当前位置:文档之家› 大学物理实验讲义

大学物理实验讲义

大学物理实验讲义
大学物理实验讲义

1.横梁

2.刀口

3.支柱

4.刀垫

5.游码

6.游码标尺

7.指针

8.指针标尺

9.平衡螺丝 10.水平仪 11.底盘 12.调节螺丝 13.秤盘 14.挂钩 15托架 16.重心螺丝 17.止动旋钮

实验 一 密度的测量

实验目的

实验介绍测量固体和液体密度的两种方法,流体静力称衡法和比重瓶法,通过实验除了要掌握这两种方法外,还要熟练地掌握物理天平的调整和使用方法。 实验仪器

物理天平(附砝码)、烧杯、温度计、酒精、蒸馏水、待测物。 仪器介绍

物理天平的构造如实图1所示,在横梁的中央和两端各有一个刀口(图中2),中间的刀口安放在支柱顶端的刀垫上,刀垫用玛瑙或硬质合金钢制造,两端的刀口用于悬挂称盘,横梁上装有可以移动的游码(图中5),用于称量1克以下的质量,(游码从横梁的左端移到右端相当于在右盘中加了1克的砝码),横梁等分为20大格,每大格又分为5小格,因此,游码每移动一小格相当于在右盘中加10毫克的砝码,即这种天平的分度值10毫克。常见物理于平的最大称量为0.5千克(即500克)。横梁 中部还装有竖直向下的指针(图中7) ,与支柱上的指针标尺(图中8)相对应,用以指示天平的平稳位置及灵敏度,指针的中间有一重心螺丝,它的位置在出厂时已经调整好了,不得任意去旋动它;横梁两侧还有用来调整零点的螺杆、螺母(图中9),支柱后面装有水平仪,可通过调节底座上的调节螺丝(图中12)来调节天平底板水平、支柱铅直,在天平的底座上,左侧称盘的上方还有一个可以放置物品的托架(图中15)。

标志天平规格性能的除了“最大称量”以外,还有游标的分度值以及“感量”或“灵敏度”。“感量”是指使指针在指针标尺上偏转一格时在称盘中所加的质量值,感量的倒数叫“灵敏度”,即称盘中每加1克(或0.1克)时,指针的偏转格数,利用灵敏度可以很快判断需要把游码移动几格就能使天平达到平衡,从而提高测量的效率。 物理天平的操作步骤如下:

1、调节底座螺丝,直到水平仪中的气泡位于水平仪中间,则说明天平座位水平了、支柱铅

直和刀垫水平了。

2、调节零点,把称盘挂在横梁两侧的刀口上,并把游码放在零位,然后将止动旋钮(图中

16)顺时针方向旋转支起横梁,用水平调节螺丝调好天平的平衡,调整后即把止动旋钮逆时针转动复位,放下横梁。

3、称衡时,物体放在左盘,砝码放在右盘,进行称衡,注意,加减砝码和移动砝码,都必

须使用镊子,严禁用手!选用砝码时,应遵循:“由大至小,逐个试用,逐次逼近”的原则,直至最后利用游码使天平平衡。每次增减砝码,均需先放下横梁,要判断天平是否平衡的时候,才支起横梁称衡,平时的大部分时间都要放下横梁!切记!以保护好天

图1 物理天平的构造

平刀口不受磨损,保证天平有足够的灵敏度。

4、完成全部称衡后,用止动旋钮放下横梁,并把称盘摘离刀口,游码复零,砝码归盒盖好。 实验原理

设物体的质量为m ,体积为V ,则其密度ρ为

ρ=m/V (1-1)

从上式看出,要测量物体的密度,就要称出其质量和确定其体积。物体的质量可用天平称衡,而对外形不规则的固体,其体积难以确定。下面介绍两种可以在不需要确定体积的情况下测出固体和液体的密度。

(1)流体静力称衡法 ①固体密度的测定

对于外形不规则且不溶于水的固体,采用液体静力称衡

法。设用物理天平称衡一外形不规则的固体,称得其质量为m ,然后将此固体完全浸入水中称衡,如图1-2所示,

称得其质量为m 1,则固体在水中所受浮力F 为 F=(m -m 1)g

式中g 为重力加速度,m 1g 称为该固体浸入水中的视重。设固体的体积为V ,水的密度为ρ0,根据阿基米德原理,固体在水中所受浮力等于它所排开水的重量,即F=ρ0Vg

因此有: V=(m -m 1)/ρ0 (1-2)

将(1-2)式代入(1-1)式,即得:

ρx1=m ρ0/(m -m 1) (1-3)

因水的密度与温度有关,故应根据实验时的水温,在附表中查出相应的ρ0值。

②液体密度的测定

根据(1-3)式,若将该物体再浸入待测液体中进行称衡,设称得其视重为m 2,则

(m -m 2)g=ρx2Vg (1-4) 由(1-2)式和(1-4)式可得:ρx2=ρ0(m -m 2)/(m -m 1) (1-5) 因此只要再测出m 2,根据(1-5)式,即可求得该液体的密度ρx2

(2)用比重瓶(比重瓶形状如图1-3)测液体的密度

设空比重瓶的质量为m 1,充满密度为ρx3待液体时的质量为m 2的蒸馏水时的质量为m 3,比重瓶在该温度下容积为V ,则

ρx3=(m 2-m 1)/V , V=(m 3-m 1)/ρ0

ρx3=ρ0(m 2-m 1)/(m 3-m 1) (1-6)

ρ0可根据实验时的水温从附表中查出,由上式即可求出待液体的密度ρx3。 实验内容与步骤:

一、熟悉物理天平的结构原理及其使用方法和操作规程。调整天平的水平,并检测其零点和灵敏度C 。记录天平的感量: 二、测量铜的密度:

(1)用游标卡尺测量规则铜管的密度:铜管的内径d 、外径D 和高H ,计算铜管的体积V ,计算其密度 及标准差。

表1测量规则铜管的体积和质量

图1-2

)(422d D H V -=

V

m =ρ

222222)2

()2

()(

)(

4

)(

)(

d

d

D

D

H

H

m

m

V

V

m

m

σσσσπ

σσρσρ+++=

+=

结果:铜的密度为:ρ=

(2)用流体的静力称衡法测量固体铜的密度,计算实验结果及标准差和不确定度,并与规则铜管的密度比较。

计算公式:ρ铜=ρ水m/(m -m 1)

式中:m —待测物在空气中的质量 m 1—待测物在水中称衡的质量 ρ水—当时水温度下水的密度。

表2用流体的静力称衡法测量固体铜的密度:

2

122212

1212

12

2

)()()()

()()(m m m m m m m m m m ?+?-?-=

??

