口腔医学 2000(04) 19.Nagasao T;Kobayashi M;Tsuchiya Y Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models 2002(03) 20.李玲上下颌三维重建及有限元建模[学位论文] 2001 21.李志华;陈天云;刘剑上颌第一磨牙的三维有限元模型的建立[期刊论文]-实用临床医学 2001(01) 22.张彤;刘洪臣;王延荣上颌骨复合体三维有限元模型的建立[期刊论文]-中华口腔医学杂志 2000(05) 23.高勃;王忠义;施长溪牙冠表面形状测量造型方法[期刊论文]-实用口腔医学杂志 1999(04) 24.牛晓明;李江;吴清文利用CAD/CAE技术进行骨骼的计算机模拟仿真[期刊论文]-光学精密工程 1999(06) 25.蒋孝煜有限元法基础 1992

专业ABAQUS有限元建模经验笔记

基于ABAQUS的有限元分析和应用 第一章绪论 1.有限元分析包括下列步骤: 2.为了将试验数据转换为输入文件,分析者必须清楚在程序中所应用的和由实验人员提供的材料数据的应力和应变的度量。 3.ABAQUS建模需注意以下内容: 4.对于许多包含过程仿真的大变形问题和破坏分析,选择合适的网格描述是非常重要的,需要认识网格畸变的影响,在选择网格时必须牢牢记住不同类型网格描述的优点。 第二章ABAQUS基础 1.一个分析模型至少要包含如下的信息:离散化的几何形体、单元截面属性、材料数据、载荷和边界条件、分析类型和输出要求。 ①离散化的几何形体:模型中所有的单元和节点的集合称为网格。 ②载荷和边界条件: 2.功能模块: (1)Assembly(装配):一个ABAQUS模型只能包含一个装配件。 (2)Interaction(相互作用):相互作用与分析步有关,这意味着用户必须规定相互作用是在哪些分析步中起作用。 (3)Load(载荷):载荷和边界条件与分析步有关,这意味着用户指定载荷和边界条件是在哪些分析步中起作用。 (4)Job(作业):多个模型和运算可以同时被提交并进行监控。 3.量纲系统 ABAQUS没有固定的量纲系统,所有的输入数据必须指定一致性的量纲系统,常用的一致性量纲系统如下:

4.建模要点 (1)创建部件:设定新部件的大致尺寸的原则必须是与最终模型的最大尺寸同一量级。(2)用户应当总是以一定的时间间隔保存模型数据(例如,在每次切换功能模块时)。(3)定义装配: 在模型视区左下角的三向坐标系标出了观察模型的方位。在视区中的第2个三向坐标系标出了坐标原点和整体坐标系的方向(X,Y和Z轴)。 (4)设置分析过程: (5)在模型上施加边界条件和荷载: 用户必须指定载荷和边界条件是在哪个或哪些分析步中起作用。 所有指定在初始步中的力学边界条件必须赋值为零,该条件是在ABAQUS/CAE中自动强加的。 在许多情况下,需要的约束方向并不一定与整体坐标方向对齐,此时用户可定义一个局部坐标系以施加边界条件。 在ABAQUS中,术语载荷通常代表从初始状态开始引起结构响应发生变化的各种因素,包括:集中力、压力、非零边界条件、体力、温度(与材料热膨胀同时定义)。

MSC Patran与LR ShipRight有限元建模技术的分析与比较

MSC.Patran与LR.ShipRight有限元建模技术的分析与比较 作者:江南造船集团朱彦 摘要:本文基于散货船CSR 探讨使用MSC.Patran 与LR.ShipRight 两款软件在进行有限元分析中的建模技术,并比较两款软件的特点以及相互联系。 关键字:Patran、ShipRight、散货船、CSR、有限元建模 1. 前言 在船舶详细设计阶段,对船体结构进行应力集中以及疲劳强度评估的一个有效的手段就是采用有限元分析。有限元分析的一般方法为选择有限元分析软件、确定单元形式、建立几何模型、网格划分、确定边界条件、判断载荷工况等,具体又可归纳为四个步骤: 1) 建立有限元模型; 2) 确定载荷及边界条件; 3) 进行详细应力应变评估(例如细化网格以评估高应力区域); 4) 对关键部位的结构进行疲劳强度评估。 在以上步骤中能否建立合理有效的有限元模型是前提条件,模型质量的好坏,特别是网格的类型与划分方法,直接影响后续的分析结果。目前常用的有限元分析软件主要有 MSC.Patran\Nastran、LR.ShipRight、基于Patran 的CCS.TOOLS、DNV.Sesam 等,本文以散货船CSR 有限元建模为例,探讨Patran 与ShipRight 两种软件的建模技术和异同点。 2. Patran 与ShipRight 的简介 MSC.Patran 作为一个优秀的前后置处理器,具有高度的集成能力和良好的适用性,模型处理智能化、自动有限元建模、分析的集成、用户自主开发新功能、分析结果的可视化处理等等是其典型的特征,它提供了功能全面、方便灵活的可满足各种精度要求的复杂有限元的建模功能,其综合全面先进的网格划分技术,为用户根据不同的几何模型提供了多种不同的生成和定义的有限元模型工具。 ShipRight 是LR 自主开发的一款基于CSR 的有限元分析应用软件,具有很强的针对性,

