当前位置:文档之家› 弹簧练习题

弹簧练习题

弹簧练习题
弹簧练习题

轻弹簧是一种理想的物理模型,在《考试说明》中涉及它的知识点有: ①形变和弹力,胡克定律(该知识点为B 级要求); ②弹性势能(A 级要求)、弹簧振子等

弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。因此,要知道在某一作用瞬间(如碰撞)弹力会保持不变。弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。弹簧是高中物理中的一种常见的物理模型,几乎每年高考对这种模型有所涉及和作为压轴题加以考查。它涉及的物理问题较广,有:平衡类问题、运动的合成与分解、圆周运动、简谐运动、做功、冲量、动量和能量、带电粒子在复合场中的运动以及临界和突变等问题。为了将本问题有进一步了解和深入,现归纳整理如下

物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。

模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。

弹簧物理问题:

弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。 弹簧模型应用牛顿第二定律的解题技巧问题:

弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。

弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。

1. 如图甲所示,一轻弹簧的两端与质量分别为1m 和2m 的两物块A 、B 相连接,并静止在光滑的水平面上.现使B 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得 ( )

在1t 、3t 时刻

(A )

两物块达到共同速度1m/s ,且弹簧都处于伸长状态

(B )从

3t 到4t 时刻弹簧由压缩状态恢复到原长

(C )两物体的质量之比为2:1:21=m m (D )在2t 时刻A 与B 的动能之比为

8:21=k k E E :1

2. 如图所示,甲、乙两车用轻弹簧相连静止在光滑的水平面上,现在同时对甲、乙两车施加等大反向的水平恒力F1、F2,使甲、乙同时由静止开始运动,在整个过程中,对甲、乙两车及弹簧组成的系统(假定整个过程中弹簧均在弹性即度内),正确的说法是( )

A .系统受到外力作用,动量不断增大

B .弹簧伸长到最长时,系统的机械能最大

C .恒力对系统一直做正功,系统的机械能不断增大

D .两物体的速度减少为零时,弹簧的弹力大小大于外力F1、F2的大小 3.质量相等的A 、B 两球之间压缩一根轻弹簧,当用板挡住小球A 而只释放B 球时,B 球被弹出落于桌边s=0.4m 的地上,如图所示.问当同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,B 球的落地点离桌边多远? 4、如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为mA =2.0kg ,mB =1.0kg ,mC =1.0kg ,现用一轻弹簧

将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠

近,此过程外力做功108J (弹簧仍处于弹性范围),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰以4m/s 的速度迎面与B 发生碰撞并瞬时粘连。求:

⑴弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小。 ⑵当弹簧第二次被压缩时,弹簧具有的最大弹性势能。

A

B C

⑴ 设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为vA 、vB

0=-B B A A v m v m

P

B B A A E v m v m =+222121

联立解得 s m v A /6= s m v B /12=

⑵弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为v

v m m m v m C B A c C )(++=

所以 s m v /1=

C 与B 碰撞,设碰后B 、C 粘连时的速度为v /

')(v m m v m v m C B C C B B +=-

s m v /4'=

故:弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:

J v m m m v m m v m E C B A C B A A p 50)(21')(2121222

'=++-++=

5如图9中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长

状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L2,求A 从P 出发时的初速度υ0。

解析:设A 、B 质量均为m ,A 刚接触B 时速度为1v (碰前),由功能关系,有

12

1202121mgL mv mv μ=- ①

A 、

B 碰撞过程中动量守恒,设碰后A 、B 共同运动的速度为.2v 有

212mv mv = ②

碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧弹性势能始末两态都为零,利

用功能关系,有

)2()2()2(21)2(2122

322L g m v m v m μ=- ③

此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有

12321mgL mv μ= ④

由以上各式,解得

)1610(210L L g v +=μ ⑤

6、如图所示,挡板P 固定在足够高的水平桌面上,小物块A 和B 大小可忽略,它们分别带为

+QA 和+QB 的电荷量,质量分别为mA和mB。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩。整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力,A 、B 所带电荷量保持不变,B 不会碰到滑轮。

(1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰 为零,但不会离开P ,求物块C 下降的最大距离h

(2)若C 的质量为2M ,则当A 刚离开挡板P 时,B 的速度多大? 分析与解

通过物理过程的分析可知:当A 刚离开挡板P 时,弹力恰好与A所受电场力平衡,弹簧伸长量一定,前后两次改变物块C质量,在第2问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解。

设开始时弹簧压缩量为x1

由平衡条件:B EQ kx =1 可得

1B

EQ x k =

设当A 刚离开档板时弹簧的伸长量为2x :

由:A EQ kx =2 可得

k EQ x A

=

2 ②

故C 下降的最大距离为: 21x x h += ③

由①—③式可解得

)(A B Q Q k E

h +=

(2)由能量转化守恒定律可知:C 下落h 过程中,C 重力势能的减少量等于B 电势能的增

量和弹簧弹性势能的增量以及系统动能的增量之和

当C 的质量为M 时:

E h E Q mgh B ?+?= ⑤

当C 的质量为2M 时,设A 刚离开挡板时B 的速度为V

2)2(21

2V m M E Eh Q Mgh B B ++

?+=弹 ⑥

L 2

L 1

图9

由④—⑥式可解得A 刚离开P 时B 的速度为:

)

2()(2B B A m M k Q Q M g E V ++=

7、如图所示,A 、B 两木块叠放在竖直轻弹簧上,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).

