当前位置:文档之家› RC弯桥截面设计

RC弯桥截面设计

RC弯桥截面设计
RC弯桥截面设计

IIl结构分析和试验研究

翼板剪滞系数及有效宽度的比较表、\比较内容

均值应力最大剪滞有效分布总翼板宽有效宽度

(h伊a)系数宽度(nun)度(mm)比

方法类型、\

上翼板一1.75106∞20400O93变分法

下翼板5.34l091378150092

上翼板一1681203209400080有限元法

下翼板50010814l0150094

上翼板一l75I133333400083试验值

下翼板534l03l加l150093从翼板的最大剪滞系数及有效分布宽度值来看,三者的剪滞系数值比较接近,其中空间有限元法值既精确,又偏于保守,可据此方法来计算翼板在不同情况的有效分布宽度,同时由试验实测结果也说明所建立的箱梁空间计算模型是可行的。

四、结束语

室内模型试验表明简支波形钢腹板组合箱梁在竖向荷载作用下,其上、下翼板均出现了典型的正剪力滞效应,即波形钢腹板与翼板交界处的混凝土翼板纵向正应力大于其他位置的正斑力。上翼板剪滞效应稍大于下翼板,但两者剪力滞系数比较接近。空间有限元分析既可由模型试验结果得到验证,同时又可依据所建立的有限元模型对模型试验梁作更大范围即更多项目的研究。

参考文献

l罗旗帜,俞建立.钢筋混凝土连续箱粱桥翼板横向裂缝问题.桥梁建设,1997(1):4l~44

2蔡千典,冉一元,波形钢腹板预应力结合箱粱结构特点的探讨,桥梁建设。1994.1

3方诗圣,胡成,吴文清.微混凝土模型材料基本性能试验研究.合肥工业大学学报,1999,22(5):76一锣一

4项贻强.箱型梁桥翼板的有效宽度及对规范的建议.中国公路学会桥梁工程学会1989年学术会议论文集。1989.10

RC弯桥截面设计的计算模型分析

张敬珍陈偕民徐岳

(长安大学公路学院)

摘要:随着立交桥数量的不断增多,弯桥也开始被广泛使用。但精确的设计理论还有待进一步完善和深入研究。弯桥的受力较直桥复杂得多,截面设计相应难度大,而弯桥的截面设

Rc弯桥截面设计的计算模型分析713

计是弯桥安全性、耐久性的一个决定性工作。本文就这个问题,做了这类桥的单元选取、模型建立及结果特征的分析和探讨工作,提出了弯桥截面配筋设计计算的一些建议。

关键词:弯桥计算模型截面设计板单元曲梁单元

一、引言

改革开放以来,我国经济蓬勃发展,公路与城市交通量迅速增长。安全、经济、美观的土建结构设计工作具有十分重要的社会意义。为了适应快速通行的社会需要,无论是公路立交桥还是城市立交桥都发展十分迅猛,并都趋向于多层化、大型化。弯桥相对于直线桥而言,因受弯、扭耦合效应的影响,其受力更为复杂。曲梁的扭矩比直梁要大许多,过大的扭矩给曲梁桥的上部结构和支座的设计带来困难,并且使得桥梁的建设投资增加。曲线梁桥支座大于一个时,具有较强的抗扭约束能力,而中间的独柱式点铰式支座如果沿着梁的剪力中心线设置,就没有抗扭约束能力,这样的支座使得上部结构的扭矩最大值较大,且沿着梁桥纵向分布极不均衡,引起材料和投资的加大。沿着曲线桥的径向向外调节独柱桥墩的位置,使其偏离梁的剪力中心线,可以改善曲线梁桥内力,节约材料。如何为正确配筋而计算出有用而简捷的内力值,是设计工作的重要环节。

对曲率半径较小的弯连续梁桥进行分析计算的手段,目前主要有两种类型1)选取曲梁单元,用桥梁设计专用程序计算;2)选取板单元,用大型通用有限元程序计算。用曲梁单元计算时,不管梁有多宽,都把它简化成一根细梁或曲杆来计算,从而得到各个截面的内力和位移。它的挠度虽然不能反映出挠度沿着梁宽方向的分布情况,但它的挠度值接近用板单元计算的梁轴线处的挠度值。它的应力值比板单元计算结果偏大。用板单元进行分析计算,可以得到挠度沿着梁宽方向的分布值,用于施工控制很有必要;也可以得到应力沿着梁宽方向的分布值,但没有截面总的各项内力值,而且如果从这些结果中推导出内力值,那工作量将非常大。到底使用哪一种单元和程序的计算结果进行弯梁桥的配筋计算,是本文重点分析和阐述的问题。