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

有限元分析过程

有限元分析过程可以分为以下三个阶段: 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。 原始数据的计算模型,模型中一般包括以下三类数据: 1.节点数据: 包括每个节点的编号、坐标值等; 2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据 3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据. 建立有限元模型的一般过程: 1.分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点: a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律 2.几何模型建立 几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。 3.单元类型选择 划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。

薄壁组合结构的有限元快速建模技术

薄壁组合结构的有限元快速建模技术 作者:北京航空制造工程研究所岳中第高光波 摘要:在并行设计过程中,面向数字化、无纸化的技术要求,如何实现复杂薄壁组合结构的有限元快速建模,是工程设计人员最为关心的重要技术问题之一。本文基于MSC的开放平台,综述了薄壁组合结构三维实体设计中FEA建模的特点与复杂性,探索了实现CAD/CAE集成与二次开发、FEA结构模型简化及快速建模的技术途径与方法。应用测试表明,它能有效地缩短薄壁组合结构的有限元建模周期,使有限元模型在简化上更能精确于CAD 数字化模型。 1 薄壁组合结构FEA建模的特点与复杂性 飞机与舰船都是复杂的薄壁组合结构,是MSC/NASTRAN系统的传统工程应用领域。如何快速有效地为MSC/NASTRAN系统建立有限元分析(FEA)模型,往往成为这些行业工程技术人员的日常工作。今天通过电子商务,我们能够容易地采购到现代化的数字化技术的基础平台,例如CAD/CAE/CAM/PDM等商用软件,包括IBM/CATIA、MSC/NASTRAN 等产品。在这方面,我们与国外同类公司相比,相差无几;但是,在应用这些基础平台解决复杂薄壁组合结构的分析方面,我们与国外同行确有不小的差距。例如,某些军民机要建立整机的有限元分析模型,需要集中近20多人,准备一年以上,而国外同行解决同样的问题所用的人力与时间却要少得多;在方案设计阶段要实现整机有限元分析模型,国外需要几个星期,而我们加班加点却还需要几个月。同样的软硬件技术环境,却有如此不同的结果,其原因在于我们缺乏在通用数字化平台基础上的实用开发技术与个性化的技术支持。 CAD软件商向我们推荐的整体解决方案,即三维CAD实体模型自动转换为三维有限元分析模型,在零件实体一级也许可以使用(例如,CATIA的FEA功能),但在复杂薄壁组合结构的部件级或整机级,这种方案往往导致几十万至几百万节点的FEA模型,而最终所得到的结果却无法让专家们相信它的正确性。在这种解决方案里,薄壁组合结构视为三维连续实体结构,CAD/3D模型直接转换为FEA/3D模型,“组合”变成“熔合”,“薄壁”变成“体元”,使结构的传力与力学特性受到扭曲。 正因为如此,复杂薄壁组合结构的FEA建模应该有它固有的力学方法和途径。我国工程技术人员利用薄壁组合结构(板杆梁)理论简化飞行器结构模型的基本实践,已经在航空航天领域极大地普及。自“九五”以来,我们按照传统的薄壁组合结构的模型简化方法,探索