(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;

(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功。

分析与解

此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.

当F=0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有

A B A B m +m g

kx=(m +m )g x k ()即 =

对A 施加F 力,分析A 、B 受力如右图所示

对A

A A F+N-m g=m a

② 对B ''

B B kx -N-m g=m a

可知,当N ≠0时,AB 有共同加速度a=a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.

当N=0时,F 取得了最大值Fm,

m A F =m (g+a)=4.41 N

又当N=0时,A 、B 开始分离,由③式知,

此时,弹簧压缩量

B B m (a+g)kx'=m (a+g) x'=

k ④

AB 共同速度 2 v =2a(x-x')

由题知,此过程弹性势能减少了WP=EP=0.248 J 设F 力功WF ,对这一过程应用功能原理

2F A B A B p

1

W =( m +m )v +(m +m )g(x-x')-E 2 ⑥

联立①④⑤⑥,且注意到EP=0.248 J 可知,WF=9.64×10-2 J

8、如图所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相

连,开始时A 和B 均处于静止状态,此时弹簧压缩量为x0,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均处于刚好伸直状态,A 上方的一段绳子沿竖直方向且足够长。现在C 端施 水平恒力F 而使A 从静止开始向上运动。(整个过程弹簧始终处在弹性限度以内)

(1)如果在C 端所施恒力大小为3mg ,则在B 物块刚要离开地面时A 的速度为多大? (2)若将B 的质量增加到2m ,为了保证运动中B 始终不离开地面,则F 最大不超过多少?

分析与解 由题意可知:弹簧开始的压缩量

0mg

x k =

,在B 物块刚要离开地面时弹簧的伸长量

也是

0mg

x k =

(1)若F=3mg ,在弹簧伸长到x0时,B 开始离开地面,此时弹簧弹性势能与施力前相等,F

所做的功等于A 增加的动能及重力势能的和。即

2

002122mv x mg x F +

?=? 可解得:0

22gx v =

(2)所施力为恒力F0时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上

除了受变化的弹力外,再受到恒定的重力和拉力。故物体A 做简谐运动。

在最低点: F0-mg+kx0=ma1

式中k 为弹簧劲度系数,a1为在最低点A 的加速度。

在最高点,B 恰好不离开地面,此时弹簧被拉伸,伸长量为2x0,则: K (2x0)+mg -F0=ma2

考虑到: kx0=mg 简谐运动在上、下振幅处 a1=a2

解得:F0=23mg

也可以利用简谐运动的平衡位置求恒定拉力F0。物体A 做简谐运动的最低点压缩量为x0,最

高点伸长量为2x0,则上下运动中点为平衡位置,即伸长量为0

2x 所在处。

由:

002x mg k

F += 解得:F0=23mg

说明 区别原长位置与平衡位置。与原长位置对应的形变量与弹力大小、方向、弹性势能相关;

与平衡位置对应的位移量与回复大小、方向、速度、加速度相关

9如图所示,A 、B 、C 三物块质量均为m ,置于光滑的水平地面上.B 、C

间夹有原已完全压紧不

能再压缩的弹簧,两物块用细线相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后A 与B 粘合在一起,然后连接B 、C 的细线受到扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0.

⑴求弹簧所释放的弹性势能P E ?;

⑵若更换B 、C 间的弹簧,当物块A 以初速度v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的弹性势能P E '

?是多少?

⑶若情况⑵中的弹簧与情况⑴中的弹簧相同,为了使物块C 在脱离后的速度仍为2v0,A 的初速度v 应为多大?

解析:(1)因B 、C 间的弹簧已无压缩余地,因而在受外界冲击时,应看做为一个物体,根据动量守恒定律有

mv0=(m +2m )v ①

弹簧伸展C 与A 、B 分开,仍有动量守恒,设A 、B 速度为v1向右,C 的速度为发 向右,则有(m +2m )v =2mv1+mv2 ② 此过程弹簧释放的能量为△E ,则有

△E +(1/2)(m +2m)v^2=(1/2)(2m)v1^2+(1/2)mv2^2 将v2=v0代入①②联立解得v1=0,v =(1/3)v0 所以

△E =(1/3)mv0^2

(2)依照(1)的解题过程有 mv =(m +2m )v' ④ (m +2m )v'=2mv1'+m*2v0 ⑤

△E'+(1/2)(m +2m)v'^2=(1/2)(2m)v1'^2+(1/2)m(2v0)^2 ⑥ ④、⑤、⑥联立解得 △E'=(1/12)m(v -6v0)^2

(3)根据题意有 △E''=△E'=△E 即 (1/3)mv0^2=(1/12)m(v -6v0)^2 解得 v =4v0, v =8v0(舍去),原因是由④⑤解得v'=(1/2)v -v0,将v =8v0 代入得 v1'=3v0不合题意.

10.如图甲,在光滑水平长直轨道上放着一个静止的弹簧振子,它由一轻弹簧两端各连接一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度v0,求弹簧第一次恢复到自然长度时,每个小球的速度;

⑵如图乙,将N 个这样的振子放在该轨道上.最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0,其余各振子间都有一定的距离.现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都

发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时速度交换,即一球碰后的速度等于另一球碰前的速度.