二、计算模型

1.单元选择

普通四边形板单元,它的形函数是¥、Y的4捩多项式,能保证边界上挠度连续,不能保证转角连续,故其解的收敛性与网格划分形式有关。丽&lper—SAP通用程序中的四边形板单元,是用静力凝聚法将4个协调而完备的三角形板单元合并而成的,用于桥梁结果分析中,能确保解收敛于精确解。superSAP前处理中可通过绘图自动生成单元,而后很容易地得到计算模型图;而且计算速度较快。所以选择四边形板单元进行分析计算比较。用Super--SAP这样的通用程序计算时,它的后处理能力较强,可以用图像方式显示出结果各部位处沿整体坐标方向的正应力、剪应力以及主应力值。这对直桥设计来说已提供了应力的详细结果。但对于弯桥来说,需要了解的是沿着曲线的切向和法向的应力值,即沿着板单元局部坐标方向的各应力值,而要整理出各节点的应力的工作很繁重。因为Super--SAP程序中节点和单元是自动生成,所以要输出结果,首先要查看并记录这些单元和节点号,并且记录其i、j、k、1的编号,以便确定局部坐标的方向,从而确知结果文件中应力代表的实际方向,然后再在结果文件中寻找各

714lII结构分析和试验研究

个节点的各个方向的应力值,再对结果作处理。总之工作量较大,而且没有各项内力值。选择曲梁单元计算时,可以使用桥梁专用程序进行计算。这样的软件前、后处理能力较强,计算模型可以通过辅助作图而快速地生成。而且此种软件后处理比较完善,既有各项内力和应力、位移的图形显示及输出,也有它们的文本输出结果。下面以某大型立交桥的匝道(6×20m连续弯箱粱)为例,分别给出这两种单元进行分析计算的计算模型。

2.计算图式

1)SAP板单元的划分

板单元横向沿着顶板被分隔为不等长的12段,其中两个翼缘部分各被分为50厘米的防撞护栏和剩余部分,梗腋部分被处理为宽度不变,高度为平均高度的4个宽度,顶板沿着纵向被分隔为52段;各个腹板部分都是只沿着纵向分隔为52段;底板部分为了使支点在节点上,横向被分隔为不等宽的8段,纵向被分隔为52段;横隔板与顶、底板共节点,被分隔为8块板。共1316个单元,见图1。’

图1板单元计算模型

2)曲梁单元的划分一

沿着梁长各个截面尺寸变化处,设一个节点,各个控制截面:支点、L/8、L/4、3L/8、L/2、5L/8……,各设一个节点。所有的支点是从支座所在截面的剪力中心沿圆曲线的径向用刚臂连接到支座处。共划分了83个单元,见图2。

三、计算模型及结果分析

用桥梁专用程序的曲粱单元计算曲线梁桥时,由于梁式桥在支座截面一般都设置较强的

Rc弯桥截面设计的计算模型分析715

圈2曲粱单元计算模型’

横隔梁,所以用刚臂模拟支座偏心和抗扭双支座。即点铰式支座中心与梁剪力中心之间是一种刚臂关系,刚臂长度为支座偏心距e。公路桥规规定钢筋混凝土结构截面配筋计算用承载能力极限状态,即根据各项内力最不利组合值分别计算所需钢筋,再叠加(图3)。桥梁专用程序中用曲梁单元计算可以得到每个截面的各项荷载引起的各项内力值及各项内力的两种极限状态组合值(弯矩、扭矩、剪力、轴力的各单顶值及组合值)。此结果可直接用于各个截面的配筋计算。桥梁专用程序的曲粱单元计算结果,不仅包含了截面设计所需要的各项内力值,而且此内力值比按板单元计算的相应内力值偏大一些。即按曲梁单元计算的结果进行截面设计,是郎方便又偏于安全。用superSAP93等通用大型程序的板单元计算的结果,只有各个节点的三个方向的应力值,没有内力值。作者的计算结果表明,板单元计算的曲梁主要控制截面上各应力分量的最大值均小于曲梁单元计算的相应值(例如表1的计算结果)。而公路桥规中,截面配筋设计不是根据应力设计,所以由此计算并花力气整理的应力不能直接用于截面设计。使用可以计算出板单元弯矩、扭矩、剪力、轴力的大型通用软件的计算结果时,要整理出各控制截面的内力较困难,工作量较大;而且试算结果表明此截面内力比曲梁单元计算的结果要小一些。另一方面,公路桥规中关于抗剪、抗扭的配笳计算公式,本身就是依据梁的试验资料建立起来的半理论半经验公式,故以板单元计算模型所得的内力结果虽然可能更准确一些,但由此得出的抗剪、抗扭配筋结果却未必是更合理的。本文得到这样的结论:选取曲梁单元、用刚臂模拟抗扭支座和预偏心支座,用此计算结果进行截面设计是一种快捷又偏于安全的值得推荐的方法。.+t