??? ????+???? ????=?水

ρρρρ

结果:铜的密度为:ρ= 三、测液体密度:

(1)用静力称衡法测液体密度 待测物:酒精 借用固体:铜圆柱的m 、 m 1。 计算公式:ρ液=ρ水(m -m 2)/(m -m 1)

式中:m —借用固体在空气中的质量;m 1—借用固体在水中称衡的质量;m 2—借用固体在液体中称衡的质量;ρ水—当时水温度下水的密度;m 1、m 2可利用表2中的结果。

表3 用流体的静力称衡法测量固体铜的密度:

计算:ρ酒精ρ水-2-1误差:

2

221212122122

1222

22

12122

)()-()()-()()-()-()(??)(??)(??m m m m m m m m m m m m m m m m m ?+?+?=

????? ??+????? ??+???? ??=?水

ρρρρρ

结果酒精的密度为:ρ酒精=

(2)用比重瓶法测量液体的密度。 设空比重瓶的质量为m 1,充满密度为ρ液待液体时的质量为m 2,充满和该液体同温度的蒸馏水时的质量为m 3,比重瓶在该温度下容积为V ,则

表4用流体的静力称衡法测量固体铜的密度:

空瓶质量m 1(g) Δm 1(g) 充满液体时的质量为m 2(g) Δm 2(g) 充满蒸馏水时的质量为m 3(g) Δm 3(g)

计算:ρ液=ρ水(m 2-m 1)/(m 3-m 1)

误差: 2

322122213212322

132

32

3222

2212

1)m ()m m ()m ()m m ()m ()m m ()

m m ()m (m )m (m )m (m ?-+?-+?-?-ρ=??

??? ???ρ?+????? ???ρ?+????? ???ρ?=ρ?水

结果为:ρ液=

实验二 用惠斯通电桥测电阻

实验目的

1、了解惠斯通电桥测电阻的基本原理及使用方法;

2、学会组装电桥,并用之测量电阻。 实验仪器

惠斯通电桥、直流电源、检流计、、电阻箱、待测 电阻、开关和导线等。 实验原理

电桥是电磁学基本测量仪器之一,它主要用来测量 电阻的阻值、线圈的电感量和电容器的电容及损耗等。它的测量原理是基于电位比较的方法(也即平衡法),因此桥路中应包括:建立电位的电源;作为比较的标准元件(如标准电阻、标准电容等);电位差检测器(如检流计、示波器等)。下面介绍测电阻所常用的电桥电路。

电桥电路简称电桥,四个电阻R 0、R 1、R 2、R 3(称为桥臂)接成一个闭合导体系统(如图2-1)。这系统的两个对角互相连接,且在一对对角之间接入检流计G 、限流电阻R G 和开关K G ,而在另一对角间接入电源、开关K E 和限流电阻R E ,就构成了所谓的“桥路”。如果各电阻任意选定的,那么桥路b,d 两端的电压 并不相等,检流计中就会有电流流过,显示桥路不平衡,只有在

R 2/(R 1+R 2)=R 3/(R 3+R 0) (2-1)

的情况下,b,d 两点的电位才相等,电桥达到平衡。如果其中R 1=R x 是未知电阻,则利用分比定理简化后可得

R 1=R x =(R 2/R 3)·R 0 (2-2)

从上式可知,待测电阻R x 等于R 2/R 3与R 0的乘积(或者R 0/R 3与R 2的乘积)。也就是说在三个已知电阻中,实际上只要知道一电阻的数值(必须是R x 邻近的一个电阻),而其它两个电阻只需知道它们的比值就能求得未知的电阻了。通常称R 2、R 3为比例臂,R 0为比较臂(或R 0、R 3比例臂,相应的R 2为比较臂)。所以,电桥由四臂(测量臂,比较臂和比例臂)及检流计,电源三部分组成。与检流计串联的限流电阻R G 和开关K G 的作用是在调节电桥平衡时保护检流计,不使其在长时间内有较大的电流流过而遭损。随着电桥的逐渐趋于平衡,R G 的值可相应减小,直至为零,此时K G 可较长时间接通。

图2-1

滑线式(又叫板式)惠斯登电桥的结构如图2-2所示,其基本特征是采用一根均匀电阻丝AC 作比率臂电阻R 1和R 2,而D 点是可沿电阻丝AC 滑动的。

因为电阻丝处处均匀,所以比率臂的比率为:R 1/ R 2= l 1/ l 2,所以,、滑动触头D ,使D 点位置改变,当电桥平衡时,R x = l 1 R 0/ l 2,由于l 1+ l 2= l 为定长,故有R x = l 1 R 0/ (l -l 1),实验时适当选择R 0阻值,然后通过改变l 1长度来测出R x 。

实验内容与步骤:

(1)用滑线式惠斯登电桥测量电阻R x

①按图2-3接好电路,找老师检查电路。②把检流计G 的指针调零(要求把指针、零刻度线、指针在镜子的像的三线重合)。③读出待测电阻的标称值,填到记录表格左上角的格中,然后选取R 0的大小与待测电阻的标称值成一定的比例(例如取1:1)。④接通电源,将触头D 由AC 线的中点稍向右端(或左端)移动,并轻快地按一下D 键(一触即离),同时注意观察检流计指偏转方向,然后把触头D 由AC 中点稍向左端(或右端)移动,若按下触头D 时,检流计指针偏转与上一不同,说明电路正常,可以进行实验。⑤按住触头D ,并在AC 线滑动,使检流计指针指零。 ⑥在米尺上读出l 1与l 2,然后断开电源。⑦将R 0与R x 互换位置,重复上述步骤。⑧改变电源极性,重复上述过程。⑨求四次测量结果的平均值并计算误差。 ⑩拆除联线,整理好仪器和导线。

表1用滑线式惠斯登电桥测量电阻

计算公式:正反接换臂前R x =(l 1/ l 2)·R 0 正反接换臂后R x =(l 2/l 1)·R 0,根据误差公式(1-1)知ΔR x = R x -x R ,根据误差公式(1-7)知:x R ?为四个x R ?的平均值。 结果表示为:R x ±ΔR x =

(2)用箱式电桥测量8个电阻(先要看清仪器盒盖内外的说明再进行测量) 记录好待测电阻标称值的大小

K E R E

图2-2

注意:测量盘示数必须有四位数,即大于1000Ω, 因此测量前要根据待测电阻称值

考虑好比例臂和倍率该选多大值,根据待测电阻标称值=测量盘示数×倍率,把测量盘示数和倍率预置好才开始测量。平均值标准差要计算A 类

B 类和合成不确定度。

结果表示为:R x ±Uc(R x )= 思考题:

1、用滑线式电桥测量电阻,它平衡的条件是什么?滑动触头在什么位置时,测量的精度最高?为什么?

2、改变电源极性对测量结果有什么影响?

