当前位置:文档之家› 高三物理第一轮复习教案——动能定理

高三物理第一轮复习教案——动能定理

高三物理第一轮复习教案——动能定理
高三物理第一轮复习教案——动能定理

高考一轮复习——动能定理

一、教学目标:1.理解动能定理的确切含义

2.熟练运用动能定理分析解决有关问题

二、教学重难点:

1、重点:(1)动能定理的确切含义

(2)动能定理的应用

2、难点:动能定理的应用

三、考点点拨:1.利用动能定理求变力做功

2.应用动能定理应该注意的问题

3.动能定理在多体问题中的应用

四、教学过程:

(一)考点扫描

1、知识整合

(1)动能:①物体由于_____运动________而具有的能量叫动能。 ②动能的大小:22

1mv E k 。 ③动能是 标量 ,也是状态量。

(2)动能定理:

⑴动能定理的内容和表达式: 外力对物体做的总功等于物体动能的变化。W 总=ΔE K ⑵物理意义:动能定理指出了____功___和____能___的关系,即外力做的总功,对应着物体动能的变化,变化的大小由_____外力做的总功_____来度量。

我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指____末动能与初动能的差____。

⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于____曲线运动___。 既适用于恒力做功,也适用于_____变力做功_____。力可以是各种性质的力,既可以同时做用,也可以______分阶段作用____,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。

2、重难点阐释

(1)应用动能定理解题的基本步骤:

①选取研究对象,明确它的运动过程。

②分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。

③明确物体在过程的始末状态的动能E k1和E k2

④列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。

(2)动能定理的理解和应用要点:

①动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。

②动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。

③动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。

④动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。

⑤在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢W n=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。(二)高考要点精析

1、利用动能定理求变力做功

☆考点点拨

应用动能定理求解变力做功是高中阶段最常用的方法。

[例1]一个质量为m的小球拴在钢绳的一端,另一端施加大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动今将力的大小改变为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功。

解析:此题中,绳的拉力作为小球圆周运动的向心力,是变力,求变力做功应使用动能定理,设半径为R1和R2时小球的圆周运动的线速度大小分别为v1和v2,由向心力公式得

F1=mv12/R1……①

F2=mv22/R2……②

由动能定理得:

W=mv22/2-mv12/2……③

由①②③得:W=(F2R2-F1R1)/2

☆考点精炼

1.如图所示,一弹簧振子,物块的质量为m,它与水平桌面间的动摩擦因数为μ。起初,用手按住物块,物块的速度为零,弹簧的伸长量为x。然后放手,当弹簧的长度回到F

ω

A θ

B C

L h s 原长时,物块的速度为v 。试用动能定理求此过程中弹力所做的功。

2、应用动能定理应该注意的问题

☆考点点拨

(1)明确研究对象和研究过程,找出始、末状态的速度情况。

(2)要对物体进行正确的受力分析(包括重力、弹力等),明确各力做功的正负。

(3)注意物体运动的阶段性,明确各阶段外力做功的情况。

[例2]质量为M=0.2 kg 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m 。质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,当子弹以v =90m/s 的速度水平射出时,木块的速度为v 1=9m/s (此过程作用时间极短,可认为木块的位移为零)。若木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求:

(1)木块对子弹所做的功W 1和子弹对木块所做的功W 2 ;

(2)木块与台面间的动摩擦因数为μ。

解析:

(1)由动能定理得,木块对子弹所做的功为

W 12432

121202-=-=mv mv J 同理,木块对子弹所做的功为

W 21.82

121==Mv J (2)木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:21222121Mv Mv MgL -=

-μ 木块离开台面后的平抛阶段,g h v s 22

=

解得μ=0.50 点评:从本题可以看出:木块对子弹所做的功W 1和子弹对木块所做的功W 2的代数和并不为零。原因是,功是力对位移的积累,相互作用力大小相等,但位移大小不相等。

从本题还应引起注意的是:不要对系统用动能定理。在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。如果对系统在全过程用动能定理,就会把这个负功漏掉。

☆考点精炼

2.如图所示,物体从倾斜角为θ的斜面上

由A 点从静止滑下,最后停在水平面上的C 点,

物体与斜面和地面间的动摩擦因数都是μ,并且物体

在滑经斜面与水平面的连接点B 时无机械能损失,试求物体在斜面上滑动的距离s 1和在地面上滑行的距离s 2的比值。

3、动能定理在多体问题中的应用

☆考点点拨

当题中涉及多个物体时,要注意灵活选取研究对象,找出各物体间位移或时间的关系,分别对各物体应用动能定理,必要时列方程组求解。

[例3]质量为M 的机车,牵引质量为m 的车箱在水平轨道上匀速前进,某时刻车箱与机车脱节,机车前进了 L 后,司机才发现,便立即关闭发动机让机车滑行。假定机车与车厢所受阻力与其重力成正比且恒定。试求车厢与机车都停止时两者的距离。

解析:此题用动能定理求解比用运动学、牛顿第二定律求解简便。

对车头,脱钩后的全过程用动能定理得:

2012

1)(Mv kMgs L kMg F -=-- 对车箱,脱钩后用动能定理得: 2022

1mv kmgs -=- 而21s s s -=?,由于原来列车是匀速前进的,所以F =k (M+m )g 由以上方程解得M L m M s )(+=

?。

☆考点精炼

3.如图所示:在光滑的水平面上有一平板小车M 正以速度v 向右运动,现将一质量为m 的木块无初速度的放在小车上。由于木块和小车之间的摩擦力作用,小车的速度将会发生变化,为使小车保持原来的运动速度不