\———.———...—————..———..—、————J—.—————————.—..——J

图3箱粱横截面

716III结构分析和试验研究

边跨L/2处截面上缘应力值比较(单位MPa)表l

I按板单元计算的结果(各个点的位置见图3)按曲梁单元计算的结果

Il(内侧)235(外侧)

lo22747

646889

四、结语

面对目前大量的弯桥的设计与施工任务,本文提出了这类桥梁的计算模型和单元选择的一种可行选择,推荐了具有安全、经济、快速进行截面配筋设计的曲梁单元计算模型供设计者参考。

双重抗震结构用于城市高架桥

基于性能的横向抗震设计初探

经杰叶列平钱稼茹

(清华大学土木工程系)

摘要:本文介绍了桥梁抗震设计方法的现状,提出采用双重抗震结构进行城市立交桥的基于性能的抗震设计的思想。并给出了不同设防水准下的双重结构的抗震设防目标。并以单自由度体系为例,根据小震、中震下的设防目标,分别采用弹性反应谱方法和等往复振动能量准则,给出了次结构的设计参数,并分析了大震下的位移反应。

关麓词:城市高架桥基于性能设计双重结构

一、前

20世纪以来,世界范围发生了千余次7级以上的地震,有十分之一发生在我国。地震灾害给人类的生命安全和财产带来了巨大损失,越是中心城市地带,造成的损失越大。随着城市的迅猛发展,城市的交通世随之迅速发展起来,特另q是人们越来越多地采用高架桥解决交通问题。20世纪舳年代来期,帅年代以来,环太平洋发生了几次大的地震,不仅对建筑物造成损害,同时对城市高架桥梁也造成很大的破坏,如1989年美国Ixmaal墒eta地震,旧金山市的高速干道发生严重震害,上层柱体断裂引起上层公路桥齑塌落,19951年的阪神地震,使得新干线铁路高架桥的墩柱、横梁多次发生剪切破坏等等,所有这些破坏造成整个城市交通网络的中断,损失巨大,修复的费用极高,如果破坏严重,只能重建。

桥梁结构的抗震设计,就是满足地震作用下对桥梁结构的刚度、强度、延性及稳定性的需求,使其具备所需要的能力。目前的桥梁抗震设计方法主要是基于强度设计和基于位移设计,我国现行的公路、铁路桥梁抗震设计规范Hj^2J以及美国的M峪ItTO规范旧J、欧洲的EC8都是采用基于强度设计方法,即根据地震作用效应设计结构构件的强度;新西兰桥梁规范直接考虑结构延性的影响,采用能力设计的概念【4J:美国加州运输部(Caltram)的抗震设计准则(SDC)例

RC弯桥截面设计的计算模型分析

作者:张敬珍, 陈偕民, 徐岳作者单位:长安大学公路学院

本文链接:https://www.doczj.com/doc/6744864.html,/Conference_3503780.aspx

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

桥梁博士等截面整体现浇连续箱梁的一般设计方法及流程

桥梁博士等截面整体现浇连续箱梁的一般设计方法及流程 一、等截面现浇连续梁设计的基本资料及技术标准1、常用的规范及资料《公路工程技术标准》《公路桥涵设计通用规范》《公路钢筋混凝土及预应力混凝土桥涵设计规范》《公路桥涵施工技术规范》《相关技术指导书》OV M预应力锚具的相关资料(确定锚固端的锚具的间距尺寸、施工空间等)2、设计安全等级高速公路上的大桥一般为一级;结构重要性系数取1.1; 其它预应力桥梁可均取二级;结构重要性系数取1.0;3、环境类别我省按寒冷地区均取II类;影响钢筋保护层尺寸,配筋图及结构尺寸需注意。 4、材料预应力连续梁一般取C50混凝土,钢筋混凝土连续梁一般取C40混凝土。预应力钢筋一般取标准强度fpk =1860MPa的Φs15.2钢绞线。张拉力一般取0.7~0.75fpk;普通钢筋除了部分防裂的钢筋网及架立筋,一般全用II级钢。锚具参照OVM预应力群锚体系锚具设计,一侧锚具变形量取6mm。预应力孔道现全采用塑料波纹管成孔,相应摩阻系数取0.15,偏差系数取0.0015;以上影响预应力损失的计算。二、等截面现浇连续梁设计尺寸拟定1、使用跨径(中跨)L≤50米;2、边中跨比Lb/Lz=0.8~1. 0;3、梁高h/Lz=1/15~1/25;一般取用1/20略高一点;4、截面类型,以箱形截面为主; 5、细部尺寸悬臂长度:≤4.0米;一般3.0米以下,3.0米以上需特殊设计;悬臂端部高度15~18cm;根部(计算确定),一般1 /5~1/10悬臂长度,一般取用1/5~1/6。箱宽:一般不大于7.0米;顶板厚度:1/15~1/25腹板中距,一般22~28cm;近支点4~6米应渐变家后一般加厚10cm~15cm即可;底板厚度22~28cm,常用25、27cm,主要受构造尺寸限制,布置底板钢束的需要。近支点4~6米应渐变家后一