实验三 单 摆 的 设 计 与 研 究 (设计性实验)

实验简介单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 设计任务与要求

1、用误差均分原理设计一单摆装置,测量重力加速度,测量精度要求

%2??g

g

。 2、 对重力加速度g 的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求。

3、自拟实验步骤研究单摆周期与质量、空气阻力等因素的关系,试分析各项误差的大小。 设计的原理思想

图2-3

反接换臂后

正接换臂后

正接换臂前 反接换臂前

一根不可伸长的细线,上端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆,如图1所示。如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。当单摆的摆角很小(一般θ<5°)时,可以证明单摆的周期T 满足下面公式

g

L T π2= (1)

2

24T L g π= (2)

式中L 为单摆长度。单摆长度是指上端悬挂点到球心之间的距离;g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。从上面公式

知T 2

和L 具有线性关系,即L g

T 22

4π=。对不同的单摆长度L 测量得出相对应的周期,可由T 2

~L 图线的斜率求出g 值。 测量方案的制定和仪器的选择

本实验测量结果的相对误差要求≤2℅,由误差理论可知,g 的相对误差为

22)2()(t

t

L L g g ?+?=?从式子可以看出,在ΔL 、Δt 大体一定的情况下,增大L 和t 对测量g 有利。

由误差均分原理的要求,各独立因素的测量引入的测量误差应相等,则 22

%)1()(

??L

L ,本实验中单摆的摆长约为100cm,可以计算出摆长的测量误差要求为 ΔL <1cm,故选择米尺测

量一次就足以满足测量要求;同理 22

%)1()2

(??t

t ,当摆长约为1m 时,单摆摆动周期约为2秒,可以计算出周期的测量误差要求为Δt ≤0.01s,要作到单次测量误差小于0.01s 相当

不容易,停表的误差主要是由判断计时开始和终止时的不准确以及动作反应快慢所产生的,因而可以采用连续测量多个周期来减小每个周期的误差,若每次测量引入约四分之一周期的误差,即0.5s 则连续72次的周期测量即可满足测量误差的要求。 实验步骤的设计

1、 测量摆长L :取摆长大约1m ,测量悬线长度l 0 六次及小球直径D 六次,求平均得

2

0D l L +

= 2、 粗测摆角θ:应确保摆角θ<5 °。

3、 测量周期T :计时起点选在摆球经过平衡位置的时刻,用停表测出单摆摆动50次的时间 T 50,共测量6次,取平均值。

4、 计算重力加速度:将测出的 和T 50代入 2

2

)

/(4n T L g n π=中(其中n 为周期的连续测量次数),计算出重力加速度g ,并计算出测量误差。

5、用金属作为摆线,以改变摆线的质量,以研究摆线质量对测g 的影响

6、用乒乓球作为摆球,形容空气浮力对测g 影响 实验记录和数据处理 1、 重力加速度g

对摆长为L 的单摆,测量在ο

5<θ的情况下,测量连续摆动n 次的周期

说明:

(1)摆长L 应是摆线长加小球的半径(如图2)。L =l -(d /2);(2)球的振幅小于摆长的

12

1

时,ο5<θ。(3)握停表的手和小球同步运动,测量误差可能小些。(4)当摆锤过平衡位置O '时,按表计时,测量误差可能小些。(5)为了防止数错n 值,应在计时开始时数“零”,以后每过一个周期,数1,2,…..,n 。

实验记录和数据处理

1、用米尺(量程:2m ,分度值:1mm)测摆线长

2、用游标卡尺(量程:125cm ,分度值:0.02mm)测求的直径d

3、用电子秒表(分度值:0.01s)测n=50的t 值

表1用细作为摆线,用金属球作为摆球,测g 值

测量次序

1

2

3

4

5

平 均 U(A) U(B) U(C)

l (cm)

101.55 101.45 101.40 101.60 101.50 101.50 0.04 0.58 0.58 d 22.16 22.18 22.28 22.16 22.14 22.18 0.02 0.01 0.03 l -d/2(cm) 100.44 100.34 100.29 100.49 100.39 100.39 0.04 0.58 0.58

T50(s)

100.78 100.50 100.50 100.63 100.81 100.64 0.07 0.01 0.07

22

4T L g π=2

2)/(4n T L n π

==9.78ms -2 2

2))(2())((

)(t

t U L L U g g U +==0.06ms -2

实验结果g=g ±U(g)=9.78±0.06(ms -2

)=9.78(1±0.6%)(ms -2

)

评价本地重力加速度的公认值为:g 0=9.79 ms -2

┃g - g 0┃/ U(g)=0.14 <3所以测得的实验结果可取。

2、考查摆线质量对测g 的影响

按单摆理论,单摆摆线的质量应甚小,这是指摆线质量应远小于锤的质量。一般实验室的单摆摆线质量小于锤的质量的0.3%,这对测g 的影响很小,在此实验的条件下是感受

l

d

图3-2

不到的。为了使摆线的影响能感受到,要用粗的摆线(如用保险丝类),每米长摆线的质量达到锤的质量的1/30左右;

参照上述“1”去测g 。

表2用金属作为摆线,以改变摆线的质量,以研究摆线质量对测g 的影响

22

4T L g π=2

2)/(4n T L n π==10.13ms -2 2

2))(2())((

)(t

t U L L U g g U +==0.06 U(g)=0.06 ms -2

实验结果g=g ±U(g)=10.13±0.06(ms -2

)=10.13(1±0.6%)(ms -2

)

评价本地重力加速度的公认值为:g 0=9.79 ms -2

┃g - g 0┃/ U(g)=5.79>3所以测得的实验结果不可取。

3、考查空气浮力对测g 影响

在单摆理论中未考虑空气浮力的影响。实际上单摆的锤是铁制的,它的密度远大于空气密度,因此在上述测量中显示不出浮力的效应。

为了显示浮力的影响,就要选用平均密度很小的锤。在此用细线吊起一乒乓球作为单摆去测g ,和上述“1”的结果相比。

因为除去空气浮力的作用,还有空气阻力使乒乓球的摆动衰减较快,另外空气流动也可能有较大影响,因此测量时改为测量30个周期。

表3用乒乓球作为摆球,考察空气浮力对测g 影响

l =99.41±0.08(m) t=61.10±0.04(s)

22

4T L g π=2

2)/(4n T L n π

==9.46ms -2 22))(2())(()(t

t U L L U g g U +==0.60% U(g)=g*0.6%=0.06ms -2

实验结果g=g ±U(g)=9.46±0.06(ms -2

)=9.46(1±0.6%)(ms -2

)

评价本地重力加速度的公认值为:g 0=9.79 ms -2

┃g - g 0┃/ U(g)=5.79>3所以测得的实验结果不可取。 实验结果分析:

1、从实验测量结果g=g ±U(g)=9.78±0.06(ms -2)=9.78(1±0.6%)(ms -2

)可以看出测量

的相对不确定度为0.6%符合实验设计的测量精度要求

%2??g

g

,且通过与公认值比较也说明此实验测量结果可取。

2、当摆线用金属丝时,由于摆线有质量,相当于摆球的质心上移(如图3),摆长缩短,

但实验时测量的摆长不变,L 测>L 实,把L 测代入公式:g=4π2n 2L /t 2

使得算出的重力加速度比本地的g 大。

3、当用乒乓球作摆球时,由于乒乓球受空气阻力作用,恢复力减小(如图4),单摆的

振动变慢,振动周期增大,T 测>T 实,把T 测代入公式:g=4π2n 2L /t 2

使得算出的重力加速度比本地的g 小。

实验四 落球法测定液体的粘度

实验简介

当一种液体相对于其他固体、气体运动,或同种液体内各部分之间有相对运动时,接触面之间在摩擦力。这种性质称为液体的粘滞性。粘滞力的方向平行于接触面,且使速度较快的物体减速,其大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度。η表征液体粘滞性的强弱,测定η可以有以下几种方法:

(1)泊肃叶法,通过测定在恒定压强差作用下,流经一毛细管的液体流量来求;(2)转筒法,在两筒轴圆筒间充以待测液体,外筒作匀速转动,测内筒受到的粘滞力矩;(3)阻尼法,测定扭摆、弹簧振子等在液体中运动周期或振幅的改变;(4)落球法,通过测量小球在液体中下落的运动状态来求。

对液体粘滞性的研究在物理学、化学化工、生物工程、医疗、航空航天、水利、机械润滑和液压传动等领域有广泛的应用。

实验目的 根据斯托克斯公式用落球法测量蓖麻油的粘度,学习并掌握测量的原理和方法。

图3-3

图3-4

仪器和用具

玻璃圆筒(高约50cm ,直径约5 cm )、停表、螺旋测微器、游标卡尺分析天平、比重天平或比重计、温度计、小球(6个)直径约1~2mm )、镊子、漏勺、待测液体(蓖麻油)。 实验原理

当半径为r 的光滑圆球,以速度v 在均匀无限宽广的液体中运动时,若速度不大,球也很小,在液体中不产生涡流的情况下,斯托克斯指出,球在液体中受到的阻力F 为

vr F πη6= (4-1)

式中η为液体黏度,此式称为斯托克斯公式。从上式可知,阻力F 的大小和物体运动速度成比例。

当质量为m 、体积为V 的小球在密度为ρ的液体中下落时,作用在小球上的力有三个,即:(1)重力mg ,(2)液体的浮力Vg ρ,(3)液体的粘性阻力vr πη6。这三个力都作用在同一铅直线上,重力向下,浮力和阻力向上(如图4-1)球刚开始下落时,速度v 很小,阻力不大,小球作加速下降。随着速度的增加,阻力逐渐加大,速度达一定值时,阻力和浮力之和将等于重力,那时物体运动的加速度等于零,小球开始匀速下落,

即vr Vg mg πηρ6+= 此时的速度称为终极速度,由此式可得

vr

g

V m πρη6)(-=

将33

4r V π=

代入上式,得

g vr

r m πρ

πη634

3-= (4-2) 由于液体在容器中,而不满足无限宽广的条件,这时实际测得的速度0v 和上式中的理想条件下的速度v 之间存在如下关系:

)3.31)(4.21(0h

r

R r v v ++= (4-3)

式中R 为盛液体圆筒的半径,h 为筒中液体的深度,将式(4-3)代入(4-2),得出

)

3.31)(

4.21(6)34

(03h

r

R r rv g

r m ++-=πρπη (4-4) 其次,斯托克斯公式是假设在无涡流的理想状态下导出的。实际小球下落时不能是这样

理想状态,因此还要进行修正。已知在这时的雷诺数Re 为

η

ρ

02Re rv =

(4-5)

当雷诺数不甚大(一般在10Re ∠)时,斯托克斯公式修正为 Re

)Re 1080

19Re 1631(62-+

=ηπrv F (4-6)

则考虑此项修正后的粘度测得值0η等于

120)Re 1080

19Re 1631(--+

=ηη (4-7) 实验时,先由式(4-4)求出近似值η,用此η代入(4-5)求出Re ,最后由式(4-6)求出

最佳值0η。

实验内容

实验装置如图4-2所示,在圆筒油面下方7~8cm 和筒底上方7~8cm 处,分别设标记N 1

和N 2,对N 1、N 2间距离l ,油筒内半径R ,油的深度h ,选取适当仪器去测量。

待测油的密度ρ用密度计或比重瓶去测量。 测量用的小球为刚球,用乙醚、酒精混合液洗净、擦干后,测量直径和质量(分别测6个球的直径取平均;同时测30个小球的质量,求出一个的质量)。测后将其浸在和待测液相同的油中待用。

用镊子取一小球,在油筒中心轴线处放入油中,用停表测出小球通过N 1N 2间的时间t ,逐一测量,求出t 的平均值,再求0v 。 温度对粘度影响较大,测量前后各测一次温度。

换另一半径不同的球去测量。

求出结果和标准不确定度(按式(4-2)考虑即可,补正项的不确定度一般不大,可以略去不计)。 回答问题

1. 如果用实验的方法求补正项)4

.21(R

r

+的补正系数2.4,应如何进行? 2. 如果投入的小球偏离中心轴线,将出现什么影响?

实验五 磁场的描绘

实验目的:

1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔定律的理解;

2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆霍兹线圈产生的磁场B(a+b )进行比较;

3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较,进一步证明磁场的叠加原理;

4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器:

(1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探

头盒(与台面接触面积为20mmx 20mm)组成。

图5-1 亥姆霍兹线圈实验仪器简图

1.毫特斯拉计

2.电流表

3.直流电流源

4.电流调节旋钮 5.调零旋钮

6.传感

器插头7.固定架 8.霍尔传感器 9.大理石

10.线圈

注:ABCD 为接线柱

实验原理:

(1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为:

2

322

20

)

(2x R N

R I B +=

μ (5-1)

式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为:

R

IN

B 20μ=

(5-2)

轴线外的磁场分布计算公式较为复杂,这里简略。

(2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。

设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为:

??

??????????????????? ??-++??????????? ??++='-22

2

3

22202221z R R z R R NIR B μ(5-3)

而在亥姆霍兹线圈上中心O 处的磁感应强度B 0’为

R

NI

B 02/30

58μ=' (5-4)

实验步骤:

(1)将两个线圈和固定架按照图1所示简图安装。大理石台面(图1中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,用不锈钢钢尺

测量台面至线圈架平均半径端点对应位置的距离(在11.2cm 处),并适当调整固定架,直至满足台面通过两线圈的轴心位置;

(2)开机后应预热10分钟,再进行测量;

(3)调节和移动四个固定架(图5-1中7所示),改变两线圈之间的距离,用不锈钢钢尺测量 两线圈间距;

(4)线圈边上红色接线柱表示电流输入,黑色接线柱表示电流输出。可以根据两线圈串接或并接时,在轴线上中心磁场比单线圈增大还是减小,来鉴别线圈通电方向是否正确; (5)测量时,每次将探头盒底部的霍尔传感器对准台面上的被测量点时,都要在两线圈断电情况下,调节调零旋钮(图5-1中5所示),使毫特斯拉计显示为零,然后通电记录此时毫特斯拉计显示的数字大小;

(6)本毫特斯拉计为高灵敏度仪器,可以显示1X10-6T 磁感应强度变化。因而在线圈断电情况下,台面上不同位置,毫特斯拉计所显示的最后一位略有区别,这主要是地磁场(台面并非完全水平)和其他杂散信号的影响。因此,应在每次测量不同位置磁感应强度时调零。实验时,最好在线圈通电回路中接一个单刀双向开关,可以方便电流通断,也可以插拔电流插头。 实验方法:

载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量。 (1)必做内容:

①按图5-1接线,直流稳流电源中数字电流表已串接在电源的一个输出端,测量电流 I=100mA 时,单线圈a 轴线上各点磁感应强度B(a),每隔1.00cm 测一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电

②将测得的圆线圈中心点(x =0.00cm 和x =5.00cm)的磁感应强度与理论公式计算结果进行比较;(I=100mA, R=10.00cm, N=500 μ0=4π×10-7H/m),计算两者的百分误差.