解析:此题是以弹簧振子为纽带,以碰撞时交换速度为特征的压轴题,若以物理模型解答,较简捷,即:两球发生弹性碰撞后时,若两球质量相等,则碰撞后交换速度. (1)从左端小球以v0向右运动到第一次恢复自然长度过程中,两小球在这一段时间内的碰撞可看作弹性碰撞,且质量相等,碰后交换速度即:u左=0,u右=u0. 上面为弹簧振子第一次恢复自然长度时,左右两小球的速度.

(2)令v1左、v1右分别表示振子1解除锁定后弹簧恢复至自然长度时左右两小球的速度,由动量守恒得:mv1左+mv1右=0,∴v1左=-v1右

说明两小球速度大小相等、方向相反,因而小球质量相等,所以它们的动能也相等,

且各占20E ,即:21mv1左2=21

mv1右2=20E

振子1与振子2碰撞后,因交换速度,振子1右端小球速度变为v=0,左端小球速度仍以v1左,此后两小球都向左运动,当两小球具有共同速度v1共时,弹簧被拉伸最长,此时弹性势能具有最大值为E1,由动量守恒有:mv1左=(m+m)v1共,

∴v1共=21

v1左.

∴系统减少的动能转化为弹性势能,即:

E1=21mv1左2-21(m+m)v1共2=21?21

mv1左2=40E .

振子2被碰撞后,仍因交换速度,左端小球的速度v2左=v1右,此时右端的小球静止,由第(1)问的结果可知,当振子2第一次恢复自然长度时,可以认为左端小球的速度v2恰好传递给右端小球,依此类推,这个速度被一直传递到第N个振子,当所有可能的碰撞都发生后,第二个振子至第(N-1)个振子各小球均处于静止,且各弹簧先后恢复了自然长度,弹性势能为0。即:E2=E3=E4=…=EN-1=0.

当第N个振子左端小球获的速度v1时,右端小球静止,且弹簧处于自然长度,此后两小球向右运动,弹簧被压缩,当两小球有共同速度vN共时,弹簧被压缩至最短,弹性势能最大,最大值为EN,由动量守恒得:mvN左=(m+m)vN共,∴v

N共=21vN左=21

v1右.

系统减少的动能转化为弹性势能,即:

左右 甲

1

2

3

4

N

EN=21mvN左2-21

(m+m)vN共2

=21mv1右2-21(m+m)(21v1右)2=21 21

m1v1右2=40E .

注:从解题过程看,虽然很长,但贯穿整个过程的是:速度传递和动能传递贯穿整个过程的始终,这一条主线快速抓住,解题方向也确定了,同时此题的第2问充分应用第1问的结论,问题也就简单多了。

弹簧习题与参考答案

习题与参考答案 一、复习思考题。 1.弹簧有哪些功用? 2.常用弹簧的类型有哪些?各用在什么场合? 3.制造弹簧的材料应符合哪些主要要求?常用材料有哪些? 4.圆柱弹簧的主要参数有哪些?它们对弹簧的强度和变形有什么影响? 5.弹簧刚度K的物理意义是什么?它与哪些因素有关? 6.什么是弹簧的特性曲线?它在设计中起什么作用? 7.设计时,若发现弹簧太软,欲获得较硬的弹簧,应改变哪些设计参数? 8.圆柱螺旋弹簧在工作时受到哪些载荷作用?在轴向载荷作用下,弹簧圈截面上主要产生什么应力?应力如何分布?受压缩与受拉伸载荷时,应力状态有什么不同? 9.如何确定圆柱螺旋弹簧的许用剪切应力?用碳素弹簧钢丝制造弹簧时,其许用剪切应力[]τ值应如何确定? 10.设计弹簧时,为什么通常取弹簧指数C=4~16,弹簧指数C的含义是什么? 11.今有A、B两个弹簧,弹簧丝材料、直径d及有效圈数n均相同,弹簧中径D2A大于D2B,试分析: 1)当载荷P以同样大小的增量不断增大时,哪个弹簧先坏? 2)当载荷P相同时,哪个弹簧的变形量大? 12.圆柱形拉、压螺旋弹簧丝最先损坏的一般是内侧还是外侧?为什么? 13.设计弹簧如遇刚度不足时,改变哪些参数可得刚度较大的弹簧? 14.怎样的装置可把一个圆柱形压缩弹簧作为拉伸弹簧使用? 二、选择题 1.在圆柱形螺旋拉伸(压缩)弹簧中,弹簧指数C是指。

A、弹簧外径与簧丝直径之比值。 B、弹簧内径与簧丝直径之比值。 C、弹簧自由高度与簧丝直径之比值。 D、弹簧中径与簧丝直径之比值。 2.圆柱拉伸(压缩)螺旋弹簧受戴后,簧丝截面上的最大应力是。 A、扭矩T引起的扭切应力τ' σ B、弯矩M引起的弯曲应力 b C、剪力F引起的切应力τ'' D、扭切应力τ'和切应力τ''之和 3.当簧丝直径d一定时,圆柱形螺旋弹簧的旋绕比C如取得太小,则。 A、弹簧尺寸大,结构不紧凑 B、弹簧的刚度太小 C、弹簧卷绕有困难 D、簧丝的长度和重量较大 4.设计圆柱拉伸螺旋弹簧时,簧丝直径d的确定主要依据弹簧的 A、稳定性条件 B、刚度条件 C、强度条件 D、变形条件 三、填空题 1.弹簧在工作时常受载荷或载荷作用。 2.弹簧的材料应具有足够的极限、极限、韧性和良好的性能。3.常用的金属弹簧材料有、和等。 4.圆柱螺旋弹簧的制造工艺过程包括: (1)(2)(拉伸弹簧) (3)(4) 5.弹簧指数C是设计中的重要参数。C值,弹簧刚度小,。C