变,必须及时对小车施加一个向右的水平力

F ,当F 作用一段时间后,小车与木块刚好相

对静止时,把它撤开,木块与小车的动摩擦因

数为μ,求在上述过程中,水平恒力F 对小车

所做的功。 m F

M v

(三)课堂小结:

动能定理在高考中运用的非常广泛,它的运用并没有特定的题型,通常用于比较复杂的运动情况下,运用时,应多注意其运用条件和该注意的问题。

(四)布置作业:

1.汽车在平直公路上行驶,在它的速度从零增至v 的过程中,汽车发动机做的功为W 1,在它的速度从v 增大至2v 的过程中,汽车所做的功为W 2,设汽车在行驶过程中发动机的牵引力和所受阻力不变,则有( )

A .W 2=2W 1

B .W 2=3W 1

C .W 2=4W 1

D .仅能判断W 2>W 1

2.如图所示,DO 是水平面,AB 是斜面,初速为v 0的物体从D 点出发沿DBA 滑到A 点且速度刚好为零。如果斜面改为AC ,让该物体从D 点出发沿DCA 滑到A 点且速度刚好为零,则物体具有初速度(已知物体与路面之间的动摩擦因数处处相同且不为零)( )

A .大于v 0

B .等于v 0

C .小于v 0

D .取决于斜面的倾角 3.假设汽车紧急刹车制动后所受阻力的大小与汽车所受重力的大小差不多,当汽车以20m/s 的速度行驶时,突然制动。它还能继续滑行的距离约为( )

A .40m

B .20m

C .10m

D .5m

4.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为 ( )

A .m g L /4

B .m g L /3

C .m g L /2

D .m g L

5.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )

A .m g L /4

B .m g L .m g L /2 D .m g L

6. 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。

7.如图所示,质量为m 的钢珠从高出地面h 处由静止自由下

落,落到地面进入沙坑h /10停止,则

(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?

A B C D O h /10

h

(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。

8.竖直固定在桌面上的轻质弹簧,原长为L0,质量为m的小球从弹簧上端正上方H处自由落下,碰到弹簧后,使弹簧发生的最大缩短量为△L,求小球具有最大速度时离桌面的高度(弹簧劲度系数为k),以及此后弹簧可能具有的最大弹性势能。

9.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长s=3m,BC 处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。

求物体在轨道AB段所受的阻力对物体做的功。

10.质量为m的飞机以水平速度v0飞离跑

道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受

到重力和竖直向上的恒定升力(该升力由其他力的合力提供,

不含重力),今测得当飞机在水平方向的位移为l时,它的上

升高度为h,求:(1)飞机受到的升力大小

(2)从起飞到上升至h高度的过程中升力所做的功及在高度

h处飞机的动能.

11.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。小球到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不

变,求:(设小球与槽壁相碰时不损失能量)

(1)小球第一次离槽上升的高度h;

(2)小球最多能飞出槽外的次数(取g=10m/s2)。

12.一辆车通过一根跨过定滑轮的绳PQ提升井

中质量为m的物体,如图所示.绳的P端拴在车后的

挂钩上,Q端拴在物体上.设绳的总长不变,绳的质

量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不

计.开始时,车在A点,左右两侧绳都已绷紧并且是

竖直的,左侧绳长为H.提升时,车加速向左运动,

沿水平方向从A经过B驶向C.设A到B的距离也为

H,车过B点时的速度为v B.求在车由A移到B的过

程中,绳Q端的拉力对物体做的功.

高三物理一轮复习教学案1-3、重力、 弹力、摩擦力

1、力重力弹力 [高考要求] 1、掌握力、重力、形变、弹力等概念; 2、理解力不仅有大小而且有方向,是矢量; 3、知道重力的产生及重心位置的确定; 4、掌握判断弹力及其方向的确定方法; 5、掌握胡克定律,会计算弹力的大小。 [学习内容] 一、力 1、力的概念:(1)力是______对_____的作用;(2)其作用效果是①使受力物体_____________;②使受力物体______________。形变指物体________或________发生变化。 2、力的基本特性:(1)力的物质性是指____________;(2)力的矢量性是指______________;(3)力的相互性是指__________________;(4)力的独立性是指________________。 3、力的表示:(1)力的三要素是______________;(2)_____________叫力的图示;(3)_________________叫力的示意图。 4、力的分类:(1)按力的性质分为_____________;(2)按力的作用效果分为___________;(3)按作用方式分:有场力,如_____________有接触力,如__________________;(4)按研究对象分为内力和外力。 5、力的单位:国际单位制中是_____________,力的测量工具是_____________。 例1、下列关于力的说法中正确的是() A.物体受几个力作用时,运动状态一定改变 B.只有直接接触的物体间才有力的作用 C.由相距一定距离的磁铁间有相互作用力可知,力可以离开物体而独立存在 D.力的大小可用弹簧秤测量,且在任何地方1千克力均为9.8N 二、重力 1、重力的产生原因是_____________________________________,重力与引力关系______。 2、重力的大小:G=mg 注意重力的大小与物体运动的速度、加速度___关。(填有、无) 思考:物体的重力大小随哪些因素而改变? 3、重力的方向为___________________,或垂直于____________。 4、重心:物体所受重力的等效作用点。重心位置与______和______有关。 注意:重心位置不一定在物体上,对于形状不规则或质量分布不均匀的薄板,可用悬挂法确定其重心位置。 三、弹力 1、定义:______________________叫弹力。其产生的条件是_______、________。 2、物体间弹力有无的分析方法——常用假设法。 (1)从物体的形变分析;(2)从物体的运动状态分析;(3)从物体间相互作用分析。 例2、分析下列各图中A、B间是否有弹力作用(水平面皆为光滑) ⑴ ⑶ a=g