③在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度的方向; ④将两线圈间距d 调整至d=10.00cm ,这时,组成一个亥姆霍兹线圈;

⑤取电流值I=100mA ,分别测量两线圈单独通电时,轴线上各点的磁感应强度值B(a)和B(b),然后测亥姆霍兹线圈在通同样电流I=100mA ,在轴线上的磁感应强度值B(a+b),把实验数据记录在下表2中

表2 (注意:此时不管是测单个通电线圈时的磁场或者测两个通电线圈时的叠加磁场坐标原点都是在两个通电线圈的中心,如右图)

证明在轴线上的点B(a+b)=B(a)十B(b),即载流亥姆霍兹线圈轴线上任一点的磁感应强度是两个载流单线圈在该点上产生磁感应强度之和;

(2)选做内容:

①分别把亥姆霍兹线圈间距调整为d=R/2、d=2R和d=2R, 测量在电流为I=100mA轴线上各点的磁感应强度值;

②作间距d=R/2、d=2R和d=2R时,亥姆霍兹线圈轴线上磁感应强度B与位置z:之间关系图,即B一Z图,证明磁场迭加原理。

载流圆线圈通过轴线平面上的磁感应线分布的描绘。

把一张坐标纸粘贴在包含线圈轴线的水平面上,可自行选择恰当的点,把探测器底部传感器对准此点,然后亥姆霍兹线圈通过I=100mA电流。转动探测器,观测毫特斯拉计的读数值,读数值为最大时传感器的法线方向,即为该点的磁感应强度方向。比较轴线上的点与远离轴线点磁感应强度方向变化情况。近似画出载流亥姆霍兹线圈磁感应线分布图。

注意事项:

(1)实验探测器采用配对SS95A型集成霍尔传感器,灵敏度高,因而地磁场对实验影响不可忽略,移动探头测量时须注意零点变化,可以通过不断调零以消除此影响;

(2)接线或测量数据时,要特别注意检查移动两个线圈时,是否满足亥姆霍兹线圈的条件;

(3)两个线圈采用串接或并接方式与电源相连时,必须注意磁场的方向.如果接错线有可能使亥姆霍兹线圈中间轴线上磁场为零或极小。

仪器介绍:

(一)游标卡尺

游标卡尺的结构及测量时的执尺手势 如实图1-2所示,其基本结构是一把主尺和 可以紧贴在主尺上滑移的游标.主尺以厘米 分度,量程为12.5厘米.量爪A 、A '固定 在主尺的左端,并与主尺垂直.量爪B 、B ' 及深度尺C 与游标相连,B 、B '分别与

A 、A '配对,分别用来测量外径(或长度、厚度等)和内径(或糟的宽度等);深度尺C 随游标的移动由主尺的尾部伸出,可用来测量筒、糟的深度;待测物的线度由游标的零线与主尺的零线之间的距离表示。 游标卡尺的读数原理如下

常用的游标卡尺有三种分度情况,即10分游标卡尺20分游标和50分游标卡尺.我们以10分度游标卡尺来说明游标的读数原理和方法。10分游标卡尺是指它的游标有10个等分的分度,10等分的总长度相当于主尺上的九格,即9毫米.也就是说游标上的每一分度等于0.9毫米(与主尺上的一分度相差0.1毫米,称此值为游标常数)当量爪AB 合拢时,游标上的0线与主尺上的0线对齐,而游标的第10根线也与主尺上的第9根线对齐,游标上的其它各线与主尺上的线均不对齐而略有偏差游标上的第1线与主尺上的第1线差0.1毫米,游标上第2线与主尺上的第2线相差0 2毫米,依此类推。

如果在量爪A 和B 之间放进一根约1.4厘米粗的笔杆,则我们知道现在游标上的0线在主尺的1.4~1.5厘米之间,然而从游标上可以看到它的第7根线恰好与主尺上的某一条分度线对齐(其它线均不对齐),这就意味着游标的0线从主尺的1.4厘米的刻度线又偏移过了0.7毫米,(如下图)因而测得笔杆的直径为1.4cm +0.07cm =1.47(厘米),由此可以知道,用游标卡尺测量时的读数值应该等于游标0线所指的主尺上前面一条分度线的数值再加上游标的读数,游标的读数等于与主尺某分度对齐的刻度的副尺上从0线到那条刻度线之间的格数与游标常数的乘积

20分游标卡尺的游标常数为0.05毫米,(它游标的20分度相当于主尺的19个分格); 50分游标卡尺的游标常数为0.02毫米(游标50分度相当于主尺49个分格)。它的读数=0线与0线之间主尺上的读数+找出主副两尺对准刻度的副尺的那条刻度线所代表的格数×0.02mm ,另一读数方法为先读出0线与0线之间主尺上的读数为多少毫米,然后读出主副两尺对准刻度的副尺的那条刻度线的读数(注意副尺上每一小格代表0.02mm)例:

(二)螺旋测微计

0 1 2 3 4 5 6 7 8 9 0

0 1 7 8 9 10 11 12 13 正确读数为74.58mm

错误读数为73.58mm 、74.54mm 012345678

90 0 10 20 30 正确读数为14.7mm

螺旋测微计也叫千分尺,如实图1-3所示.

它的量程是(0~25)mm,分度值是0.0lmm.它的

主要结构包括两部分:固定部分和可动部分.固定

部分是由-个U形的尺架和-根固定的套管组

成,尺架的左端固定一小方砧,套管的圆柱面上

沿轴向刻有刻度(是主尺),每分格为0.5mm,

圆柱面的内壁是一个螺母,可动部分是一根微动

螺杆,螺距是0.5mm,也就是当螺杆旋进一圈时,

它沿轴线方向前进0.5mm,螺杆与螺旋柄相连,

在螺旋柄的顶端附有沿圆周的刻度,-周为50个

等分格,叫做微分筒;当微分筒转过一分格时,

微动螺杆沿轴向前进(或后退)0.0lmm,待测物

放在小方砧和微动螺杆之间,缓慢旋转螺旋柄后

面的棘轮旋柄推动螺杆前进,当

待测物刚好夹紧时,会发出“嘀、嘀...”的响声.听到“嘀”“嘀”两响就应立即停止旋转(否则因转得过紧,或损伤方砧,或使待测物形变.)进行读数了;用微分筒的前沿作为读数准线,读出整格数(每格0.5mm),而0.5mm以下的读数则以固定标尺(主尺)上的横线为准线,读出微分筒上的示数,并估读一位数,即读到0.001mm,完整读数为这两部分读数之和。