受弯构件正截面题共8页

第4章 受弯构件正截面受弯承载力计算 一、判断题 1.界限相对受压区高度ξb 与混凝土等级无关。 ( √ ) 2.界限相对受压区高度ξb 由钢筋的强度等级决定。 ( √ ) 3.混凝土保护层是从受力钢筋外侧边算起的。 ( √ ) 4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。 ( × ) 5.在适筋梁中增大截面高度h 对提高受弯构件正截面承载力的作用不明显。 ( × 6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。 √ ) 7.梁板的截面尺寸由跨度决定。 ( × ) 8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。 ( √ ) 9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。 ( × ) 10.单筋矩形截面受弯构件的最小配筋率P min =A s,min /bh 0。 ( × ) 11.受弯构件截面最大的抵抗矩系数αs,max 由截面尺寸确定。 ( × ) 12.受弯构件各截面必须有弯矩和剪力共同作用。 ( × ) 13.T 形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。 ( √ ) 14.第一类T 形截面配筋率计算按受压区的实际计算宽度计算。 ( × ) 15.超筋梁的受弯承载力与钢材强度无关。 ( × ) 16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。( × ) 17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。( × ) 18.素混凝土梁的破坏弯矩接近于开裂弯矩。( √ ) 19.梁的有效高度等于总高度减去钢筋的保护层厚度。( × ) 二、填空题 1.防止少筋破坏的条件是___ρ≥ρmin _______,防止超筋破坏的条件是__ρ≤ρmax ____。 2.受弯构件的最大配筋率是__适筋_________构件与___超筋________构件的界限配筋率。 3.双筋矩形截面梁正截面承载力计算公式的适用条件是 (1)0h x b ξ≤,保证____防止超筋破坏____________; (2) ____s a x 2≥________,保证____受压钢筋达到屈服____________。 4.受弯构件正截面计算假定的受压区混凝土压应力应变分布图形中,ε0=__0.002,εcu =__0.0033___。 5.受弯构件ρ≥ρmin 是为了__防止少筋破坏;ρ≤ρmax 是为了__防止超筋破坏______。 6.第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是_超筋破坏_____及__少筋破坏_____。 8.界限相对受压区高度ξb 需要根据__平截面假定___等假定求出。 9.单筋矩形截面梁所能承受的最大弯矩为_)5.01(20 1max ,b b c u bh f M ξξα-=,否则应____采用双筋截面_。 10.在理论上,T 形截面梁,在M 作用下,b f ’越大则受压区高度x 的内力臂_愈大__,因而 可__减少______受拉钢筋截面面积。 11.梁下部钢筋的最小净距为__25__mm 及≥d ,从上部钢筋的最小净距为___30_mm 及≥1.5d 。

受弯构件正截面受弯承载力计算.

第4章受弯构件正截面受弯承载力计算 一、判断题 1.界限相对受压区高度ξb与混凝土等级无关。 ( √ 2.界限相对受压区高度ξb由钢筋的强度等级决定。 ( √ 3.混凝土保护层是从受力钢筋外侧边算起的。 ( √ 4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。 ( × 5.在适筋梁中增大截面高度h对提高受弯构件正截面承载力的作用不明显。 ( × 6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。√ 7.梁板的截面尺寸由跨度决定。 ( × 8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。( √ 9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。 ( × 10.单筋矩形截面受弯构件的最小配筋率P min=A s,min/bh0。 ( × 11.受弯构件截面最大的抵抗矩系数αs,max由截面尺寸确定。 ( × 12.受弯构件各截面必须有弯矩和剪力共同作用。 ( × 13.T形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。( √ 14.第一类T形截面配筋率计算按受压区的实际计算宽度计算。 ( × 15.超筋梁的受弯承载力与钢材强度无关。 ( × 16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。(×) 17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。(×) 18.素混凝土梁的破坏弯矩接近于开裂弯矩。(√) 19.梁的有效高度等于总高度减去钢筋的保护层厚度。(×) 二、填空题 1.防止少筋破坏的条件是___ρ≥ρmin_______,防止超筋破坏的条件是__ρ≤ρmax____。