动能定理教案

《动能定理》教案 刘天鹏 教学目标: (一)知识目标: 1.理解动能的概念: (1)、知道什么是动能。 (2)、由做功与能量关系得出动能公式:21 2k E mv ,知道在国际单位制 中动能的单位是焦耳(J);动能是标量,是状态量。 (3)、正确理解和运用动能公式分析、解答有关问题。 2、掌握动能定理: (1)、掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)、理解和运用动能定理。 (二)能力目标: 1、培养学生研究物理问题的能力。 2、培养学生运用物理知识解决实际问题的能力。 (三)德育目标: 1、通过推力过程,培养对科学研究的兴趣。 2、培养学生尊重科学、尊重事实,养成按科学规律办事的习惯。 教学难点: 对动能定理的理解,通过对导出式进行分析,利用功能关系进行引导来突破难点。 教学重点:

会用动能定理解决动力学问题。 教学设计及学法: 利用学生已有的知识对动能定理进行推导,得到定理的表达形式;启发学生思维;组织学生辨析,提高认识。 教学工具: 投影仪与幻灯片若干。 教学过程: (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量深入地理解这一概念及其与功的关系。 (二)教学过程设计 课堂导入: 简要回顾动能的有关知识: 1、概念:物体由于运动而具有的能叫动能。 2、定义:物理学中把物体的质量与它的速度平方乘积的一半定义为物体的 动能,用E k 表示,即:定义式:2 1 2 k E mv 新课教学: 一、探究力做功和动能变化的关系: 质量为m的物体,在恒力F的作用下经位移s,速度由原来v1的变为v2,则力F对物体做功与物体动能的变化有怎样的关系?

《动能和动能定理》教学设计

《动能和动能定理》教学设计 教学重点 理解动能的概念;会用动能的定义式进行计算. 教学难点 1.探究功与物体速度变化的关系,知道动能定理的适用范围. 2.会推导动能定理的表达式. 课时安排1课时 三维目标 知识与技能 1.理解动能的概念. 2.熟练计算物体的动能. 3.会用动能定理解决力学问题,掌握用动能定理解题的一般步骤. 过程与方法 1.运用演绎推导方式推导动能定理的表达式,体会科学探究的方法. 2.理论联系实际,学习运用动能定理分析解决问题的方法. 情感态度与价值观 1.通过演绎推理的过程,培养对科学研究的兴趣. 2.通过对动能和动能定理的演绎推理,使学生从中领略到物理等自然学科中所蕴含的严谨的逻辑关系,反映了自然界的真实美. 教学过程 导入新课 视频导入利用大屏幕投影展示风力发电与龙卷风的视频片断,让学生观察、自主提问、分组探讨 教师引导参考问题:1.风力发电是一种重要的节能方法,风力发电的效率与哪些因素有关? 2.龙卷风给人类带来了极大的灾难,龙卷风为什么具有那么大的能量呢?

故事导入传说早在古希腊时期(公元前200多年)阿基米德曾经利用杠杆原理设计了投石机,它能将石块不断抛向空中,利用石块坠落时的动能,打得敌军头破血流. 同学们思考一下,为了提高这种装置的杀伤力,应该从哪方面考虑来进一步改进?学习了本节动能和动能定理,就能够理解这种装置的应用原理. 推进新课 一、动能的表达式 功是能量转化的量度,每一种力做功对应一种能量形式的变化.重力做功对应于重力势能的变化,弹簧弹力做功对应于弹簧弹性势能的变化,前几节我们学习了重力势能的基本内容.“追寻守恒量”中,已经知道物体由于运动而具有的能叫做动能,大家举例说明哪些物体具有动能. 参案:奔驰的汽车、滚动的足球、摆动的树枝、投出的篮球等运动的物体都具有动能. 教师引导:重力势能的影响因素有物体的质量和高度,今天我们学习的动能影响因素有哪些?通过问题启发学生探究动能的影响因素. 学生思考后总结:汽车运动得越快,具有的能量越多,应该与物体的速度有关;相同的速度,载重货车具有的能量要比小汽车具有的能量多,应该与物体的质量有关.即动能的影响因素应该是物体的质量和速度. 问题:如何验证物体的动能与物体的质量和速度的关系? 演示实验:让滑块A从光滑的导轨上滑下,与木块B相碰,推动木块做功. 1.让同一滑块从不同的高度滑下,可以看到:高度大时滑块把木块推得远,对木块做的功多. 2.让质量不同的木块从同一高度滑下,可以看到:质量大的滑块把木块推得远,对木块做的功多. 师生总结:物体的质量越大,速度越大,它的动能就越大.即质量、速度是动能的两个影响因素. 问题:动能到底跟质量和速度有什么定量的关系呢?动能的表达式是怎样的? 情景设置一:大屏幕投影问题 一架飞机在牵引力的作用下(不计阻力),在起飞跑道上加速运动,速度越来越大,问: 1.飞机的动能如何变化?为什么? 2.飞机的动能变化的原因是什么? 3.牵引力对飞机所做的功与飞机动能的变化之间有什么关系?