10 5 0 0 45 40

读数:左图:1.540mm,

右图:1.960mm

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

大学物理实验复习资料

大学物理实验复习资料 复习要求 1.第一章实验基本知识; 2.所做的十二个实验原理、所用的仪器(准确的名称、使用方法、分度值、准确度)、实验操作步骤及其目的、思考题。 第一章练习题(答案)1.指出下列情况导致的误差属于偶然误差还是系统误 差? ⑴读数时视线与刻度尺面不垂直。——————————该误差属于偶然误差。 ⑵将待测物体放在米尺的不同位置测得的长度稍有不同。——该误差属于系统误差。 ⑶天平平衡时指针的停点重复几次都不同。——————该误差属于偶然误差。 ⑷水银温度计毛细管不均匀。——————该误差属于系统误差。 ⑸伏安法测电阻实验中,根据欧姆定律R x=U/I,电流表内接或外接法所测得电阻的阻值与实际值不相等。———————————————该误差属于系统误差。 2.指出下列各量为几位有效数字,再将各量改取成三位有效数字,并写成标准式。 测量值的尾数舍入规则:四舍六入、五之后非零则入、五之后为零则凑偶 ⑴63.74 cm ——四位有效数字,6.37 ×10cm 。 ⑵ 1.0850 cm ——五位有效数字,1.08cm , ⑶0.01000 kg ——四位有效数字, 1.00 ×10-2kg , ⑷0.86249m ——五位有效数字,8.62 ×10-1m , ⑸ 1.0000 kg ——五位有效数字,1.00kg , ⑹ 2575.0 g ——五位有效数字,2.58×103g , ⑺ 102.6 s;——四位有效数字,1.03 ×102s , ⑻0.2020 s ——四位有效数字, 2.02 ×10-1s , ⑼ 1.530×10-3 m. ——四位有效数字,1.53 ×10-3m ⑽15.35℃——四位有效数字,1.54×10℃3.实验结果表示 ⑴精密天平称一物体质量,共称五次,测量数据分别为:3.6127g,3.6122g,3.6121g,3.6120g,3.6125g, 试求 ①计算其算术平均值、算术平均误差和相对误差并写 出测量结果。 ②计算其测量列的标准误差、平均值标准误差和相对 误差并写出测量结果。 解:算术平均值 = m3 612 3 5 15 1 . ≈ ∑ =i i m (g) 算术平均误差m ? = - =∑ = 5 1 5 1 i i m m 0.00024 = 00003(g) 相对误差 m m E m ? = =0.0003/3.6123=0.000083≈0.009% 用算术平均误差表示测量结果:m = 3.6123±0.0003(g) 测量列的标准误差 ()()()( 1 5 3 2 6123 3 6121 3 2 6123 3 6122 3 2 6123 3 6127 3 - + - + - + - =. . . . . . =0.0003(g) 经检查,各次测量的偏差约小于3σ,故各测量值均 有效。 平均值的标准误差 5 0003 0. = = n m σ σ ≈0.00014(g) 相对误差 % . % . . 0004 100 6123 3 00014 ≈ ? = = m E m m σ 用标准误差表示的测量结果= m 3.61230±0.00014(g) ⑵有甲、乙、丙、丁四人,用螺旋测微器测量一铜球 的直径,各人所得的结果是: 甲:(1.3452±0.0004)cm;乙:(1.345±0.0004)cm 丙:(1.34±0.0004)cm;丁:(1.3±0.0004)cm 问哪个表示得正确?其他人的结果表达式错在哪里? 参考答案:甲:正确。 测量结果的最后一 其他三个的错误是测量结果的最后一位没有与误差所 在位对齐。 ⑶用级别为0.5、量程为10mA的电流表对某电路的 电流作10次等精度测量,测量数据如下表所示。试计

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

大学物理实验讲义(密度测定)

图3 静力称衡法测密度 不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m = ρ (1) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1 m m V ρ-= 水 密度瓶 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天平

被测物密度: 1 m m V m m ρρ= = -水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为: 12 m m V ρ-= 水 被测物密度为: 12 m m V m m ρρ= = -水 (3) 3、用密度瓶测定碎小固体(小石子)的密度 假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。 然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。 这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+- 图5 密度瓶法测小石子的密度 123 4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

大学物理实验讲义汇总

大学物理实验讲义 ()

目录 实验1 复摆 (4) 预习报告 (8) 实验2 弦振动的研究 (9) 预习报告 (13) 实验3 速度和加速度的测量 (14) 预习报告 (21) 实验4 动量守恒定律的验证 (22) 预习报告 (27) 实验5 空气中声速的测量 (28) 预习报告...................................................... 错误!未定义书签。实验6 RLC电路的稳态特性 (24) 预习报告...................................................... 错误!未定义书签。实验报告.. (34) 实验7 油滴法测定基元电荷 (46) 预习报告 (53) 实验8 用双臂电桥测量低值电阻 (54) 预习报告...................................................... 错误!未定义书签。实验9 牛顿环. (60) 预习报告 (67) 实验10 光电效应及普朗克常数的测定 (68) 预习报告 (73) 实验11 单缝衍射 (60) 预习报告...................................................... 错误!未定义书签。实验12 多缝的夫琅和费衍射. (79) 预习报告...................................................... 错误!未定义书签。

实验报告——速度和加速度的测量 (83) 实验报告——牛顿环 (88)

光纤光学大学物理实验讲义.doc

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

大学物理实验讲义

实验一用天平测量质量 本实验介绍测量固体和液体密度的两种方法,流体静力称衡法和比重瓶法,通过实验除了要掌握这两种方法外,还要熟练地掌握物理天平的调整和使用方法。 实验仪器 物理天平(附砝码)、烧杯、温度计、酒精、蒸馏水、待测物。 仪器介绍 物理天平的构造如实图2-2所示,在横梁的中央和两端各有一个刀口(图中2),中间的刀口安放在支柱顶端的刀垫上,刀垫用玛瑙或硬质合金钢制造,两端的刀口用于悬挂称盘,横梁上装有可以移动的游码(图中5),用于称量1克以下的质量,(游码从横梁的左端移到右端相当于在右盘中加了1克的砝码),横梁等分为10大格,每大格又分为5小格,因此,游码每移动一小格相当于在右盘中加20毫克的砝码,即这种天平的分度值为20毫克。常见物理于平的最大称量为0.5千克(即500克)。横梁中部还装有竖直向下的指针(图中7) ,与支柱上的指针标尺(图中8)相对应,用以指示天平的平稳位置及灵敏度,指针的中间有一重心螺丝,它的位置在出厂时已经调整好了,不得任意去旋动它;横梁两侧还有用 来调整零点的螺杆、螺母(图中9),支柱后面装有水平仪,可通过调节底座上的调节螺丝(图中12)来调 节天平底板水平、支柱铅直,天平的底座上,在左侧称盘的上方还有一个可以放置物品的托架(图中15)。 标志天平规格性能的除了“最大称量”以外,还有游标的分度值以及“感量”或“灵敏度”。“感量”是指,使指针在指针标尺上偏转一格时在称盘中所加的质量值,感量的倒数叫“灵敏度”,即称盘中每加1克(或0.1克)时,指针的偏转格数,利用灵敏度可以很快判断需要把游码移动几格就能使天平达到平衡,从而提高测量的效率。 物理天平的操作步骤如下: 1、调节底座螺丝,直到水平仪中的气泡位于水平仪中间,则说明天平座位水平了、支柱铅直和刀垫水平 了。 2、调节零点,把称盘挂在横梁两侧的刀口上,并把游码放在零位,然后将止动旋钮(图中16)顺时针方向 旋转支起横梁,用水平调节螺丝调好天平的平衡,调整后即把止动旋钮逆时针转动复位,放下横梁。 3、称衡时,物体放在左盘,砝码放在右盘,进行称衡,注意,砝码应用镊子取放,不准用手拿取砝码! 每次增加或减少砝码,均需先放下横梁,要判断天平是否平衡的时候,才支起横梁称衡,平时的大部分时间都要放下横梁!紧记!以保护好天平刀口不受磨损, 保证天平有足够的灵敏度。 4、完成全部称衡后,用止动旋钮放下横梁,并把称盘摘离刀口,游码复零,砝码归盒盖好。 实验原理 设物体的质量为m ,体积为V ,则其密度ρ为 1.横梁 2.刀口 3.支柱 4.刀垫 5.游码 6.游码标尺 7.指针 8.指针标尺 9.平衡螺丝 10.水平仪 11.底盘 12.调节螺丝 13.秤盘 14.挂钩 15托架 16.重心螺丝 17.止动旋钮 实图2-2