受弯构件正截面例题

例题一、某教学楼钢筋混凝土矩形截面简支梁,安全等级为二级,截面尺寸b×h=250×550mm,承受恒载标准值10kN/m(不包括梁的自重),活荷载标准值12kN/m,计算跨度=6m,采用C20级混凝土,HRB335级钢筋。试确定纵向受力钢筋的数量。 【解】查表得f c=9.6N/mm2,f t=1.10N/mm2,f y=300N/mm2,ξb=0.550,α1=1.0, 结构重要性系数γ0=1.0,可变荷载组合值系数Ψc=0.7 1.计算弯矩设计值M 钢筋混凝土重度为25kN/m3,故作用在梁上的恒荷载标准值为: g k=10+0.25×0.55×25=13.438kN/m 简支梁在恒荷载标准值作用下的跨中弯矩为: M gk=g k l02=×13.438×62=60.471kN.m 简支梁在活荷载标准值作用下的跨中弯矩为: M qk=q k l02= ×12×62=54kN〃m 由恒载控制的跨中弯矩为: γ0(γG M gk+ γQΨc M qk)=1.0×(1.35×60.471+1.4×0.7×54) =134.556kN〃m 由活荷载控制的跨中弯矩为: γ0(γG M gk+γQ M qk) =1.0×(1.2×60.471+1.4×54) =148.165kN〃m 取较大值得跨中弯矩设计值M=148.165kN〃m。 2.计算h0

假定受力钢筋排一层,则h0=h-40=550-40=510mm 3.计算x,并判断是否属超筋梁 =140.4mm<=0.550×510=280.5mm 不属超筋梁。 4.计算A s,并判断是否少筋 A s=α1f c bx/f y=1.0×9.6×250×140.4/300=1123.2mm2 0.45f t /f y =0.45×1.10/300=0.17%<0.2%,取ρmin=0.2% ρmin bh=0.2%×250×550=275mm2<A s =1123.2mm2 不属少筋梁。 5.选配钢筋 选配218+220(As=1137mm2),如图3.2.6。

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C ) A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。

A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错) 4、以热轧钢筋配筋的钢筋混凝土适筋梁,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入了强化阶段。(错) 5、整浇楼盖中的梁,由于板对梁的加强作用,梁各控制截面的承载力均可以按T形截面计算。(错)

RC弯桥截面设计

IIl结构分析和试验研究 翼板剪滞系数及有效宽度的比较表、\比较内容 均值应力最大剪滞有效分布总翼板宽有效宽度 (h伊a)系数宽度(nun)度(mm)比 方法类型、\ 上翼板一1.75106∞20400O93变分法 下翼板5.34l091378150092 上翼板一1681203209400080有限元法 下翼板50010814l0150094 上翼板一l75I133333400083试验值 下翼板534l03l加l150093从翼板的最大剪滞系数及有效分布宽度值来看,三者的剪滞系数值比较接近,其中空间有限元法值既精确,又偏于保守,可据此方法来计算翼板在不同情况的有效分布宽度,同时由试验实测结果也说明所建立的箱梁空间计算模型是可行的。 四、结束语 室内模型试验表明简支波形钢腹板组合箱梁在竖向荷载作用下,其上、下翼板均出现了典型的正剪力滞效应,即波形钢腹板与翼板交界处的混凝土翼板纵向正应力大于其他位置的正斑力。上翼板剪滞效应稍大于下翼板,但两者剪力滞系数比较接近。空间有限元分析既可由模型试验结果得到验证,同时又可依据所建立的有限元模型对模型试验梁作更大范围即更多项目的研究。 参考文献 l罗旗帜,俞建立.钢筋混凝土连续箱粱桥翼板横向裂缝问题.桥梁建设,1997(1):4l~44 2蔡千典,冉一元,波形钢腹板预应力结合箱粱结构特点的探讨,桥梁建设。1994.1 3方诗圣,胡成,吴文清.微混凝土模型材料基本性能试验研究.合肥工业大学学报,1999,22(5):76一锣一 4项贻强.箱型梁桥翼板的有效宽度及对规范的建议.中国公路学会桥梁工程学会1989年学术会议论文集。1989.10 RC弯桥截面设计的计算模型分析 张敬珍陈偕民徐岳 (长安大学公路学院) 摘要:随着立交桥数量的不断增多,弯桥也开始被广泛使用。但精确的设计理论还有待进一步完善和深入研究。弯桥的受力较直桥复杂得多,截面设计相应难度大,而弯桥的截面设