高三物理一轮复习教案精品)

第一章 运动的描述 匀变速直线运动的研究 第1单元 直线运动的基本概念 1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 参考系:假定为不动的物体 (1) 参考系可以任意选取,一般以地面为参考系 (2) 同一个物体,选择不同的参考系,观察的结果可能不同 (3) 一切物体都在运动,运动是绝对的,而静止是相对的 2、 质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者 说用一个有质量的点来代替整个物体,这个点叫做质点。 (1) 质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观 上不存在。 (2) 大的物体不一定不能看成质点,小的物体不一定就能看成质点。 (3) 转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。 (4) 某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程 度。 3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。 时间:前后两时刻之差。时间坐标轴线段表示时间,第n 秒至第n+3秒的时间为3秒 (对应于坐标系中的线段) 4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度) 5、速度:描述物体运动快慢和运动方向的物理量, 是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t (方向为位移的方向) 平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同 直线运动 直线运动的条件:a 、v 0共线 参考系、质点、时间和时刻、位移和路程 速度、速率、平均速度 加速度 运动的描述 典型的直线运动 匀速直线运动 s=v t ,s-t 图,(a =0) 匀变速直线运动 特例 自由落体(a =g ) 竖直上抛(a =g ) v - t 图 规律 at v v t +=0,2 02 1 at t v s +=as v v t 22 02=-,t v v s t 2 0+=

高三物理一轮复习选修3-3全套学案

第1课时 分子动理论 内能 导学目标 1.掌握分子动理论的内容,并能应用分析有关问题.2.理解温度与温标概念,会换算摄氏温度与热力学温度.3.理解内能概念,掌握影响内能的因素. 一、分子动理论

1.请你通过一个日常生活中的扩散现象来说明:温度越高,分子运动越激烈. 2.请描述:当两个分子间的距离由小于r0逐渐增大,直至远大于r0时,分子间的引力如何变化?分子间的斥力如何变化?分子间引力与斥力的合力又如何变化? [知识梳理] 1.物体是由____________组成的 (1)多数分子大小的数量级为________ m. (2)一般分子质量的数量级为________ kg. 2.分子永不停息地做无规则热运动 (1)扩散现象:相互接触的物体彼此进入对方的现象.温度越______,扩散越快. (2)布朗运动:在显微镜下看到的悬浮在液体中的__________的永不停息地无规则运 动.布朗运动反映了________的无规则运动.颗粒越______,运动越明显;温度越______,运动越剧烈. 3.分子间存在着相互作用力 (1)分子间同时存在________和________,实际表现的分子力是它们的________. (2)引力和斥力都随着距离的增大而________,但斥力比引力变化得______. 思考:为什么微粒越小,布朗运动越明显? 二、温度和温标 [基础导引] 天气预报某地某日的最高气温是27°C,它是多少开尔文?进行低温物理的研究时,热力学温度是2.5 K,它是多少摄氏度? [知识梳理] 1.温度 温度在宏观上表示物体的________程度;在微观上是分子热运动的____________的标志. 2.两种温标 (1)比较摄氏温标和热力学温标:两种温标温度的零点不同,同一温度两种温标表示的数 值________,但它们表示的温度间隔是________的,即每一度的大小相同,Δt=ΔT. (2)关系:T=____________. 三、物体的内能 [基础导引] 1.有甲、乙两个分子,甲分子固定不动,乙分子由无穷远处逐渐向甲靠近,直到不再靠近为止,在这整个过程中,分子势能的变化情况是() A.不断增大B.不断减小 C.先增大后减小D.先减小后增大 2.氢气和氧气的质量、温度都相同,在不计分子势能的情况下,下列说法正确的是() A.氧气的内能较大B.氢气的内能较大 C.两者的内能相等D.氢气分子的平均速率较大

动能和动能定理

动能和动能定理 一、教学目标 1.知识和技能: ⑴理解动能的概念,会用动能的定义式进行计算; ⑵理解动能定理及其推导过程; ⑶知道动能定理的适用条件,会用动能定理进行计算。 2.过程和方法: ⑴体验实验与理论探索相结合的探究过程。 ⑵培养学生演绎推理的能力。 ⑶培养学生的创造能力和创造性思维。 3.情感、态度和价值观: ⑴激发学生对物理问题进行理论探究的兴趣。 ⑵激发学生用不同方法处理同一问题的兴趣,会选择用最优的方法处理问题。 二、设计思路 动能定理是力学中一条重要规律,它反映了外力对物体所做的总功跟物体动能改变的关系,动能定理贯穿在本章以后的内容中,是

本章的教学重点。学习掌握它,对解决力学问题,尤其是变力做功,时间未知情况下的问题有很大的方便。 本课--的过程为: 学生通过回忆初中所学的内容和实验引起思考 学生讨论,设计情景,进行理论探讨和论证,找出动能的表达式。 通过对前面探讨过程的深入思考,得出动能定理 通过具体实例,深化对动能和动能定理的理解,突出动能定理的优越性 由于本节内容较多又很重要,建议安排一节习题课,以达到良好的效果。 三、教学重点、难点 1.重点:⑴动能概念的理解;⑵动能定理及其应用。 2.难点:对动能定理的理解。 四、教学资源

