当前位置:文档之家› 透射电子显微镜及其应用

透射电子显微镜及其应用

透射电子显微镜及其应用
透射电子显微镜及其应用

透射电子显微镜及其应用

透射电子显微镜及其应用

读书报告

姓名:孙家宝

学号:DG1022076

电子科学与工程学院

2020年4月4日

目录

第一章透射电子显微镜1

1.1 透射电子显微镜的结构 (1)

1.1.1.电子光学部分 (2)

1.1.2.真空系统 (5)

1.1.3.供电控制系统 (5)

1.2 透射电子显微镜主要的性能参数 (5)

1.2.1 分辨率 (5)

1.2.2 放大倍数 (6)

1.2.3 加速电压 (7)

1.3 透射电镜的成像原理 (7)

1.3.1 透射电镜的成像方式 (7)

1.3.2 衬度理论 (8)

1.4 透射电镜的电子衍射花样 (9)

1.4.1 电子衍射花样 (9)

1.4.2电子衍射与X射线衍射相比的优点 10 1.4.3电子衍射与X射线衍射相比的不足之处 (10)

1.4.4选区电子衍射 (11)

1.4.5常见的几种衍射图谱 (12)

1.4.6单晶电子衍射花样的标定 (13)

第二章透射电子显微镜分析样品制备

15

2.1 透射电镜复型技术(间接样品) (15)

2.1.1塑料——碳二级复型 (15)

2.1.1萃取复型(半直接样品) (16)

2.2 金属薄膜样品的制备 (17)

1.2 电子显微镜中的电光学问题 (19)

1.2.1 电子射线(束)的特性 (20)

第一章 透射电子显微镜

1.1 透射电子显微镜的结构

透射电子显微镜(TEM )是观察和分析材料的形貌、组织和结构的有效工具。TEM 用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。图1.1(a )(b )是两种典型的透射电镜的实物照片。透射电子显微镜的光路原理图如图1.2所示。

(a) Philips

CM12(b) JEM-2010图 1.1

透射电

实验透射电镜的结构原理及应用

实验透射电镜的结构原理及应用 一、目的要求 1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。 2.学习衍射图谱的分析步骤。 3.学习操作透射电镜,获得的明暗场像 二、透射电镜的基本结构 透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。 2.1 电子光学系统 电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。 照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终

的图像。观察记录部分由荧光屏及照像机组成。试样图像经过透镜多次放大后,在荧光屏上 显示出高倍放大的像。如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由 于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的 图像。 2.2 真空系统 电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情 况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无 法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。 目前一般电镜的真空度为10-5托左右。真空泵组经常由机械泵和扩散泵两级串联成。为 了进一步提高真空度,可采用分子泵、离子泵,真空度可达到10-8托或更高。 2.3 电源与控制系统 供电系统主要用于提供两部分电源:一是电子枪加速电子用的小电流高压电源;一是透 镜激磁用的大电流低压电源。一个稳定的电源对透射电镜非常重要,对电源的要求为:最大 透镜电流和高压的波动引起的分辨率下降要小于物镜的极限分辨本领。 三、透射电镜的工作原理 透射电子显微镜是依照阿贝成像原理工作的,即:平行入射波受到有周期性特征物体的 散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的 特征的像。因此根据阿贝成像原理,在电磁透镜的后焦面上可以获得晶体的衍射谱,故透射 电子显微镜可以做物相分析;在物镜的像面上形成反映样品特征的形貌像,故透射电镜可以 做组织分析。 四、衍射花样标定 以已知晶体结构,定晶面取向的标定为例,基本程序如下: 1)测量距离中心斑点最近的三个衍射斑点到中心斑点的距离R; 2)测量所选衍射斑点之间的夹角φ; 3)根据公式λL Rd =,将测得的距离换算成面间距d; 4)因为晶体结构是已知的,将求得的d值与该物质的面间距表(如PDF卡片)相对照, 得出每个斑点的晶面族指数; }{HKL 5)决定离中心斑点最近衍射斑点的指数。若R1最短,则相应斑点的指数可以取等价晶 面中的任意一个; }{111L K H )(111L K H 6)决定第二个斑点的指数。第二个斑点的指数不能任选,因为它和第一个斑点间的夹角必须符合夹角公式。对立方晶系来说,两者的夹角可用下式(9.6)求得 )()(cos 22222221212 12 12121L K H L K H L L K K H H ++++++=φ (9.6) 在决定第二个斑点指数时,应进行所谓尝试校核,即只有代人夹角公式后 )(222L K H