受弯构件的正截面承载力计算

第4章受弯构件的正截面承载力计算 1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点? 答:第Ⅰ阶段:混凝土开裂前的未裂阶段 当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。 随着荷载的增加,截面上的应力和应变逐渐增大。受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。 第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段 受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。 在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。 还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。这与平截面假定发生了矛盾。但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。因此,各受力阶段的截面应变均假定呈三角形分布。 第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段 随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。 在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。 2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系? 答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。 3.何谓配筋率?配筋率对梁破坏形态有什么的影响? 答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即

弯桥直做折做弯做

弯桥直做、折做、弯做 弯桥直做:腹板是直线的,曲线线型又悬臂宽度调整。如1楼所说,大半径曲线梁一般可采用这种形式。 弯桥折做:腹板在中横隔梁位置有明显折角。曲线线性又腹板折角和悬臂宽度共同调整。弯桥弯做:腹板线性与曲线线性相同。悬臂等宽。小半径曲线梁的时候常用。 我只在预制T梁、预制工字梁的时候采用这种弯桥折做的形势。因为在预制的时候不可能把梁肋做成曲线吧,只能依靠悬臂来调整。而且,在预制T梁和工字梁的梁段连续处做成折的横梁还是比较好实现的。所以我一般只在这两种型式的梁的时候才会采用弯桥折做。至于弯折角度的问题我觉得主要还是看曲线半径,曲线T梁一般都有最小半径要求。 弯桥直做------桥梁所处平曲线半径较大,可以不考虑曲线影响,即可按直线桥做, 弯桥折做------桥梁所处平曲线半径较小,必须考虑曲线影响,即桥梁每跨按直线做,每跨的梁与梁之间有夹角。 使用直线来近似拟合曲线。 弯桥弯做------桥梁所处平曲线半径较小,采用现浇梁(桥梁也是弯曲的型式)处理桥梁的方式。 平行布置:全桥的所有墩台方向均一致,一般是取全桥中心处桩号的切线为基准,将此切线向右转动一个角度得到墩台轴线防线,这个角度也成为右角。此时同跨的所有梁板长度一致。而各个墩台的右角均不一致(当桥梁在曲线上时) 径向布置,每一处墩台的轴线都和本桩号的切线成固定角度,(这个角度一般为90度,

但把范围放大,把意义引申,只要角度一致也可以) 如果曲线半径大,采用径向布置,此时内外侧梁板长度差很小。 如果曲线半径小,用平行布置,这样梁板长度差异小,如果用径向布置,除非是施工工艺采用现浇。 如果桥梁跨越道路,采用平行布置,这样桥下空间和道路平行。 如果桥梁跨越河流,一般跨河处较为空旷,线型标准高,半径大,所以采用径向布置,墩台和 河流稍有不平行无伤大雅。 以上几种考虑有时候要结合在一起,再决定是平行布置还是径向布置。 受到标准、地形、地质等诸多因素的限制,使得高速公路上一些简支梁桥因受路线平面线型控制而成了曲线桥。高速公路路幅宽,平曲线内外侧孤长差值大,位于平曲线上的简支梁桥,由于上、下行桥独立设置,所以在曲线上同一桥孔内、外侧的长度差是很明显的。在设计中为了设计和施工简便,一般根据桥梁各自的具体情况(包括所在的平曲线半径、孔数、跨径等),分别按弯桥直作和弯桥折作对桥梁墩台进行布设,简化为直线桥。 合理 假定 (1)、位于平曲线 上的简支梁桥,在平面上按折线进行布设。即以路线全幅中心线上各墩台中心的连线作为桥跨轴线,将曲线桥转化为折线桥(如图1中A、B、C为各墩中心); (2)、相邻两桥墩(台)中心的曲线长度与其弦长之差忽略不计。即图1中AB和BC的曲线长分别等于AB和BC弦长; (3)、位于平曲线上桥梁的交角α为沿路线前进方向,曲线在各墩台中心处的切线与各墩台横桥向墩轴线的夹角。 1 弯桥直作 当平曲线半径较大,并且全桥范围内外孤长差值不大,中失≤20cm,可采用弯桥直作,他可分为两种方法:一种是经线法,当中失≤10cm,可以路线全幅中心线上两桥台中心的连线作为桥跨轴线,将曲线桥转化为直线桥;另一种是平分中失法,当中失>10cm,可以路线全幅中心线上两桥台中心的连线偏移1/2中失作为桥跨轴线,将曲线桥转化为直线桥。曲线线形由护栏调节。如果中失≤50cm,对通讯管道布设没影响,也可考虑弯