斜面、质量不同的滑块、木块等 五、-- 教师活动 学生活动 点评 一、引入新课【板书】一、动能提问:在初中我们学过动能的初步知识,那么什么是物体的动能?【板书】1、定义:物体由于运动而具有的能量叫动能。提问:物体的动能大小和哪些因素有关呢?你有什么方法可以证明?引导学生重复初中所做得滑块撞击木块的实验。归纳:物体能够对外做功的本领越大,物体的能量就越大,实验中滑块的质量和速度越大,对外做功的本领越大,说明动能和物体的质量和速度有关。提问:那么,到底如何定量的来表示动能呢?过渡:上一节课我们研究了做功和物体速度变化的关系,两者之间有什么关系?提问:那么比例系数为多少呢?如何去确定呢?设计情景:如图所示,某物体的质量为m,在与运动方向相同的恒力f的作用下发生一段位移l,速度由v1增加到v2。求做功和速度变化的关系?选择学生的答案,投影学生的解答过程,归纳,总结。根据牛顿第二定律:……①根据运动学公式:…②外力f做功:…………

高三物理最新教案-2018高考总复习第二阶段力学专题[整理] 精品

力学专题㈠ 力的作用效应 1.如左图所示,一根轻弹簧竖直地放在水平桌面上,下端固定,上端放一个重物。稳定后弹簧的长为L 。现将该轻弹簧截成等长的两段,将该重物也等分为重量相等的两块,按右图连接,稳定后两段弹簧的总长度为L /。则 A.L /=L B.L />L 中,B C.L /g 2 C.m 1m 2,g 1>g 2

动能和动能定理复习课教案

功、动能和动能定理复习课教案 授课班级k一5 授课老师杨再英 ★学情分析 随着对物理学习的深入,学生刚入学时对物理的新鲜感正被逐渐繁难的物理知识带来的压力所取代,许多学生学习劲头有所下降,出现了一个低谷。他们对于物理学的基本轮廓及研究过程和方法可以说是空的,特别是学生的思维能力还停留在以记忆为主的模式上,想让他们在短时间内入门较为困难,因此在教学中要充分调动学生学生的积极性,加强学习方法论引导,逐步培养学生自主学习的能力,特别是物理学中的基本概念老师更加应该注重方法加以引导理解。另外在物理的课堂教学中应加强作业及解题格式的规范,还应该在教学中漫漫渗透物理思维方法的培养。 ★复习要求 1、掌握动能的表达式。 2、掌握动能定理的表达式。 3、理解动能定理的确切含义,应用动能定理解决实际问题。 ★过程与方法 分析解决问题理论联系实际,学习运用动能定理分析解决问题的方法。 ★情感、态度与价值观 通过运用动能定理分析解决问题,感受成功的喜悦,培养学生对科学研究的兴趣。 ★教学重点 动能定理及其应用。 ★教学难点 对动能定理的理解和应用。 ★教学过程 (一)引入课题 教师活动:通过新课的探究,我们已经知道了力对物体所做的功与速度变化的关系,也知道物体的动能应该怎样表达,力对物体所做的功与物体的动能之间关系这 节课我们就来复习这些问题。 (二)进行复习课 教师活动:物体由于运动而具有的能叫动能,还知道动能表达式吗?

学生活动:思考后回答22 1mv E k = 教师活动:动能是矢量还是标量?国际单位制中,动能的单位是什么? 教师活动: 提出问题: 1970年我国发射的第一颗人造地球卫星,质量为173kg ,运动速度为7200m/s ,它的动能是多大? 学生活动:回答问题,并计算卫星的动能。 点评:通过计算卫星的动能,增强学生的感性认识。同时让学生感受到动能这个概念在生活、科研中的实际应用。促进学生对物理学的学习兴趣。 2、动能定理 教师活动:直接给出动能定理的表达式: 有了动能的表达式后,前面我们推出的21222 121mv mv W -=,就可以写成 12k k E E W -= 其中2k E 表示一个过程的末动能2221mv ,1k E 表示一个过程的初动能212 1mv 。 上式表明,力在一个过程中对物体所作的功,等于物体在这个过程中动能的 变化。这个结论,叫做动能定理。 提出问题:(1)如果物体受到几个力的作用,动能定理中的W 表示什么意义? 结合生活实际,举例说明。(2)动能定理,我们实在物体受恒力作用且作直 线运动的情况下推出的。动能定理是否可以应用于变力作功或物体作曲线运 动的情况,该怎样理解? 教师活动:投影例题引导学生一起分析、解决。 学生活动:学生讲解自己的解答,并相互讨论;教师帮助学生总结用动能定理解题的要 点、步骤,体会应用动能定理解题的优越性。 1、动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿 定律方便. 2、用动能定理解题,必须明确初末动能,要分析受力及外力做的总功. 3、要注意:当合力对物体做正功时,末动能大于初动能,动能增加;当合 力对物体做负功时,末动能小于初动能,动能减小。 点评:通过分析实例,培养学生进行情景分析,加深对规律的理解能力,加强物理与生活实践的联系。 ★课堂总结、点评 教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本 上总结,然后请同学评价黑板上的小结内容。 学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结 和自己的小结,看谁的更好,好在什么地方。 点评:总结课堂内容,培养学生概括总结能力。