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜(材料分析方法)

第九章透射电子显微镜 一、透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统、电源与控制系统及真空系统三部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它与光路原理与透射光学显微镜十分相似,如图1(书上图9-1)所示。它分为三部分,即照明系统、成像系统和观察记录系统。 图1 透射显微镜构造原理和光路 (a)透射电子显微镜b)透射光学显微镜) (1、照明源2、阳极3、光阑4、聚光镜5、样品6、物镜7、物镜光阑 8、选区光阑9、中间镜10、投影镜11、荧光屏或照相底片) (一)照明系统 照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。其作用是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。为满足明场和暗

场成像需要、照明束可在2°~3°范围内倾斜。电子枪是电镜的照明源,必须有很高的亮度,高分辨率要求电子枪的高压要高度稳定,以减小色差的影响。 1、电子枪 电子枪是透射电子显微镜的电子源,是发射电子的照明源。常用的是热阴极三极电子枪,它由发夹形钨丝阴极、栅极帽和阳极组成,如图2(书上图9-2)所示。(发射电子的阴极灯丝通常用0.03~0.1mm的钨丝,做成“V”形。电子枪的第二个电极是栅极,它可以控制电子束形状和发射强度。故有称为控制极。第三个极是阳极,它使阴极发射的电子获得较高的动能,形成定向高速的电子流。阳极又称加速极,一般电镜的加速电压在35~300kV之间。为了安全,使阳极接地,而阴极处于负的加速电位。由于热阴极发射电子的电流密度随阴极温度变化而波动,阴极电压不稳定会影响加速电压的稳定度。为了稳定电子束电流,减小电压的波动,在电镜中采用自偏压电子枪。) 图a为电子枪的自偏压回路,负的高压直接加在栅极上,而阴极和负高压之间因加上一个偏压电阻,使栅极和阴极之间有一个数百伏的电位差。图b中反映了阴极、栅极和阳极之间的等位面分布情况。因为栅极比阴极电位值更负,所以可以用栅极来控制阴极的发射电子有效区域。当阴极流向阳极的电子数量加大时,在偏压电阻两端的电位值增加,使栅极电位比阴极进一步变负,由此可以减小灯丝有效发射区域的面积,束流随之减小。若束流因某种原因而减小时,偏压电阻两端的电压随之下降,致使栅极和阴极之间的电位接近。此时,栅极排斥阴极发射电子的能力减小,束流又可望上升。因此,自偏压回路可以起到限制和稳定束流的作用。由于栅极的电位比阴极负,所以自阴极端点引出的等位面在空间呈弯曲状。在阴极和阳极之间的某一地点,电子束会汇集成一个交叉点,这就是通常所说的电子源。交叉点处电子束直径约几十个微米。 从图A中看出,自偏压是由束流本身产生的,自偏压U b将正比于束流I b即:U b=RI b。这样如果增加,会导致偏压增加,从而抵消束流的增加,这是偏压电阻引起负反馈的结果。它起着限制和稳定束流的作用。改变偏压电阻的大小可以控制电子枪的发身,当电阻R值增大时,控制极上的负电位增高,因此控制极排斥电子返回阴极的作用加强。在实际操作中,一般是给定一个偏压电阻后,加大灯丝电流,提高阴极温度,使束流增加。开始束流随阴极温度升高而迅速上升,然后逐渐减慢,在阴极温度达到某一数值时,束流不再随灯丝温度或灯丝电流变化而变化。此值称为束流饱和点,它是由给定偏压电子负反馈作用来决定的。在这以后再加大灯丝电流,束流不再增加,只能使灯丝温度升高,缩短灯丝寿命。另一种使束流饱和的方法是固定阴极发射温度,即选定一个灯丝电流值,然后加大偏压电阻,增大负偏压,使束流达到饱和点。当阴极温度比较高时,达到束流饱和所需要的偏压电阻要小些,当偏压电阻较大时,达到饱和所需要的阴极温度要低些。两者合理匹配使灯丝达到