大学物理实验讲义实验波尔共振实验54

实验02 波尔共振实验 因受迫振动而导致的共振现象具有相当的重要性和普遍性。在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。共振现象既有破坏作用,也有许多实用价值。许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。 表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。 【实验目的】 1.研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。 2.研究不同阻尼力矩对受迫振动的影响,观察共振现象。 3.学习用频闪法测定运动物体的某些量,例相位差。 【仪器用具】 ZKY-BG波尔共振实验仪 【实验原理】 物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫

力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。 实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。 当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-)其运动方程为 t cos M dt d b k dt d J 022ω+θ-θ-=θ (1) 式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。 令 J k 20=ω,J b 2=β,J m m 0= 则式(1)变为 t cos m dt d 2dt d 2022ω=θω+θβ+θ (2) 当0t cos m =ω时,式(2)即为阻尼振动方程。

大学物理实验讲义实验示波器原理和使用资料讲解

大学物理实验讲义实验示波器原理和使用

实验5 示波器原理和使用 示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。因此示波器是一种应用广泛的综合性电信号测试仪器。 示波器按用途和特点可以分为: 通用示波器。它是根据波形显示基本原理而构成的示波器。 取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。与通用示波器相比,取样示波器具有频带极宽的优点。 记忆与存储示波器。这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。 专用示波器。为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。 智能示波器。这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。它是当前发展起来的新型示波器。也是示波器发展的方向。 本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG—8016G型数字式函数信号发生器的使用方法。 【实验目的】 1.了解示波器显示图象的原理。 2.较熟练地掌握示波器的调整和使用方法。 3.掌握函数信号发生器的使用方法。 4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。 【仪器用具】 SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。 【实验原理】 1.示波器的基本结构和工作原理 示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。如图5-1所示。 (1)示波管:它包括电子枪、偏转板和荧光屏三部分。 图5-1 示波器结构方框图

大学物理实验讲义实验液晶电光效应实验

实验14 液晶电光效应实验 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的特性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。 1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.在学习液晶光开关的基本原理,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量液晶光开关的视角特性。 4.了解液晶光开关构成矩阵式图像显示的原理。 【仪器用具】 ZKY-LCDEO型液晶光开关电光特性综合实验仪、数字示波器 【实验原理】 1.液晶光开关的工作原理

液晶的种类很多,仅以常用的扭曲向列型液晶为例,说明其工作原理。光开关的结构如图1所示。在两块玻璃板之间夹有液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度 在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1左图所示。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下,在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构,如图1右图所示。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 入射的自然光 偏振片P1 偏振片P2 出射光 扭曲排列的液晶分子具有光波导效应 光波导已被电场拉伸 图1. 液晶光开关的工作原理

大学物理实验复习资料

大学物理实验复习 测量误差与数据处理p5 1.绝对误差表达式(自我感觉就是全微分) 例如的绝对误差表达式为 2.相对误差:相对误差=绝对误差被测量。例如: 3.算术平均偏差:对一固定量进行多次测量所得各偏差绝对值的算术平均值称为算术平均偏差,公式略,在p10页 4. 分光镜的调整和折射率的测定 1.测量三棱镜顶角的方法:自准法和劈尖干涉法。 自准直法测三棱镜顶角α原理: 平行光线分别垂直入射到三棱镜的AB,AC两个反射面,由原路返回的两反射线的方位为T1,T2则: ф=|T2-T1| 或ф=360°-|T2-T1| 顶角α=180°-ф 对劈尖干涉法存在疑问!!

刚体转动惯量的研究 1.扭摆的垂直轴上装上载物圆盘,,测出它的转动周期为,将圆柱体放在载物圆盘上,测出此系统的转动周期为,则圆柱体自身转动周期T为 导热系数实验p81 1.改变样品形状,采取一些措施,能否利用本实验装置测量良导体的导热系数? 为什么? 2.测A,B的厚度使用游标卡尺,只有三位有效数字,为何不用千分尺? 3.试根据计算式中各实验测得值的有效数字的位数,指出产生误差的主要因素是什么? 4.室温不同测得的值相同吗?为什么?哪个大? 5.在测量不良导体的导热系数时,若上下表面热电偶电动势接近稳定但均在缓慢上升,为了缩短系统达到稳定温度的时间,若用红外灯加热,则红外灯的电压应微微降低。反之应微微升高。 惠斯通电桥测电阻 1.比率选择:千欧级选“1”,百欧级选“0.1”,以此类推。 2.电桥的组成部分是哪些?什么是电桥的平衡条件? 密立根油滴实验p216 1.本书采用统计方法或统计直方图和最大公约数法两种数据处理方法来得出电荷的量子性和电子电荷的。 2.在实验过程中,平行极板加上某一电压值,有些油滴向上运动,有些油滴向下运动,且运动越来越快,还有些油滴运动状况与未加电压时一样,这是什么原因? 3.密立根油滴实验平衡测量法要求油滴做匀速运动。识别是否满足这一条件的简单办法是测油滴通过中央水平刻线上、下两等间距刻线所需的时间是否

大学物理演示实验讲义

大学物理演示实验讲义 (草稿) 何豪、侯晓强 2010.8 实验室功能介绍 本实验室将全面支持同学们的大学物理课学习; 本实验室为同学们提供了数十个定性或半定量实验。 本实验室还为同学们提供了大量的趣味物理展品。 实验和资料将帮助你理解物理概念,帮助你体会实验构思的巧妙,帮助你把理论与实践更好地结合起来,帮助你开阔知识视野。总之是为了帮助你早日成才! 本实验室采取互动方式教学,除了观察教师为你做的演示实验以外,你还可以选择自己最感兴趣的项目亲自动手做实验;你可以利用导学系统去学习,去思考,去探索;你还可以在课外参加创新实践活动,参加实验室建设,发展自己的个性与特长。 兴趣是最好的老师,在这个实验室的经历将会使你终生难忘! 锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。