高三物理总复习第一轮复习教案

第四章曲线运动万有引力与航天 [考纲展示] 1.运动的合成和分解Ⅱ 2.抛体运动Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 6.万有引力定律及其应用Ⅱ 7.环绕速度Ⅰ 8.第二宇宙速度和第三宇宙速度Ⅰ 说明:(1)斜抛运动只作定性要求 (2)第二宇宙速度和第三宇宙速度只要求知道其物理意义 [命题热点] 1.运动的合成与分解的方法和思想是热点,尤其是处理类平抛运动、带电粒子在电磁复合场中的复杂运动,可以以选择题形式呈现,也可以以计算题的形式呈现. 2.运用圆周运动的知识和方法处理生活中常见的圆周运动、电场磁场中的圆周运动都是高考考查的热点,主要以计算题的形式考查,这几乎是高考必考内容. 3.运用万有引力定律及向心力公式分析人造卫星的绕行速度、运行周期以及计算天体的质量、密度等在近几年高考中每年必考. 第一节曲线运动运动的合成与分解 【三维目标】 知识与技能 1.知道曲线运动的条件及规律 2.知道并掌握运动合成与分解的方法 过程与方法 理解和掌握运动合成与分解的基本方法与过程 情感态度与价值观 培养学生对物理现象的分析及表达能力 【教学重点】 运动的合成与分解的方法 【教学难点】 小河渡河问题的分析 【教学过程】 复习引入(课前5分钟) 从曲线运动与直线运动的区别引入、复习 [基础知识梳理](课中35分钟) 一、曲线运动 1.曲线运动的特点 在曲线运动中,运动质点在某一点的瞬时速度的方向就是通过曲线的这一点的________向,因此,质点在曲线运动中速度的方向时刻在变化.所以曲线运动一定是_________运动,但是,变速运动不一定是曲线运动,直线运动中速度大小变化时也是变速运动. 2.做曲线运动的条件 (1)从运动学角度,物体的加速度方向跟速度方向____________时,物体就做曲线运动.

2020届高三物理一轮教案匀变速直线运动

2020届高三物理一轮教案匀变速直线运动 一、匀变速直线运动公式 1.常用公式有以下四个 at v v t +=0 2 02 1at t v s + = as v v t 22 02=- t v v s t 2 0+= 点评: 〔1〕以上四个公式中共有五个物理量:s 、t 、a 、v 0、v t ,这五个物理量中只有三个是独 立的,能够任意选定。只要其中三个物理量确定之后,另外两个就唯独确定了。每个公式中只有其中的四个物理量,当某三个而要求另一个时,往往选定一个公式就能够了。假如两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。 〔2〕以上五个物理量中,除时刻t 外,s 、v 0、v t 、a 均为矢量。一样以v 0的方向为正方 向,以t =0时刻的位移为零,这时s 、v t 和a 的正负就都有了确定的物理意义。 2.匀变速直线运动中几个常用的结论 〔1〕Δs=aT 2,即任意相邻相等时刻内的位移之差相等。能够推广到 s m -s n =(m-n)aT 2 〔2〕t s v v v t t =+= 202/,某段时刻的中间时刻的即时速度等于该段时刻内的平均速度。 2 2 2 02/t s v v v += ,某段位移的中间位置的即时速度公式〔不等于该段位移内的平均速度〕。 能够证明,不管匀加速依旧匀减速,都有2/2 /s t v v <。

点评:运用匀变速直线运动的平均速度公式t s v v v t t =+= 202/解题,往往会使求解过程变得专门简捷,因此,要对该公式给与高度的关注。 3.初速度为零〔或末速度为零〕的匀变速直线运动 做匀变速直线运动的物体,假如初速度为零,或者末速度为零,那么公式都可简化为: gt v = , 221at s = , as v 22= , t v s 2 = 以上各式差不多上单项式,因此能够方便地找到各物理量间的比例关系。 4.初速为零的匀变速直线运动 〔1〕前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶…… 〔2〕第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶…… 〔3〕前1米、前2米、前3米……所用的时刻之比为1∶2∶3∶…… 〔4〕第1米、第2米、第3米……所用的时刻之比为1∶ ( ) 12-∶〔23-〕∶…… 对末速为零的匀变速直线运动,能够相应的运用这些规律。 5.一种典型的运动 经常会遇到如此的咨询题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,能够得出以下结论: 〔1〕t s a t a s ∝∝∝ ,1 ,1 〔2〕2 21B v v v v = == 6、解题方法指导: 解题步骤: 〔1〕依照题意,确定研究对象。 〔2〕明确物体作什么运动,同时画出运动示意图。 〔3〕分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。 〔4〕确定正方向,列方程求解。 a 1、s 1、t 1 a 2、s 2、t 2

高中物理动能和动能定理教案

《动能和动能定理》教案 黄香高中高一物理组孔祥晰 【教学目标】 一.知识与技能 1.使学生进一步理解动能的概念,掌握动能的计算式。 2.结合教学,对学生进行探索研究和科学思维能力的训练。 3.理解动能定理的确切含义,应用动能定理解决实际问题。 二.过程与方法 1.运用归纳推导方式推导动能定理的表达式。 2.对比分析动力学知识与动能定理的应用。 三.情感、态度与价值观 通过动能定理的推导,感受成功的喜悦,培养学生对科学研究的兴趣。【教学重点、难点】 教学重点:动能的概念。 教学难点:对动能定理的理解和应用。 【教学方法】 探究、讲授、讨论、练习 【教具准备】 多媒体课件 【教学过程】 [新课导入]上节课我们用实验探讨了在一个特殊情形下动能与2 的关系,这节课我们将用理论进行推导,看理论与实验是否相符。 实验:定性探讨动能与质量和速度的关系 [板书]动能、动能定理. 我们知道动能的大小是与哪些因素有关? 那么动能与物体的质量和速度之间有什么定量的关系呢?我们接下来就来探究这个问题。