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

透射电镜的基本原理及使用(精编文档).doc

【最新整理,下载后即可编辑】 透射电镜的基本原理及使用

图1 放射电子显微镜基本结构原理图(注:除上述部分外,电镜还包括必须的冷却和真空系统)

图2 电镜和光镜原理对比图 应用举例: JEM-100CXⅡ透射电镜操作说明 一、开机程序 1、首先打开房间空调,冷却循环水房温度21度,操作室25 度 2、开启冷却水循环装置,一个独立的小的控制器,先将开关 打至ON,再将按下POWER键 3、启动稳压电源,稳定于220V;查看电源箱供电指示灯亮 4、用钥匙启动主机,从OFF档位旋到START位,松开后钥 匙自动回到ON位置。仪器自动抽真空,等待约40分钟。 5、直至DP绿灯亮,HIGH绿灯亮,READY绿灯亮(若不亮 的话,将LENS LIGHT打至ON档位)。 二、电子枪合轴(1-3合轴) 1、确认READY绿灯亮 2、把样品拨出,物镜光栏拨出至0档位 3、加高压:按下HT键后,依次按下40-60-80-100KV键,并 注意观察束流表是否正常,每次都要等电流表显示稳定之后再进行下一步,一般调到80KV就行了。 4、加灯丝:将FILAMENT EMIISSION旋钮缓慢旋至锁定位 置 5、一般在SCAN(5300倍)条件下调节,调节CONDENSER

钮,得到光斑。 6、SPOT SIZE调到3档,调节CONDENSER钮聚光,得到 最小最亮光斑,然后用左右ALIGNMENT:TRANS(小的)将光斑拉至最中心位置(中心位置有一黑点)。 7、SPOT SIZE调到1档,调节CONDENSER钮聚光,得到 最小最亮光斑,然后用GUN ALIGNMENT:TRANS(X、Y)将光斑拉至中心位置。 8、再重复6、7步骤,使束流不偏离中心。 三、调灯丝相(每次开机都需要检查) 1、在SCAN模式下,SPOT SIZE调到1档 2、将FILAMENT EMIISSION旋钮稍稍往回调,到看到灯丝 欠饱和像,即车轮像(鱼眼像),若车轮像不对称,则进行下面调节。 3、缓慢旋转GUN ALIGNMENT:TILT(X、Y),使灯丝像 对称。 4、然后调节FILAMENT EMIISSION旋钮至灯丝饱和(即刚 好全亮,没有阴影),并锁定该位置。 四、粗对焦(该步很重要) 1、关灯丝(FILAMENT EMIISSION旋钮至OFF)后,插入 样品,插入物镜光栏(2档) 2、开灯丝(FILAMENT EMIISSION旋钮至ON)后,放大 光斑至满屏(以免烧坏铜网) 3、找到样品,并选中一目标为参照 4、将IMAGE WOBBLER打至ON,此时看到样品会有一定 的晃动,调节FOCUS旋钮(有大中小三个,一般只用到中和小)至图像清晰没有重影。 五、聚光镜对中调节 1、关灯丝后,拨出样品,拨出光栏,开灯丝,缩小光斑,检查 是否在中心位置, 2、在SCAN模式,SPOT SIZE 1档情况下,将COND ALIGNMENT打到ON,然后下面一WOBBLER键打到X,

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电镜结构原理及明暗场成像#精选、

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料显微分析实践 考核项目:透射电镜的明暗场成像技术学生所在院(系):材料学院 学生所在学科:材料工程 学生姓名:张珞斌 学号:17S109247 学生类别:专硕 考核结果阅卷人

透射电镜结构原理及明暗场成像 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。 2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 2.1电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.2 真空系统