宏观经济学思考题及参考答案

宏观经济学思考题及参考答案(1) 第四章 基本概念:潜在GDP,总供给,总需求,AS曲线,AD曲线。 思考题 1、宏观经济学的主要目标是什么?写出每个主要目标的简短定义。请详细解释 为什么每一个目标都十分重要。 答:宏观经济学目标主要有四个:充分就业、物价稳定、经济增长和国际收支平衡。 (1)充分就业的本义是指所有资源得到充分利用,目前主要用人力资源作为充分就业的标准;充分就业本不是指百分之百的就业,一般地说充分就业允许的失业范畴为4%。只有经济实现了充分就业,一国经济才能生产出潜在的GDP,从而使一国拥有更多的收入用于提高一国的福利水平。 (2)物价稳定,即把通胀率维持在低而稳定的水平上。物价稳定是指一般物价水平(即总物价水平)的稳定;物价稳定并不是指通货膨胀率为零的状态,而是维持一种能为社会所接受的低而稳定的通货膨胀率的经济状态,一般指通货膨胀率为百分之十以下。物价稳定可以防止经济的剧烈波动,防止各种扭曲对经济造成负面影响。 (3)经济增长是指保持合意的经济增长率。经济增长是指单纯的生产增长,经济增长率并不是越高越好,经济增长的同时必须带来经济发展;经济增长率一般是用实际国民生产总值的年平均增长率来衡量的。只有经济不断的增长,才能满足人类无限的欲望。 (4)国际收支平衡是指国际收支既无赤字又无盈余的状态。国际收支平衡是一国对外经济目标,必须注意和国内目标的配合使用;正确处理国内目标与国际目标的矛盾。在开放经济下,一国与他国来往日益密切,保持国际收支的基本平衡,才能使一国避免受到他国经济波动带来的负面影响。 3,题略 答:a.石油价格大幅度上涨,作为一种不利的供给冲击,将会使增加企业的生产成本,从而使总供给减少,总供给曲线AS将向左上方移动。 b.一项削减国防开支的裁军协议,而与此同时,政府没有采取减税或者增加政府支出的政策,则将减少一国的总需求水平,从而使总需求曲线AD向左下方移动。 c.潜在产出水平的增加,将有效提高一国所能生产出的商品和劳务水平,从而使总供给曲线AS向右下方移动。 d.放松银根使得利率降低,这将有效刺激经济中的投资需求等,从而使总需求增加,总需求曲线AD向右上方移动。 第五章 基本概念:GDP,名义GDP,实际GDP,NDP,DI,CPI,PPI。 思考题: 5.为什么下列各项不被计入美国的GDP之中? a优秀的厨师在自己家里烹制膳食; b购买一块土地; c购买一幅伦勃朗的绘画真品; d某人在2009年播放一张2005年录制的CD所获得的价值; e电力公司排放的污染物对房屋和庄稼的损害;

一简谐运动练习题及答案

一、简谐运动 班级姓名 一.选择题(每小题中至少有一个选项是正确的) 1.随着电信业的发展,手机是常用的通信工具,当来电话时,它可以用振动来提示人们。振动原理很简单:是一个微型电动机带动转轴上的叶片转动。当叶片转动后,电动机就跟着振动起来。其中叶片的形状你认为是下图中的() 2.关于机械振动,下列说法正确的是()A.往复运动就是机械振动B.机械振动是靠惯性运动的,不需要有力的作用C.机械振动是受回复力作用D.回复力是物体所受的合力 3.下述说法中正确的是()A.树枝在风中摇动是振动B.拍篮球时,篮球的运动是振动 C.人走路时手的运动是振动 D.转动的砂轮的边缘上某点的运动是振动,圆心可以看作是振动中心 4.关于简谐运动的动力学公式F=-kx,以下说法中正确的是()A.k是弹簧倔强系数,x是弹簧长度 B.k是回复力跟位移的比例常数,x是做简谐振动的物体离开平衡位置的位移 C.对于弹簧振子系统,k是倔强系数,它表示弹簧的性质 D.因为k=F/x,所以k与F成正比 5.关于简谐运动的有关物理量,下列说法中错误的是()A.回复力方向总是指向平衡位置. B.向平衡位置运动时,加速度越来越小,速度也越来越小. C.加速度和速度方向总是跟位移方向相反. D.速度方向有时跟位移方向相同,有时相反. 6.作简谐运动的物体每次通过同一位置时,都具有相同的()A.加速度.B.动量.C.动能. D.位移.E.回复力.F.速度. 7.简谐运动是一种:( ) A.匀速运动B.变速运动C.匀加速运动 D.变加速运动E.匀减速运动 8.如图所示,弹簧振子以O点为平衡位置作简谐振动,当它从C向O点运动的过程中,位移方向及其大小的变化是()A.向右,逐渐增大B.向右,逐渐减小 C.向左,逐渐增大D.向左,逐渐减小 9.如图所示,弹簧振子以O点为平衡位置,在A、