[新课教学] 动能的表达式 (用投影仪投影下列物理情景及问题,学生自主学习“动能的表达式”并完成相应问题。) 一个初速为v 1,质量为m 的物体,在与运动方向相同的恒定外力F 的作用下发生一段位移L ,速度增加到v 2; 1.物体在恒力作用下做怎样的运动? 2.物体加速度为多大? 3.物体的位移可以怎样表示? 4.在这个过程中恒力做的功为多少? 【学生作出相应回答】 W=21222 121mv mv - 强调这里的力为合外力,这个式子对比重力做功与重力势能变化量关系的过程: 重力做的功21m gh mgh W -=表明重力做的功等于“mgh ”的变化,同理这个式子可以用文字叙述成什么? [学生归纳]用文字语言表述表中的结论:力F 所做的功等于“ 21mv 2”这个物理量的变化。 物理学上就把2mv 2 1这个具有特定意义的物理量叫动能。 (板书)一 动能 (K E ) 动能的表达式:2mv 2 1=E K 一个新的物理量的学习,除了对它的概念和表达式的学习以外,还要掌握它的其他什么相关内容?请同学们类比“重力势能”这个物理量的学习过程,总结还应掌握哪些动能的相关内容。 1.单位:焦耳(J ) 2.矢标性:标量 3.状态量 正值 课堂练习: 1.我国在1970年发射的第一颗人造地球卫星,质量为173Kg,做匀速圆周运动的速度为 7.2km/s ,它的动能是多少? 学生自己计算:2mv 2 1=E K =21?173?(7.2?310)2J=J 9105.4? 2.质量一定的物体……………( BC ) 2ν1ν m L F m F

高三物理第二轮专题复习教案[全套]_物理

第一讲平衡问题 一、特别提示[解平衡问题几种常见方法] 1、 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关 系,借助三角函数、相似 三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这 两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、 力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一 平面上,而且必有共点力。 3、 正交分解法:将各力分解到 x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件 C F x =0^ F y =0)多用于三个以上共点力作用下的物体的平衡。值得注意的是,对 x 、y 方向 选择时,尽可能使落在 x 、y 轴上的力多;被分解的力尽可能是已知力。 4、 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首 尾相接恰好构成三角形,则 这三个力的合力必为零,利用三角形法求得未知力。 5、 对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静 力学中所研究对象有些具有 对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意 到这一点,会使解题过程简化。 6、 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系, 则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即 a = 0。表现:静 匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1质量为m 的物体置于动摩擦因数为 」的水平面上,现对它 一个拉力,使它做匀 速直线运动,问拉力与水平方向成多大夹角时这 最小? 解析取物体为研究对象,物体受到重力mg ,地面的支持力N , 力f 及拉力T 四个力作用,如图1-1所示。 :-=arcctg arcctg J 不管拉力T 方向如何变化,F 与水平方向的夹角:?不变,即F 为一个方向不发生改变的变力。 这显然属于三力平衡中的 动态平衡问题,由前面讨论知,当 T 与F 互相垂直时,T 有最小值,即当 拉力与水平方向的夹角 V - 90 - arcctg -I 二arctg 」时,使物体做匀速运动的拉力 T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静 止但有运动趋势时,属于 静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的方向要随运动或 运动趋势的方向的改变而改变,静摩擦力大小还可在一定范围内变动,因此包括摩擦力在内的平衡 问题常常需要多讨论几种情况,要复杂一些。因此做这类题目时要注意两点 iTlg 止或 施加 个力 摩擦 由于物体在水平面上滑动,则 f =:-N ,将f 和N 合成,得到合力 F ,由图知F 与f 的夹角:

高中物理一轮复习全套教案(上册)