透射电镜TEM的应用

第三节透射电镜的应用 一、复型在金相分析中的应用 (一)钢中典型组织的观察 1.珠光体 奥氏体在C曲线“鼻子”上部分区域 分解的产物为珠光体型组织,包括珠光体、 索氏体和屈氏体,都是铁素体与渗碳体的 机械混合物,区别只是层片间距不同而已。 珠光体组织内层片的粗细和冷却速度、转 变温度有关,冷速愈快,转变温度愈低, 所形成的珠光体则越细。由于珠光体在晶 界形核,然后向晶内长大直至相遇,所以图5—21 T8,退火,5000×组织:珠光体 在一个奥氏体晶粒内有若干不同位向的珠 光体领域。见图5—21 2.贝氏体 奥氏体在中间温度(低于珠光体转变温度,高于马氏体转变温度)的转变产物为贝氏体,贝氏体也是铁素体和渗碳体的两相组织,但其相变机制和组织形态与珠光体不同。随着钢的成分及转变温度的不同,贝氏体形态有很大差别,大致可分为三类:上贝氏体、下贝氏体和粒状贝氏体。 上贝氏体是在贝氏体转变区的较高温度范围内形成的。在光镜观察时可看到羽毛状或单羽毛状特征,一般是沿奥氏体晶界长出。其中渗碳体粒子很难辨别。复型图象可清晰地显示上贝氏体由大体平行的铁素体条和分布于其间的断续杆状渗碳体所组成。见图5—22。 下贝氏体在低温范围形成,光镜下呈黑色针叶状,并相互成角度。复型电镜观察表明,在铁素体片内沉淀的细小碳化物有一定的取向,与铁素体片长轴成55o~60o角。见图5—23 。 图5—22 GCr15,900℃奥氏体化图5—23 GCr15,970℃奥氏体化400℃等温7秒,7000×,组织:上贝氏体300℃等温30秒,7000×,组织:下贝氏体

3. 马氏体 通常,奥氏体快速冷却时得到马氏体,其形态根据含碳量不同可分为两类:低碳马氏体和高碳马氏体,含碳量在0.2~1%时为两者的混合组织。 低碳马氏体呈条束状排列。同一领域内的马氏体条大致平行,领域之间位向不同。交角60o、90o等,因为其亚结构为大量位错线缠结,又称它为位错马氏体,见图5— 24。高碳马氏体呈针片状,片的大小不一,有一定的交角,马氏体片间往往有残余奥氏体存在,高碳马氏体的亚结构是极薄的孪晶组织,又叫孪晶型马氏体。马氏体片中 图5—24 40Mn 加热至860℃,水冷 2000× 图5—25GCr15 加热至900℃,水冷 3000× 组织:板条马氏体 组织:针状马氏体 还常常可以看到中脊线。见图5—25。 (二)化学热处理渗层组织观察 在电镜下观察化学热处理零件的渗层组织与测量其层深是十分有效的。但由于复型样品边缘碳膜折迭、破碎、卷曲,往往不容易得到完整的表层复型。为了得到较为完整的渗层复型,在制备金相试样时将表层紧紧贴夹铜片,镍片或环氧树脂,然后磨、抛光、腐蚀并将其制成复型样品。在观察时只要找到铜或镍的复型就可找到渗层的最表层,因而能够观察从表面到心部组织变化和测量其层深。 (三)大型零件组织的复型观察 大型零件出故障后,为了分析原因找出补救措施,可在现场做复型。把零件局部抛光、腐蚀、贴AC 纸,取下复型后拿回实验室做投影喷碳,制成样品,观察组织,分析故障原因。这种方法既方便,又不损坏零件。 二、萃取复型的应用 应用萃取复型技术可观察夹杂物或第二相粒子的大小、形态、分布以及通过衍射研究它们的点阵类型和晶体结构。在任何一种合金钢中都或多或少地存在着一些非金属夹杂物。在外力作用下由于它们和基体之间性能上的差异,一般常在它们和基体的界面处产生很大应变,随之形成微裂纹,在材料断裂后,它们一般还保留在断口表面上,用光学显微镜无法查出小尺寸夹杂物。用萃取复型方法萃取到断口复型上,在观察形貌的同时就可以利用电子衍射技术对它们进行物相鉴定,即定出它们的晶体结构。

透射电镜结构原理及明暗场成像

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料显微分析实践 考核项目:透射电镜的明暗场成像技术学生所在院(系):材料学院 学生所在学科:材料工程 学生姓 :张珞斌 名 学号:17S109247 学生类别:专硕 考核结果阅卷人

透射电镜结构原理及明暗场成像 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。 2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 2.1电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