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题 轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。问题类型: 1、弹簧的瞬时问题 弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。 2、弹簧的平衡问题 这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。有些问题要结合简谐运动的特点求解。 4、弹力做功与动量能量的综合问题 弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。 规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。(实际上应为机械能守恒) 典型试题 1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。物块落在弹 簧上,压缩弹簧,到达C点时,物块的速度为零。如果弹簧的形变始终未超过 弹性限度,不计空气阻力,下列判断正确的是( B ) A、物块在B点时动能最大 B、从A经B到C,再由C经B到A的全过程中,物块的加速度的最大值大于g C、从A经B到C,再由C经B到A的全过程中,物块做简谐运动 D、如果将物块从B点由静止释放,物块仍能到达C点 2、如图所示,弹簧上端固定在天花板上,下端系一铜球,铜球下端放有通电线圈。 今把铜球拉离平衡位置后释放,此后关于小球的运动情况(不计空气阻力)是() A.做等幅振动B.做阻尼振动 C.振幅不断增大 D.无法判断 3、如图所示,质量相同的木块AB用轻弹簧相连,静止在光滑水平面上。弹簧处 于自然状态。现用水平恒力F向右推A,则从开始推A到弹簧第一次被压缩到最短的过程中,下列

(完整版)思考题及习题2参考答案

第2章思考题及习题2参考答案 一、填空 1. 在AT89S51单片机中,如果采用6MHz晶振,一个机器周期为。答:2μs 2. AT89S51单片机的机器周期等于个时钟振荡周期。答:12 3. 内部RAM中,位地址为40H、88H的位,该位所在字节的字节地址分别为 和。答:28H,88H 4. 片内字节地址为2AH单元最低位的位地址是;片内字节地址为A8H单元的最低位的位地址为。答:50H,A8H 5. 若A中的内容为63H,那么,P标志位的值为。答:0 6. AT89S51单片机复位后,R4所对应的存储单元的地址为,因上电时PSW= 。这时当前的工作寄存器区是组工作寄存器区。答:04H,00H,0。 7. 内部RAM中,可作为工作寄存器区的单元地址为 H~ H。答:00H,1FH 8. 通过堆栈操作实现子程序调用时,首先要把的内容入栈,以进行断点保护。调用子程序返回指令时,再进行出栈保护,把保护的断点送回到,先弹出的是原来中的内容。答:PC, PC,PCH 9. AT89S51单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为AT89S51单片机的PC是16位的,因此其寻址的范围为 KB。答:64 10. AT89S51单片机复位时,P0~P3口的各引脚为电平。答:高 11. AT89S51单片机使用片外振荡器作为时钟信号时,引脚XTAL1接,引脚XTAL2的接法是。答:片外振荡器的输出信号,悬空 12. AT89S51单片机复位时,堆栈指针SP中的内容为,程序指针PC中的内容为 。答:07H,0000H 二、单选 1. 程序在运行中,当前PC的值是。 A.当前正在执行指令的前一条指令的地址 B.当前正在执行指令的地址。 C.当前正在执行指令的下一条指令的首地址 D.控制器中指令寄存器的地址。 答:C 2. 判断下列哪一种说法是正确的?

大学物理习题册答案 (2)

x O 1A 2 2 练习 十三 (简谐振动、旋转矢量、简谐振动的合成) 一、选择题 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt x d 弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dt x d 2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前 2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。 解:(A)t A x A cos ,)2/cos( t A x B 3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8 T 。 解:(B)振幅矢量转过的角度6/ ,所需时间12 /26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C ) (A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ; (C )π1 5cos(50πarctan )27 x t ; (D )7 x 。 解:(C)作旋转矢量图或根据下面公式计算 )cos(210202122 2 1 A A A A A 5)25.075.0cos(432432 2 ; 7 1 2)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 112021012021011 0 tg tg A A A A tg 5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B ) (A )2; (B )2; (C )2/1; (D )2/1。 解:(B) 弹簧振子的周期k m T 2 ,11l mg k , 22l mg k ,22 121 l l T T 6. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为 x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (B ) (A) 2 max 2max /x m k v ; (B) x mg k / ; (C) 2 2/4T m k ; (D) x ma k / 。 解:B 7. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质 点的振动表式为 (B ) (A) )π21 cos( 2 t A x ; (B) )π2 1cos(2 t A x ; x t o A B 1 A 4 / 4 /3 2 A A x O )0(A )(t A 3/ 6/

实验报告--弹簧振子

【实验题目】 弹簧振子周期经验公式的总结 【实验记录】 1.仪器与用具 2. 实验内容和数据记录 a. 测量弹簧振子的弹性系数与质量 方法:测量每根弹簧在40g 的外力下的变形量x ?,利用公式:k= x kg N kg ??/8.904.0计算弹性系数。 利用电子天平测量5组弹簧的质量。 数据记录:

b. 固定弹性系数,改变质量,测量周期。 弹簧组: 3 c. 固定质量M ,改变弹性系数,测量振动周期T M= M 0+ m 5/3 3/)(5i i m m m -=? 【数据处理与分析】 (1) 根据上述b 组的测量数据做最小二乘直线拟合。 拟合结果: α___0.512____ =1c ___2.805____ 线性相关系数=2r _____1_____ (2) 根据上述c 组的测量数据做最小二乘直线拟合。 拟合结果: =β__-0.528___ =2c ____2.259____ 线性相关系数=2r ____0.999______