第一章运动的描述匀变速直线运动的研究 第1单元直线运动的基本概念 1、机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 参考系:假定为不动的物体 (1)参考系可以任意选取,一般以地面为参考系 (2)同一个物体,选择不同的参考系,观察的结果可能不同 (3)一切物体都在运动,运动是绝对的,而静止是相对的 2、质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者说用一个 有质量的点来代替整个物体,这个点叫做质点。 (1)质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观上不存在。 (2)大的物体不一定不能看成质点,小的物体不一定就能看成质点。 (3)转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。 (4)某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程度。 3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。 时间:前后两时刻之差。时间坐标轴线段表示时间,第n秒至第n+3秒的时间为3秒(对应于坐标系中的线段) 4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度) 5、速度:描述物体运动快慢和运动方向的物理量,是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t(方向为位移的方向) 平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同(粗略描述运动的快慢) 即时速度:对应于某一时刻(或位置)的速度,方向为物体的运动方向。( t s v t? ? = → ?0 lim)即时速率:即时速度的大小即为速率; 【例1】物体M从A运动到B,前半程平均速度为v1,后半程平均速度为v2,那么全程的平均速度是:( D ) A.(v1+v2)/2 B. 2 1 v v?C. 2 1 2 2 2 1 v v v v + + D. 2 1 2 1 2 v v v v + 【例2】某人划船逆流而上,当船经过一桥时,船上一小木块掉在河水里,但一直航行至上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥有5400米远,若此人向上和向下航行时船在静水中前进速率相等。试求河水的流速为多大? 解析:选水为参考系,小木块是静止的;相对水,船以恒定不变的速度运动,到船“追上”小木块,船往返运动的时间相等,各为 1 小时;小桥相对水向上游运动,到船“追上”小木块,小桥向上游运动了位移5400m,时间为2小时。易得水的速度为0.75m/s。 6、平动:物体各部分运动情况都相同。转动:物体各部分都绕圆心作圆周运动。 7、加速度:描述物体速度变化快慢的物理量,a=△v/△t(又叫速度的变化率),是矢量。a的方 向只与△v的方向相同(即与合外力方向相同)。 (1)加速度与速度没有直接关系:加速度很大,速度可以很小、可以很大、也可以为零(某瞬时);加速度很小,速度可以很小、可以很大、也可以为零(某瞬时); (2)加速度与速度的变化量没有直接关系:加速度很大,速度变化量可以很小、也可以很大;加速度很小,速度变化量可以很大、也可以很小。加速度是“变化率”——表示变化的快慢,不表示变化的大小。 (3)当加速度方向与速度方向相同时,物体作加速运动,速度增大;若加速度增大,速度增大得越来越快;若加速度减小,速度增大得越来越慢(仍然增大)。当加速度方向与速度方向相反时,物体作减速运动,速度减小;若加速度增大,速度减小得越来越快;若加速度减小,速度减小得越来越慢(仍然减小)。 8 匀速直线运动和匀变速直线运动 【例3】一物体做匀变速直线运动,某时刻速度大小为4m/s,经过1s后的速度的大小为10m/s,那么在这1s内,物体的加速度的大小可能为(6m/s或14m/s) 【例4】关于速度和加速度的关系,下列说法中正确的是(B) A.速度变化越大,加速度就越大B.速度变化越快,加速度越大 C.加速度大小不变,速度方向也保持不变 D.加速度大小不断变小,速度大小也不断变小 9、匀速直线运动: t s v=,即在任意相等的时间内物体的位移相等.它 是速度为恒矢量的运动,加速度为零的直线运动. 匀速s - t图像为一直线:图线的斜率在数值上等于物体的速度。 直 线运动直线运动的条件:a、v0共线 参考系、质点、时间和时刻、位移和路程 速度、速率、平均速度 加速度 运动的描述 典型的直线运动 匀速直线运动s=v t ,s-t图,(a=0) 匀变速直线运动 特例 自由落体(a=g) 竖直上抛(a=g) v - t图 规律 at v v t + = ,2 02 1 at t v s+ = as v v t 2 2 2= -,t v v s t 2 + =

高三物理第二轮平衡问题专题复习教案

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它 施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角 时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N , 摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcct g 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的

动能定理教案精华版

教学过程 一、动能 1.定义:物体由于________而具有的能. 2.公式:______________,式中v为瞬时速度. 3.矢标性:动能是________,没有负值,动能与速度的方向______. 4.动能是状态量,动能的变化是过程量,等于__________减初动能,即ΔEk=__________________. 思考:动能一定是正值,动能的变化量为什么会出现负值?正、负表示什么意义? 二、动能定理 1、内容:运动质点的动能的增量等于其他物体对它所作的功 2、表达式: 各字母代表的物理量 是。 3、对动能定理的理解: (1)合力对物体做的功的理解 ① W合=W1+W2+…=F1·s+F2·s+… ② W合=F合·S。 (2)适用范围 既适用于直线运动,也适用于曲线运动。既适用于恒力做功,也适用于变 力做功。 (3)对定理中“变化”一词的理解ΔE k=E k2-E k1 ①W合>0, E k2__ _E k1 ,ΔE k_ __0

②W 合<0, E k2____E k1 ,ΔE k_ __0 (4)是一种求功的方法. 三、 动能定理的基本应用 1.应用动能定理解题的步骤 (1)选取研究对象,明确并分析运动过程. (2)分析受力及各力做功的情况,求出总功. 受哪些力→各力是否做功→做正功还是负功→做多少功→确定求总功思路→求出总功 (3)明确过程初、末状态的动能Ek1及Ek2. (4)列方程W =Ek2-Ek1,必要时注意分析题目潜在的条件,列辅助方程进行求解. 例1.两个物体质量比为1∶4,速度大小之比为4∶1,则这两个物体的动能之比( ) A .1∶1 B .1∶4 C .4∶1 D .2∶1 例2.下列说法中,正确的是 ( ) A .物体受到的合力为零,则合力对物体做的功一定为零 B .合力对物体做的功为零,则物体受到的合力为零 C .物体的动能不变,说明物体所受合力的功为零 D .物体的动能不变,说明物体所受的合力一定为零 例3 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 22 0- 例4.(2010·晋江高一检测)质量为m 的物体从地面上方H 高处无初速度释放,落在水平地面后砸出一个深为h 的坑,如图7-7-4所示,则在整个过程中( ) A.重力对物体做功为mgH B.物体的重力势能减少了mg(h+H) C.外力对物体做的总功为零 D.地面对物体平均阻力大小为mg(h+H)/h 例5、某人用恒力F 使一个质量为m 的物体由静止开始沿 水平地面移动的位移为l ,力F 跟物体前进的方向的夹角为α,

高三物理第二轮专题复习教案(全套)

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、 y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静 止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N ,摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcctg 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物

相关主题
文本预览
相关文档 最新文档