大学生桥梁设计方案

YOUR LOGO Your compa ny n ame 2 0 X X 大学生桥梁设计方案 姓名:XXX 部门:XX部

大学生桥梁设计方案 作为一个土木学子,我们的目标是成为一名优秀的土木工程师,因此我们想通过参加这样的一次结构设计大赛,提前感受下“工程师”的滋味。我们设计并制作了这座模型桥。这座桥,我们采用了悬索与斜拉结合的方式固定,使桥身更具有力度感。桥梁设计的基本要求有:安全可靠,适用耐久,经济合理,美观。桥梁设计的基本原则桥梁是铁路、公路或城市道路的重要组成部分,特别是大、中桥梁的建设对当地政治、经济、国防等都具有重要意义。因此,公路桥梁应根据所在公路的作用、性质和将来发展的需要,除应符合技术先进、安全可靠、适用耐久、经济合理的要求外,还应按照美观和有利环保的原则进行设计,并考虑因地制宜、就地取材、便于施工和养护等因素。 1安全可靠 (1) 所设计的桥梁结构在强度、稳定和耐久性方面应有足够的安全储备。 (2) 防撞栏杆应具有足够的高度和强度,人与车流之间应设防护栏,防止车辆撞人人行道或撞坏栏杆而落到桥下。 (3) 对于交通繁忙的桥梁,应设计好照明设施,并有明确的交通标志,两端引桥坡度不宜太陡,以避免发生车辆碰撞等引起的车祸。 (4) 对于河床易变迁的河道,应设计好导流设施,防止桥梁基础底部被过度冲刷;对于通行大吨位船舶的河道,除按规定加大桥孔跨径外,必要时设置防撞构筑物等。 (5) 对修建在地震区的桥梁,应按抗震要求采取防震措施;对于大跨柔性桥梁,尚应考虑风振效应。 2.适用耐久 (1) 桥面宽度能满足当前以及今后规划年限内的交通流量( 包括行人通道) 。 (2) 桥梁结构在通过设计荷载时不出现过大的变形和过宽的裂缝。 (3) 桥跨结构的下方要有利于泄洪、通航(跨河桥)或车辆( 立交桥) 和行人的通行 第2页共2页

桥梁设计要点

桥梁设计要点 一、结构计算要点 1、根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.6条要求,公路桥涵结构的设计基准期为100年,市政桥涵据此采用设计基准期100年,各类主要构件及其使用材料应保证其设计基准期要求。 2、汽车荷载根据道路、公路等级分别采用公路-I级、公路-II级,特殊荷载根据业主要求确定。桥梁设计安全等级根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.9条,分为一级、二级、三级,重要性系数根据设计安全等级确定。设计中注意按照单孔跨径确定,对多孔不等跨径桥梁,以其中最大跨作为判断标准,同时在设计中结构重要性系数应大于等于1.0。 3、抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值加速度为0.05g。其他地区及有特殊要求桥梁根据《建筑抗震设计规范》(GB 50011-2001)附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 4、环境类别根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第1.0.7条确定,并按照要求提出相应的耐久性的基本要求。 5、混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第9.1条,当受拉区主筋保护层厚度大于50mm时,

应在保护层内设置直径不小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、护栏防撞等级根据《公路交通安全设施规范》(JTG D81-2006)和《公路交通安全设施设计细则》(JTG/T D81-2006)确定,中央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中列出。 7、桥涵应进行承载能力极限状态和正常使用极限状态设计,其中正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验算,并满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.3条的规定。 9、普通钢筋混凝土构件和B类预应力混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,其宽度限制根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.4.2条。 10、 T形截面梁的翼缘有效宽度和箱形截面梁在腹板两侧上下翼缘的有效宽度应根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第4.2.2条和4.2.3条进行断面折减。各类受力筋应布置在有效宽度范围内。 11、由于日照正温差和降温反温差引起的梁截面应力,可按附录B计算。竖向日照温差梯度曲线可按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条计取,桥面混凝土铺装层不计入温度梯度,沥青混凝土铺装层厚度大于10cm的按照14度计算。