【结论与讨论】 实验结论:经实验得弹簧振子周期经验公式为:T=4.513*k-0.528m0.512 A=4.513 讨论及误差分析: 1.作图法本身就会产生一定误差。数据在拟合过程中可能产生一定误差。 2.气垫导轨可能会受到空气阻力的作用,系统能量会有损失。 3.钩码质量有损失,以及测量仪器自身的系统误差。 4.弹簧振子的弹性系数发生了改变。(弹簧有损坏,过分拉伸等) 成绩报告成绩(满分30分):??????????????指导教师签名:???????????????日期:?????????????????

(完整版)弹力弹簧测力计练习题

义务教育教科书(五·四学制)物理八年级下册第六章力和运动 第二节弹力弹簧测力计练习题 基础训练 1.弹性是指物体受到力发生_______,不受力时又恢复到________的________。例如:橡皮筯受到________被拉长,当这个力撤去后,橡皮筯就会复原。 2.塑性是指物体受到力发生_______,不受力时不能_______到原来形状的特性。例如:我们手中的________,被手捏了后,当手不再作用时,它也不能恢复原状。 3.弹簧的________是有一定_______的,超过这个限度也不能复原。在弹性限度内弹簧受到的拉力越________,弹簧的________就越长,________就是根据这个道理制作的。 4.物体由于发生________而产生的力叫做________。 5.使用弹簧测力计应该注意哪些问题?请你来告诉大家! 6.关于弹力的说法正确的是() A.只有弹簧、橡皮筯才能产生弹力 B.只有物体发生形状变化就会产生弹力 C.弹力的大小只跟物体形状变化的程度有关 D.任何物体都有一定的弹性限度,因此弹力不可能无限地大 7.下列不是弹力的是() A.重力 B.绳子对重物的拉力 C.绷床对小孩的向上的力 D.沙发对人的力 8.关于弹簧测力计的认识,正确的是() A.弹簧测力计上的测量限度就是弹性限度 B.弹簧测力计的刻度是均匀的,因为弹簧的长度跟受到的拉力成正比 C.弹簧的伸长跟受到的拉力成正比,这就是弹簧测力计的原理 D.弹簧测力计是用弹簧做成的,因此就可以用弹簧来测量力 9.利用弹簧测力计来测量力的大小,它利用了力的作用效果中的() A.力可以改变物体的运动状态

思考题与习题答案

思考题与习题 1 1- 1 回答以下问题: ( 1)半导体材料具有哪些主要特性? (2) 分析杂质半导体中多数载流子和少数载流子的来源; (3) P 型半导体中空穴的数量远多于自由电子, N 型半 导体中自由电子的数量远多于空穴, 为什么它们对外却都呈电中性? (4) 已知温度为15C 时,PN 结的反向饱和电流 I s 10 A 。当温度为35 C 时,该PN 结 的反向饱和 电流I s 大约为多大? ( 5)试比较二极管在 Q 点处直流电阻和交流电阻的大小。 解: ( 1)半导体的导电能力会随着温度、光照的变化或掺入杂质浓度的多少而发生显着改变, 即半导体具 有热敏特性、光敏特性和掺杂特性。 ( 2)杂质半导体中的多数载流子是由杂质原子提供的,例如 供一个自由电子,P 型半导体中一个杂质原子提供一个空穴, 浓度;少数载流子则是由热激发产生的。 (3) 尽管P 型半导体中空穴浓度远大于自由电子浓度,但 P 型半导体中,掺杂的杂质原子因获得一个价电子而变成带负电的杂 质离子(但不能移动),价 电子离开后的空位变成了空穴,两者的电量相互抵消,杂质半导体从总体上来说仍是电中性的。 同理, N 型半导体中虽然自由电子浓度远大于空穴浓度,但 N 型半导体也是电中性的。 (4) 由于温度每升高10 C ,PN 结的反向饱和电流约增大 1倍,因此温度为 35C 时,反向 饱和电流为 (5) 二极管在 Q 点处的直流电阻为 交流电阻为 式中U D 为二极管两端的直流电压, U D U on ,I D 为二极管上流过的直流电流, U T 为温度的 电压当量,常温下 U T 26mV ,可见 r d R D 。 1- 2 理想二极管组成的电路如题 1- 2图所示。试判断图中二极管是导通还是截止,并确定 各电路的输 出电压。 解 理想二极管导通时的正向压降为零, 截止时的反向电流为零。 本题应首先判断二极管的工 作状 态,再进一步求解输出电压。二极管工作状态的一般判断方法是:断开二极管, 求解其端口 电压;若该电压使二极管正偏, 则导通; 若反偏, 则截止。 当电路中有两只或两只以上二极管时, 可分别应用该方法判断每只二极管的工作状态。 需要注意的是, 当多只二极管的阳极相连 (共阳 极接法)时,阴极电位最低的管子将优先导通;同理,当多只二极管的阴极相连(共阴极接法) 时,阳极电位最高的管子将优先导通。 (a) 断开二极管 D ,阳极电位为12V ,阴极电位为6V ,故导通。输岀电压 U O 12V 。 (b) 断开二极管 D 1、D 2, D 1、D 2为共阴极接法,其阴极电位均为 6V ,而D 1的阳极电位 为9V , D 2的阳极电位为5V ,故D 1优先导通,将 D 2的阴极电位钳制在 7.5V ,D 2因反向偏置而 截止。输岀电压 U O 7.5V 。 N 型半导体中一个杂质原子提 因此 多子浓度约等于所掺入的杂质 P 型半导体本身不带电。因为在