第二十五章 透射电子显微镜分析

—1— 第25章 透射电子显微镜 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段。电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辨能力从大约0.2 mm 拓展至亚原子量级(<0.1nm),大大增强了人们观察世界的能力。尤其是近20多年来,随着科学技术发展进入纳米科技时代,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究;没有电子显微镜,开展现代科学技术研究是不可想象的。目前,它的发展已与其他学科的发展息息相关,密切联系在一起。 25.1 基本原理 透射电子显微镜在成像原理上与光学显微镜是类似的(图25-1),所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 理论上,光学显微镜所能达到的最大分辨率d ,受到照射在样品上的光子波长λ以及光学系统的数值孔径N A 的限制: 2sin 2A d n N λ λ α=≈ (25-1) 在20世纪初,科学家就已发现理论上使用电子可以突破可见光的光波波长限制(波长范围400~700nm )。由于电子具有波粒二象性,而电子的波动特性则意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能推导出。由于在TEM 中,电子的速度接近光速,需要对其进行相对论修正: e λ≈ (25-2) 式中,h 表示普朗克常数;m 0表示电子的静质量;E 是加速电子的能量;c 为光速。电子显微镜中的电子通常通过电子热发射过程或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚衬度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,衬度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg )方程,产生衍射现象,在衍射衬度模式中,像平面上图像的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm 左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,

透射电镜的基本结构及应用举例

透射电镜的基本结构及应用举例 一、实验目的 1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理,观察基本结构; 2.掌握典型组织的TEM像的基本特征和分析方法。 二、透射电镜的基本结构和成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统、真空系统三部分组成。 显微镜原理对比图

)透射电子显微镜b) 透射光学显微镜 电子枪发射的电子在阳极加速电压的作用下,高速地穿过阳极孔,被聚光镜会聚成很细的电子束照明样品。因为电子束穿透能力有限,所以要求样品做得很薄,观察区域的厚度在200nm左右。由于样品微区的厚度、平均原子序数、晶体结构或位向有差别,使电子束透过样品时发生部分散射,其散射结果使通过物镜光阑孔的电子束强度产生差别,经过物镜聚焦放大在其像平面上,形成第一幅反映样品微观特征的电子像。然后再经中间镜和投影镜两级放大,投射到荧光屏上对荧光屏感光,即把透射电子的强度转换为人眼直接可见的光强度分布,或由照相底片感光记录,从而得到一幅具有一定衬度的高放大倍数的图像。 三、实验仪器 1.JEM-2010型透射电子显微镜 JEM-2010高分辨型透射电子显微镜,是日本电子公司的产品。它的主要性能指标是:晶格分辨率0.14nm;点分辨率0.23nm;最高加速电压200KV;放大倍数2,000~1,500,000;样品台种类有:单倾、双倾。JEM-2010还配有CCD相机,牛津公司的能谱仪(EDS),美国GATAN公司的能量损失谱仪(EELS)。 可观察的试样种类:复型样品;金属薄膜、粉末试样;玻璃薄膜、粉末试样;陶瓷薄膜、粉末试样。 主要功能:JEM-2010属于高分辨型透射电镜,可以进行高分辨图像观察,位错组态分析;第二相、析出相结构、形态、分布分析;

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

扫描透射电子显微镜模式分析

A general introduction to STEM detector 1. BF detector It is placed at the same site as the aperture in BF-TEM and detects the intensity in the direct beam from a point on the specimen. 2. ADF detector The annular dark field (ADF) detector is a disk with a hole in its center where the BF detector is installed. The ADF detector uses scattered electrons for image formation, similar to the DF mode in TEM.The measured contrast mainly results from electrons diffracted in crystalline areas but is superimposed by incoherent Rutherford scattering. 3. HAADF detector The high-angle annular dark field detector is also a disk with a hole, but the disk diameter and the hole are much larger than in the ADF detector. Thus, it detects electrons that are scattered to higher angles and almost only incoherent Rutherford scattering contributes to the image. Thereby, Z contrast is achieved.