有限元建模基本原则

?确保精度 ?控制规模 ?确保精 度: 表格1:误差分析及处理 即使采用较少的单元和较低的差值函数阶次,也能获得较满意的离散精度。例如,假设场函数在整个结构内的分布是二次函数,则用一个二次单元离散就能得到场函数的精确解。如果场函数是线性或接近于线性分布,则用线性单元离散也能得到很好的离散精度。但实际问题的场函数往往很复杂(如存在应力集中),在整个结构内很难遵循某一种函数规律,某些部位可能按高阶函数规律分布,某些部位又可能接近低阶函数的性质。故,在划网格时,结构内的不同部位可能采用不同密度和阶次的网格形式。 综上所述:提高精度的措施: 1?提高单元阶次(单元插值函数完全多项式的最高次数) 阶次越高,插值函数越能逼近复杂的真实场函数,物理离散精度越高。 其次,高阶单元的边界可以是曲线或曲面,因此在离散具有曲线或曲面边界 的结构时,几何离散误差也较线性单元小。所以当结构的场函数和形状较复杂时,可以采用这种方法来提高精度。 单元的阶次越高,收敛速度越快。 2?增加单元数量 等同于减小单元尺寸,尺寸减小时,单元的插值函数和边界能够逼近结构的 实际的场函数和实际边界,物理和几何离散误差都将减小。当模型规模不太大时, 可以采用这种方法提高精度。 但是值得注意的是:精度随着单元数量增加是有限的,当数量增加到一定程

度后,继续增加单元数量,精度却提高甚微,再采用这种方法就不经济了。实际操作时可以比较两种单元数量的计算结果,如果两次计算的差别较大,可以继续增加单元数量,否则停止增加。 3.划分规则的单元形状 单元形状的好坏将影响模型的局部精度,如果模型中存在较多的形状较差的单元,则会影响整个模型的精度。 直观上看,单元各条棱边或各个内角相差不大的形状是较好的形状。 4.建立与实际相符的边界条件 如果模型边界条件与实际工况相差较大,计算结果就会出现较大的误差,这 种误差有时甚至会超过有限元法本身带来的原理性误差。 可采用组合结构模型法,这种方法可以较好地考虑影响较大的结构间的相互作用,避免人为设置边界条件带来的误差。或采用一些测试结果,将计算值与测试值进行比较,以逐步将边界条件调整合理。 5.减少模型规模 计算误差与运算次数有关,运算次数越多,误差累计就可能越大,所以采取适当的措施降低模型规模,减少运算次数,也可能提高计算精度。 模型规模直观上可以用节点数和单元数来衡量,一般讲,节点数和单元数越多,模型规模越大,反之则越小。 在估计模型规模时,除考虑节点的多少外,还应考虑节点的自由度数,总刚度矩阵的阶次等于节点数与其自由度数的乘积,即结构的总自由度数。 减小模型规模的方法: (1)对模型进行处理:建立几何模型时,并不总是照搬结构的原有形状和尺寸,有时要做适当的简化和变换处理。合理的近似和变换可以降低模型规模,而仍然保持一定的工程精度要求。几何模型的处理方法有:降维处理、细节简化、等效变化、对称性利用和划分局部结构等。 此处很重要,参考《有限元法-原理、建模及应用》第二版.杜平安编著154 页.左下角 (2)采用子结构法:将一个复杂的结构从几何上分割为一定数量的相对简单的子结构,首先对每个子结构进行分析,然后将每个子结构的计算结果组集成整体结构的有限元模型。这种模型比直接离散结构所得到的模型要相对简单的多,从而使模型规模得到控制。这种方法适用于静力分析和动力分析。还有三种方法,不适合初级学者,待续… 看abaqus视频时了解到,对于三角形单元,一般要用二阶单元来提高精度,二阶单元会增加自由度数;但对于四边形或六面体单元,一般一阶单元已有很好的精度,不必使用二阶单元。

基于有限元软件ABAQUS的组合结构分析

基于有限元软件ABAQUS的组合结构分析 摘要:本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板组合梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 关键词:组合梁、有限元 Abstract: this paper through the large finite ABAQUS software engineering simulation of the corrugated steel beams webs, a finite element model and with the test data as compared to test the validity of the finite element analysis. Key words: the composite beams, finite element 0引言 有限元数值分析方法起源于20世纪50年代飞机结构分析,并由其理论依据的普遍性己被推广到其它很多领域。在结构分析领域,几乎所有的弹塑性结构静、动力学问题都可以用它求得满意的数值结果。桥梁结构作为众多结构中的一种,利用有限元数值方法分析其力学特性同样可以得到很好的数值分析结果。 波纹钢腹板预应力组合箱梁桥是20世纪80年代起源于法国的一种新型组合桥梁,此类新型结构与传统的混凝土箱梁相比有以下优点:(1) 自重降低,抗震性能好。腹板采用较轻的波形钢板,其桥梁自重与一般的预应力混凝土箱梁桥相比大为减轻,地震激励作用效果显著降低,抗震性能获得一定的提高。(2) 改善结构性能,提高预应力效率。波形钢腹板的纵向刚度较小,几乎不抵抗轴向力,因而在导入预应力时不受抵抗,从而有效地提高预应力效率。(3)充分发挥各种材料特性。在波形钢腹板预应力箱梁桥中,混凝土用来抗弯,而波形钢腹板用来抗剪,几乎所有的弯矩与剪力分别由上、下混凝土翼缘板和波形钢腹板承担,而且其腹板内的应力分布近似为均布图形,有利于材料发挥作用。[1-5] 本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板试验梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 1 有限元建模 1.1单元选择 有限元工程模拟软件的实体单元库包含二维和三维的一阶插值单元和二阶插值单元,积分方式有完全积分和减缩积分。三维实体单元有四面体和六面体。四面体单元有4节点12自由度和10节点30自由度的四面体单元,六面体单元