机械振动和机械波练习题[含答案]

机械振动和机械波练习题 一、选择题 1.关于简谐运动的下列说法中,正确的是 [ ] A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 2.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则 [ ] A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 3.如图1所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则 [ ] 4.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减少为原来的二分之一,则单摆的振动跟原来相比 [ ] A.频率不变,机械能不变 B.频率不变,机械能改变 C.频率改变,机械能改变 D.频率改变,机械能不变 5.一质点做简谐运动的振动图象如图2所示,质点在哪两段时间内的速度与加速度方向相同[ ] A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s

6.如图3所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此振动系统 [ ] A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1 7.摆A振动60次的同时,单摆B振动30次,它们周期分别为T1和T2,频率分别为f1和f2,则T1∶T2和f1∶f2分别等于 [ ] A.2∶1,2∶1 B.2∶1,1∶2 C.1∶2,2∶1 D.1∶1,1∶2 8.一个直径为d的空心金属球壳内充满水后,用一根长为L的轻质细线悬挂起来形成一个单摆,如图4所示。若在摆动过程中,球壳内的水从底端的小孔缓慢泄漏,则此摆的周期 [ ] B.肯定改变,因为单摆的摆长发生了变化 C.T1先逐渐增大,后又减小,最后又变为T1 D.T1先逐渐减小,后又增大,最后又变为T1 9.如图5所示,AB为半径R=2m的一段光滑圆糟,A、B两点在同一水平高度上,且AB 弧长20cm。将一小球由A点释放,则它运动到B点所用时间为 [ ]

管理学思考题及参考答案

管理学思考题及参考答案 第一章 1、什么是管理? 管理:协调工作活动过程(即职能),以便能够有效率和有效果地同别人一起或通过别人实现组织的目标。 2、效率与效果 效率:正确地做事(如何做) 效果:做正确的事(该不该做) 3、管理者三层次 高层管理者、中层管理者、基层管理者 4、管理职能和(或)过程——职能论 计划、组织、控制、领导 5、管理角色——角色论 人际角色:挂名首脑、领导人、联络人 信息角色:监督者、传播者、发言人 决策角色:企业家、混乱驾驭者、资源分配者、谈判者 6、管理技能——技能论 用图表达。 高层管理概念技能最重要,中层管理3种技能都需要且较平衡,基层管理技术技能最重要。 7、组织三特征? 明确的目的 精细的结构 合适的人员 第二章 泰罗的三大实验: 泰罗是科学管理之父。记住3个实验的名称:1、搬运生铁实验,2、铁锹实验,3、高速钢实验 4、吉尔布雷斯夫妇 动作研究之父 管理界中的居里夫妇 5、法约尔的十四原则 法约尔是管理过程理论之父 记住“十四原则”这个名称就可以了。 6、法约尔的“跳板” 图。 7、韦伯理想的官僚行政组织组织理论之父。6维度:劳动分工、权威等级、正式甄选、非个人的、正式规则、职业生涯导向。 8、韦伯的3种权力 超凡的权力 传统的权力 法定的权力。 9、巴纳德的协作系统论 协作意愿 共同目标 信息沟通 10、罗伯特·欧文的人事管理 人事管理之父。职业经理人的先驱 11、福莱特冲突论 管理理论之母 1)利益结合、 2)一方自愿退让、 3)斗争、战胜另一方 4)妥协。 12、霍桑试验 1924-1932年、梅奥 照明试验、继电器试验、大规模访谈、接线试验 13、朱兰的质量观 质量是一种合用性 14、80/20的法则 多数,它们只能造成少许的影响;少数,它们造成主要的、重大的影响。 15、五项修炼 自我超越 改善心智 共同愿景 团队学习 系统思考 第三章 1、管理万能论 管理者对组织的成败负有直接责任。 2、管理象征论 是外部力量,而不是管理,决定成果。 3、何为组织文化 组织成员共有的价值观和信念体系。这一体系在很大程度上决定成员的行为方式。 4、组织文化七维度

大学物理习题集(下)答案95268

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2=-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ] x o A ? x ω (A) A/2 ω (B) (C) (D) o o o x x x A ? x ω ω A ? A ? x A/2 -A/2 -A/2 (3) 题 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (4) 题(5) 题