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、电流及完成控制功能。

透射电子显微镜原理

第二章透射电子显微镜 【教学内容】 1.透射电子显微镜的构造与成像原理 2.透射电镜图像的成像过程 3.透射电镜主要性能 4.表面复型技术 5.透射电镜观察内容 【重点掌握内容】 1.透射电子显微镜构造 2.表面复型技术 3.复型电子显微镜图像的分析。 【教学难点】 表面复型技术 2.1 透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。 There are four main components to a transmission electron microscope: 1.an electron optical column 2. a vacuum system 3.the necessary electronics (lens supplies for focusing and deflecting the beam and the high voltage generator for the electron source) 4.software 电子光学系统(镜筒)(an electron optical column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。

图2-1 投射显微电镜构造原理和光路 2.1.1 照明系统 组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组成。 作用:提供一束亮度高、照明孔径角小、平行度高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明束可在20-30范围内倾斜。 1. 电子枪 电子枪是电镜的电子源。其作用是发射并加速电子,并会聚成交叉点。目前电子显微镜使用的电子源有两类: 热电子源——加热时产生电子,W丝,LaB6 场发射源——在强电场作用下产生电子,场发射电镜FE 热阴极电子源电子枪的结构如图2-2所示,形成自偏压回路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会聚为尺寸为d0的交叉点,通常为几十um。栅极的作用:限制和稳定电流。 图2-2 电子枪结构

透射电子显微镜实验报告

透射电子显微镜(TEM)实验报告 学院: 班级: 姓名: 学号: 2016年6月21日

实验报告 一、实验目的与任务 1.熟悉透射电子显微镜的基本构造 2.初步了解透射电镜操作过程。 3.初步掌握样品的制样方法。 4.学会分析典型组织图像。 二、透射电镜的结构与原理 透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在10-5托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×10-8Pa或更高。如果电镜的真空度达不到要求会出现以下问题: 1)电子与空气分子碰撞改变运动轨迹,影响成像质量。

透射电子显微镜原理

透射电子显微镜原理 透射电子显微镜(transmission electron microscope, TEM)是利用透射电子成像,因而要求样品极薄(加速电压100kV时,样品厚度不能超过100nm)。其结构包括三大部分:电子学系统、真空系统和电子光学系统。电子光学系统提供电子束,在高真空条件下照射到样品上,经过成像系统中的物镜成像,再经过中间镜和投影镜的进一步放大,获得的图像记录在CCD上。TEM使用油扩散泵(Diffuse Pump)来实现高真空。由于油扩散泵的启动和关闭都需要30分钟,导致TEM开机和关机都至少需要30分钟。TEM发射出的高能电子束轰击到光路元器件上以及样品上,会产生以X-ray为主的等等其他射线辐射,因此建议孕妇等过敏性体质者尽量避免接触TEM。 由于平台现有TEM的加速电压为100kV,是一台生物电镜,因此无法满足材料科学上要求的高放大倍数(30万倍以上)、高分辨、衍射花样等实验要求,有这方面需求的科研人员请与武大、地大等单位联系。 TEM是研究结构生物学的有力工具。除了电镜之外,现在尚没有一种仪器能使人们用肉眼直接观察到亚细胞结构、蛋白大分子(直径20nm以上)的排列结构形态。利用电镜观察超微结构的形态和位置,可以研究解决部分形态和功能的问题。 TEM是研究超微结构必须的工具之一,但它存在一些缺点:(1)TEM的价格昂贵,维护费用及其配件、耗材都在几百甚至上千美元以上。(2)TEM的维护和使用均要求较高的技术,也是一个精细、繁琐的过程。TEM每3天要做一次维护和电子光路调整,每次调整和维护至少需要2个小时。(3)TEM不能像光镜那样随时可用,受到很多限制。TEM放大倍数有很多,再加上切片的限制,因此无法实现始终同一放大倍数的拍摄。(4)TEM样品必须置于真空中,因此对活体标本的观察是不可能的。(5)TEM样品取材及制备存在局限性。TEM取材要求只有1mm3大小块状,而且观察面更小,如果把一个厚6μm的细胞核切成60nm的超薄切片,可以且100张,而一般光镜的石蜡切片厚度即为6μm。如果要得到一张光镜样品切片的信息,就不得不记录下100张超薄切片的信息,工作量就要增加了100倍。(6)TEM的观察视野较小,只有6μm×9μm,当放大10 000倍时,要想记录1 mm2的标本信息,就需要拍摄18 500张照片。因此在进行电镜观察研究时,必须要有选择性、有代表性地严格选择样品。 使用TEM前,首先要树立一个概念:TEM不是光镜的再放大,TEM的研究对象不是组织,而是细胞器,是以细胞为整体研究细胞内部结构的工具。组织切片能解决问题的没有做TEM的必要!

相关主题
文本预览
相关文档 最新文档