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

结构分析中有限元法课程建设的问题和方式

结构分析中有限元法课程建设的问题和 方式 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 随着复杂工程结构及巨型结构的大量出现,在土木、水利等工程专业本科生中加强结构分析能力(包括电算能力)的培养显得尤为迫切。笔者将结构力学中的“矩阵位移法”和弹性力学中的“有限元法”有机结合,按照培养创新型高级专门人才的要求建设了结构分析中的有限元法课程,精心编写并出版了该课程所用的教材和电算程序。根据该课程的特点,对课堂教学、上机实习和考试等教学环节进行了改革,充分发挥教师的主导作用和学生的主体作用,取得了良好的教学效果。 关键词:结构分析;有限元法;课程建设 中图分类号:G6423文献标志码:A文章编号: 10052909(2015)02005304 一、加强结构分析能力的培养是课程建设的初衷 在土木、水利等本科工程专业的教学过程中,通过前期基础课程和专业基础课程的学习,学生初步具备了对计算工作量不大的简单结构进行结构分析的能

力。如通过结构力学课程经典理论的学习,学生可以对静定平面杆系结构进行分析,也可用力法或位移法等方法分析未知量较少的超静定平面杆系结构,计算其内力和位移。通过弹性力学基本理论的学习,学生可求出几何形状规则(如矩形或圆形)、边界条件简单(如四边固支或四边铰支)的结构在单一荷载(如均布荷载)作用下的内力解析值。 随着各行各业现代化建设的深入开展和城镇化建设的加速推进,房地产和土木工程建筑行业已成为国家的重要支柱产业,与之相伴的是大跨度结构、高层高耸结构等各种复杂结构和巨型结构的出现。这些结构中,有些是形状、边界、荷载等较复杂的连续体板壳结构或实体结构,有些虽是杆系结构,但却是空间杆系结构或计算工作量庞大的平面杆系结构,还有些是杆系结构与连续体结构的组合体。无论对以上哪种结构进行分析,都必须利用数值分析法才能进行,学生既有知识已明显不足。 在一般本科院校开设的结构力学课程体系中,通常都要介绍适合数值分析的矩阵位移法。但有的仅讲述了矩阵位移法基本原理而未涉及程序使用,有的虽然让学生使用了部分程序,却较少或几乎不涉及对空间杆系结构的分析。实际工程中较为复杂的连续体结

abaqus有限元建模小例子

问题一: 工字梁弯曲 1.1 问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa 泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2 ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6 MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H -96.182*70000 -97*70000 -6.9165=-70000*98.807 -1/2H 95.789*70000 92*70000 6.9165

组合结构有限元分析

组合结构的有限元分析 一、分析目的 本分析包含了铜管、夹具、螺栓和螺母的组合结构,在螺栓上施加一个预紧力,观察螺栓和铜管的应力、变形以及安全系数。再在铜管上施加一个垂直向下的载荷,观察铜管在被夹紧并受载荷是的应力、变形及安全系数。并且在分析的过程中掌握接触面设置、螺栓预紧力施加、接触区域网格细化方法等一系列问题. 二、模型特点 1、网格划分 模型采用的单元类型是solid186、solid187号单元、surf154号单元、conta174号单元等。对圆柱面进行映射网格划分以得到很一致的网格。如图所示。 具体网格单元信息如下: Number of total nodes = 6746 --- Number of contact elements = 640 --- Number of spring elements = 96 --- Number of solid elements = 2633 --- Number of total elements = 3390 2.接触面信息: 1) 铜管和体的接触面定义为frictional,摩擦系数为0.4 2 ) 螺帽和体侧面的接触为:no separation 3) 螺母和体侧面的接触为:no separation 4) 螺杆和螺母的接触为:bond

3、载荷和约束的施加: 1)螺栓示只受预紧力载荷和约束施加 2) 在 钢管上施加的载荷如图所 示 三.结果分析比较 1. 当铜管在竖直方向受力不受力时,螺杆的应力和变形与安全系数如下: 螺杆变形图 螺杆应力图 螺杆安全系数图 2 当铜管在竖直方向受力为0N 时,铜管的应力和变形与安全系数如下:

试验三结构梁的有限元分析

实验三结构梁的有限元分析 (一) 实验目的 1.了解ANSYS在有限元分析中的作用; 2.理解ANSYS的工作机理; 3.掌握ANSYS的建模及分析方法; 4.掌握梁结构的有限元分析方法。 (二) 实验设备和工具 装有ANSYS软件的计算机 (三) 实验原理 1.有限元建模的基本原则 建模时需要考虑两条基本原则:一是保证计算结果的精度,二是控制模型的规模。在保证精度的前提下,减小模型规模是必要的,它可在有限的条件下使有限元计算更好、更快地完成。 (1) 保证精度原则 ① 适当增加单元数量,即划分比较密集的网格。实际计算时,可以比较两种网格的计算结果,如果相差较大,可以继续增加单元数量。如果结果变化不大,则可以停止增加。 ②在划分网格特别是在应力精度要求很高的区域时尽量划分比较规则的网格形状。一般情况下,使单元形状为正多边形(等边三角形或正方形)和正多面体。 (2) 控制规模原则 模型规模是指模型的大小,直观上可用节点数和单元数来衡量。 ①可以通过控制节点和单元数量来控制模型规模。此外,模型规模还受节点和单元编号的影响。 ② 在估计模型规模时,除了考虑节点的多少外,还应考虑节点的自由度数。 2.有限元建模的一般步骤 不同问题的有限元建模过程和内容不完全相同,在具体实施分析之前,首先弄清分析对象的几何形状、约束特点和载荷规律,以明确结构型式、分析类型、计算结果的大致规律、精度要求、模型规模大小等情况,以确定合理的建模策略和分析方案。 3.形状处理方法 几何模型对分网过程、网格形式和网格数量都有直接影响。几何建模时,对原有结构进

行适当处理是必要的。 (1) 降维处理:对某些结构作近似处理,按平面问题或轴对称问题来计算,把三维问题简化或近似为二维问题来处理。 (2) 细节简化:结构中存在的一些相对尺寸很小、处于结构的非高应力区的细节,如倒圆、倒角、退刀槽、加工凸台等,可以简化处理。 (3) 局部结构的利用:当有些结构尺寸很大,但受力或同时受力的却是某些相对很小的局部,结构只是在局部发生变形,应力也分布在局部区域内时,可以从整个结构中划分出一部分进行分析。 (4) 对称性的利用:当结构形状和边界条件具有某种对称性,应力和变形呈相应的对称分布时,可以只取出结构的一半计算。 4.单元类型 单元类型的选择应根据分析类型、形状特征、计算数据特点、精度要求和计算条件等因素综合考虑。在结构分析领域,不同的结构类型需要相应的单元进行离散。因此单元通常是按结构类型进行分类的,即根据结构的特点选择相应单元。 5.单元特性 单元特性定义了单元内部数据,包括材料数据、截面数据等。 (1) 材料特性 材料特性用于定义分析对象的材料在力学、热学等方面的性能,如弹性模量E、泊松比、密度、导热系数、热膨胀系数等。 (2) 物理特性 物理特性用于定义单元物理参数或辅助几何特征,在ANSYS中称为实常数。 (3) 截面特性 杆、梁这类一维单元需要定义其截面特性。杆件结构只承受拉压,其截面特性只有截面积。梁结构可以承受拉压、弯曲和扭转,其截面特性包括截面积、主惯矩、极惯矩等截面性质。 (4) 单元相关几何数据 某些单元具有一些相关几何数据,以对单元作进一步说明。 6.网格划分原则 (1) 网格数量 网格数量的多少主要影响以下两个因素。 ①结果精度 网格数量增加,结果精度一般会随之提高,但当网格数量太大时,数值计算的累积误差反而会降低计算精度。 ②计算规模 网格数量增加,将会增加计算时间。并不是网格分得越多越好,应该考虑网格增加的经济性,在实际计算时应权衡两个因素综合考虑。 (2) 网格疏密 网格疏密是指结构不同部位采用不同大小的网格,又称相对网格密度。应力集中区域采用较密集的网格,而在其它非应力集中区域,则采用较稀疏的网格。采用疏密不同的网格划分,既可保持相当的精度,又可使网格数量减小。 (3) 单元阶次 采用高阶单元可以提高计算精度,但高阶单元的节点较多,使用时也应权衡精度和规 模综合考虑。 (4) 网格质量

相关主题
文本预览
相关文档 最新文档