第1章思考题及参考答案

第一章思考题及参考答案 1. 无多余约束几何不变体系简单组成规则间有何关系? 答:最基本的三角形规则,其间关系可用下图说明: 图a 为三刚片三铰不共线情况。图b 为III 刚片改成链杆,两刚片一铰一杆不共线情况。图c 为I 、II 刚片间的铰改成两链杆(虚铰),两刚片三杆不全部平行、不交于一点的情况。图d 为三个实铰均改成两链杆(虚铰),变成三刚片每两刚片间用一虚铰相连、三虚铰不共线的情况。图e 为将I 、III 看成二元体,减二元体所成的情况。 2.实铰与虚铰有何差别? 答:从瞬间转动效应来说,实铰和虚铰是一样的。但是实铰的转动中心是不变的,而虚铰转动中心为瞬间的链杆交点,产生转动后瞬时转动中心是要变化的,也即“铰”的位置实铰不变,虚铰要发生变化。 3.试举例说明瞬变体系不能作为结构的原因。接近瞬变的体系是否可作为结构? 答:如图所示AC 、CB 与大地三刚片由A 、B 、C 三铰彼此相连,因为三铰共线,体系瞬变。设该 体系受图示荷载P F 作用,体系C 点发生微小位移 δ,AC 、CB 分别转过微小角度α和β。微小位移 后三铰不再共线变成几何不变体系,在变形后的位置体系能平衡外荷P F ,取隔离体如图所 示,则列投影平衡方程可得 210 cos cos 0x F T T βα=?=∑,21P 0 sin sin y F T T F βα=+=∑ 由于位移δ非常小,因此cos cos 1βα≈≈,sin , sin ββαα≈≈,将此代入上式可得 21T T T ≈=,()P P F T F T βαβα +==?∞+, 由此可见,瞬变体系受荷作用后将产生巨大的内力,没有材料可以经受巨大内力而不破坏,因而瞬变体系不能作为结构。由上分析可见,虽三铰不共线,但当体系接近瞬变时,一样将产生巨大内力,因此也不能作为结构使用。 4.平面体系几何组成特征与其静力特征间关系如何? 答:无多余约束几何不变体系?静定结构(仅用平衡条件就能分析受力) 有多余约束几何不变体系?超静定结构(仅用平衡条件不能全部解决受力分析) 瞬变体系?受小的外力作用,瞬时可导致某些杆无穷大的内力 常变体系?除特定外力作用外,不能平衡 5. 系计算自由度有何作用? 答:当W >0时,可确定体系一定可变;当W <0且不可变时,可确定第4章超静定次数;W =0又不能用简单规则分析时,可用第2章零载法分析体系可变性。 6.作平面体系组成分析的基本思路、步骤如何? 答:分析的基本思路是先设法化简,找刚片看能用什么规则分析。

弹簧振子实验报告

弹簧振子实验报告 一、引言 ●实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ●实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F=?kx(1) 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷.这就是胡克定律.式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: m d2x dt +kx=0(2) 令ω2=k m ,上式可化为一个典型的二阶常系数微分方程d 2x dt +ω02=0,其解 为 x=A sin(ω0t+?)(3) (3)式表明.弹簧振子在外力扰动后,将做振幅为A,角频率为ω0的简谐振动,式中的(ω0t+?)称为相位,?称为初相位.角频率为ω0的振子其振动周期为T0=2π ω0 ,可得 x=2π√m k (4) (4)式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的最基本的特性.弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识更复杂震动的基础. 弹簧的质量对振动周期也有影响.可以证明,对于质量为m0的圆柱形弹簧,振子周期为 T=2π√m+m0 3? k (5) 式中m0 3?称为弹簧的等效质量,即弹簧相当于以 m0 3?的质量参加了振子的 振动.非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3.

简谐振动练习题(含详解)

简谐运动练习题 一、基础题 1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( ) A.质元Q和质元N均处于加速运动过程中 B.质元Q和质元N均处于减速运动过程中 C.质元Q处于加速运动过程中,质元N处于减速运动过程中 D.质元Q处于减速运动过程中,质元N处于加速运动过程中 2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为() A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm 3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则 A.当平台振动到最高点时,物体对平台的正压力最大 B.当平台振动到最低点时,物体对平台的正压力最大 C.当平台振动经过平衡位置时,物体对平台的正压力为零 D.物体在上下振动的过程中,物体的机械能保持守恒 4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( ) A.这列波的周期是0.2 s B.质点P、Q此时刻的运动方向都沿y轴正方向 C.质点P、R在任意时刻的位移都相同 D.质点P、S在任意时刻的速度都相同 5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小 C.振子速度逐渐减小 D.振子加速度逐渐减小 6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是 F F F F

使A 和B 一起在光滑水平面上做简谐运动,如图所示。振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为( ) A C D .././().kx B mkx M mkx m M 0 8.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( ) A .小球在A 、 B 的速度为零而加速度相同 B .小球简谐振动的振幅为k qE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大 D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大 9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻 A .振子所受的弹力大小为5N ,方向指向x 轴的正方向 B .振子的速度方向指向x 轴的正方向 C .在0~4s 内振子作了1.75次全振动 D .在0~4s 内振子通过的路程为0.35cm ,位移为0 二、提高题(14、15、19题提高题) 10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动。O 点为原点,取向左为正,振子的位移x 随时间t 的变化如图乙所示,则由图可知( ) A. t =0.2s 时,振子在O 点右侧6cm 处 B. t =1.4s 时,振子的速度方向向右 C. t =0.4s 和t =1.2s 时,振子的加速度相同 D. t =0.4s 到t =0.8s 的时间内,振子的速度逐渐增大 11.一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电量为+q 的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E 后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

相关主题
文本预览
相关文档 最新文档