【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

大学物理实验讲义实验06 光的偏振实验

实验07 光的偏振实验 光波是特定频率范围内的电磁波。在自由空间中传播的电磁波是一种横波,光波的偏振特性清楚地显示了光的横波性,是光的电磁理论的一个有力证明。本实验研究光的一些基本的偏振特性,通过实验深入学习有关光的偏振理论。 【实验目的】 1、 理解偏振光的基本概念,偏振光的起偏与检偏方法; 2、 学习偏振片与波片的工作原理与使用方法。 【仪器用具】 SGP-2A 型偏振光实验系统 【实验原理】 1、 光波偏振态的描述 一般用光波的电矢量(又称光矢量)的振动状态来描述光波的偏振。按光矢量的振动状态可把光波偏振态大体分成五种:自然光、线偏振光、部分偏振光、圆偏振光和椭圆偏振光。这里重点讨论偏振光的描述。 一个单色偏振光可分解为两个偏振方向互相垂直的线偏振光的叠加,即 ?? ?+==)cos(cos 21δωωt a E t a E y x (1) 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,1a 、2a 分别是两偏振分量的振幅,ω为光波的圆频率。 对于单色光,参数1a 、2a 、δ就完全确定了光波的偏振状态。 以下讨论中,取021>a a 、,πδπ≤<-。 当πδ,0=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角 )c o s a rc t a n (1 2 δαa a =称为线偏振光的方位角(如图1所示)。

图 1 线偏振光 图 2 圆偏振光 当2/2/ππδ-=,且21a a =时,式(1)描述的 是一个圆偏振光,其特点是光矢量为角速度ω旋转,光矢量的端点的轨迹为一圆。δ的正负决定了光矢量的旋向,2/πδ=时为右旋圆偏振光,2/πδ-=时为左旋圆偏振光(迎着光的方向观察,如图2所示)。 除了上述特殊情况,式(1)表示的是椭圆偏振光(如图3所示)。 偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。 2、 偏振片和马吕斯定律 偏振片有一个透射轴(即偏振化方向)和一个与之垂直的消光轴,对于理想的偏振片,只有光矢量振动方向与透射轴方向平行的光波分量才能通过偏振片。因此光波通过偏振片后,将变成光矢量沿透射轴方向振动的线偏振光,因此利用偏振片可以产生线偏振光。 图 4 线偏振光的产生和检测 2

大学物理实验讲义实验示波器原理和使用

实验5 示波器原理和使用 示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。因此示波器是一种应用广泛的综合性电信号测试仪器。 示波器按用途和特点可以分为: 通用示波器。它是根据波形显示基本原理而构成的示波器。 取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。与通用示波器相比,取样示波器具有频带极宽的优点。记忆与存储示波器。这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。 专用示波器。为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。 智能示波器。这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。它是当前发展起来的新型示波器。也是示波器发展的方向。 本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG—8016G型数字式函数信号发生器的使用方法。 【实验目的】 1.了解示波器显示图象的原理。 2.较熟练地掌握示波器的调整和使用方法。 3.掌握函数信号发生器的使用方法。 4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。 【仪器用具】 SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。 【实验原理】 1.示波器的基本结构和工作原理 示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。如图5-1所示。 (1)示波管:它包括电子枪、偏转板和荧光屏三部分。 图5-1 示波器结构方框图 示波管是示波器的核心,它的构造如图5-2所示,左端为一电子枪,电子枪又包括旁热式阴极、加热阴极的灯丝、控制栅极和第一、第二阳极等,阴极经灯丝加热后发出一束电子,电子被第一和第二阳极电场加速及聚焦后,形成一束很细的高速电子流打在右端的荧光屏上,屏上的荧光物

大学物理实验讲义

1.横梁 2.刀口 3.支柱 4.刀垫 5.游码 6.游码标尺 7.指针 8.指针标尺 9.平衡螺丝 10.水平仪 11.底盘 12.调节螺丝 13.秤盘 14.挂钩 15托架 16.重心螺丝 17.止动旋钮 实验 一 密度的测量 实验目的 实验介绍测量固体和液体密度的两种方法,流体静力称衡法和比重瓶法,通过实验除了要掌握这两种方法外,还要熟练地掌握物理天平的调整和使用方法。 实验仪器 物理天平(附砝码)、烧杯、温度计、酒精、蒸馏水、待测物。 仪器介绍 物理天平的构造如实图1所示,在横梁的中央和两端各有一个刀口(图中2),中间的刀口安放在支柱顶端的刀垫上,刀垫用玛瑙或硬质合金钢制造,两端的刀口用于悬挂称盘,横梁上装有可以移动的游码(图中5),用于称量1克以下的质量,(游码从横梁的左端移到右端相当于在右盘中加了1克的砝码),横梁等分为20大格,每大格又分为5小格,因此,游码每移动一小格相当于在右盘中加10毫克的砝码,即这种天平的分度值10毫克。常见物理于平的最大称量为0.5千克(即500克)。横梁 中部还装有竖直向下的指针(图中7) ,与支柱上的指针标尺(图中8)相对应,用以指示天平的平稳位置及灵敏度,指针的中间有一重心螺丝,它的位置在出厂时已经调整好了,不得任意去旋动它;横梁两侧还有用来调整零点的螺杆、螺母(图中9),支柱后面装有水平仪,可通过调节底座上的调节螺丝(图中12)来调节天平底板水平、支柱铅直,在天平的底座上,左侧称盘的上方还有一个可以放置物品的托架(图中15)。 标志天平规格性能的除了“最大称量”以外,还有游标的分度值以及“感量”或“灵敏度”。“感量”是指使指针在指针标尺上偏转一格时在称盘中所加的质量值,感量的倒数叫“灵敏度”,即称盘中每加1克(或0.1克)时,指针的偏转格数,利用灵敏度可以很快判断需要把游码移动几格就能使天平达到平衡,从而提高测量的效率。 物理天平的操作步骤如下: 1、调节底座螺丝,直到水平仪中的气泡位于水平仪中间,则说明天平座位水平了、支柱铅 直和刀垫水平了。 2、调节零点,把称盘挂在横梁两侧的刀口上,并把游码放在零位,然后将止动旋钮(图中 16)顺时针方向旋转支起横梁,用水平调节螺丝调好天平的平衡,调整后即把止动旋钮逆时针转动复位,放下横梁。 3、称衡时,物体放在左盘,砝码放在右盘,进行称衡,注意,加减砝码和移动砝码,都必 须使用镊子,严禁用手!选用砝码时,应遵循:“由大至小,逐个试用,逐次逼近”的原则,直至最后利用游码使天平平衡。每次增减砝码,均需先放下横梁,要判断天平是否平衡的时候,才支起横梁称衡,平时的大部分时间都要放下横梁!切记!以保护好天 图1 物理天平的构造

相关主题
文本预览
相关文档 最新文档