受弯构件正截面承载力问题详解

第五章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态. 2、受弯构件梁的最小配筋率应取 %2.0min =ρ 和 y t f f /45min =ρ 较大者. 3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 . 4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_. 5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______. 6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算. 7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据. 8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 ' s A 都未知,计算时引入的补充条件为 b ξξ=. 二、判断题: 1、界限相对受压区高度b ξ由钢筋的强度等级决定.( ∨ ) 2、混凝土保护层的厚度是从受力纵筋外侧算起的.( ∨ ) 3、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大.( ∨ ) 4、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大.( ∨ ) 5.梁中有计算受压筋时,应设封闭箍筋(√ ) 6.f h x '≤的T 形截面梁,因为其正截面抗弯强度相当于宽度为f b '的矩形截面,所以配筋率ρ也用f b '来表示,即0/h b A f s '=ρ( ? )0/bh A s =ρ 7.在适筋围的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的( √ ) 三、选择题: 1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( A ). A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于( C ). A 适筋破坏 B 超筋破坏 C 界限破坏 D 少筋破坏 3、正截面承载力计算中,不考虑受拉混凝土作用是因为( B ). A 中和轴以下混凝土全部开裂 B 混凝土抗拉强度低 C 中和轴附近部分受拉混凝土围小且产生的力矩很小 D 混凝土退出工作

桥梁设计流程

桥梁设计流程 1.设计资料和技术指标(地形、地质、气象水文、活载、道路等级等) 2.总体方案设计(纵向线路、桥式方案比选、横断面设计等) 3.详细设计(重要构件的尺寸拟定和细节设计) 4.手算或软件计算(成桥阶段内力和变形、施工阶段内力和变形) 针对软件计算: (1)建模 (2)荷载输入 (3)边界条件 (4)运行分析 5.根据相关规范进行强度、刚度、稳定性验算(钢结构还应做疲劳验算) 我国桥梁设计程序,分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按"三阶段设计"进行,即初步设计、技术设计与施工设计。 一、前期工作--预可行性研究报告和工程可行性研究报告的编制 预可行性研究报告与可行性研究报告均属建设的前期工作。预可行性研究报告是在工程可行的基础上,着重研究建设上的必要性和经济上的合理性; 可行性研究报告则是在预可行性研究报告审批后,在必要性和合理性得到确认的基础上,着重研究工程上的和投资上的可行性。 这两个阶段的研究都是为科学地进行项目决策提供依据,避免盲目性及带来的严重后果。这两个阶段的文件应包括以下主要内容: 1、工程必要性论证,评估桥梁建设在国民经济中的作用。 2、工程可行性论证,首先是选择好桥位,其次是确定桥梁的建设规模,同时还要解决好桥梁与河道、航运、城市规划以及已有设施(通称"外部条件")的关系。 3、经济可行性论证,主要包括造价及回报问题和资金来源及偿还问题。 二、设计阶段--初步设计、技术设计和施工设计(三阶段设计) (1)初步设计 按照基本建设程序为使工程取得预期的经济效益或目的而编制的第一阶段设计工作文件。该设计文件应阐明拟建工程技术上的可行性和经济上的合理性,要对建设中的一切基本问题作出初步确定。内容一般应包括:设计依据、设计指导思想、建设规模、技术标准、设计方案、主要工程数量和材料设备供应、征地拆迁面积、主要技术经济指标、建设程序和期限、总概算等方面的图纸和文字说明。该设计根据批准的计划任务书编制。 (2)技术设计 技术设计是基本建设工程设计分为三阶段设计时的中间阶段的设计文件。它是在已批准的初步设计的基础上,通过详细的调查、测量和计算而进行的。其内容主要为协调编制拟建工程中有关工程项目的图纸、说明书和概算等。经过审批的技术设计文件,是进行施工图设计及订购各

圆、环截面构件弯剪计算Excell计算

圆形截面受弯构件单筋、非均匀配筋--弯矩求配筋 输入M= N·mm459960000 输入半径R= mm400 输入混凝土fc= MPa11.9 纵筋强度fy= MPa360 计算k4=-0.862770108 计算q=-0.53288742 计算初始值α=0.810734192试算值α=0.8967(取α在初始值附近值使ε绝对值逼近 0.001) 计算初始值ε=-0.188773068ε=α+(1/1.4)*sinα-0.5*sin2α-(1/4.2)*sin3α+k4 迭代求终值ε=0.000434754受压区扇形角度= °161.406 计算受拉侧As= mm22163.351394 圆形截面受弯构件单筋、非均匀配筋--配筋求承载弯矩 输入M初= N·mm268350000M0=274177846(取输入M初在M0值附近值使ε绝对值逼近 0.001 输入半径R= mm300 输入混凝土fc= MPa9.6 纵筋强度fy= MPa310 实配受拉侧As= mm22000 计算值α=0.970295917受压区扇形角度= °174.6532651 计算H=222.8244499 计算ε=0.001869264(当ε绝对值逼近 0.001时,Mu=M初) 继续试算268350000 圆形截面受弯构件抗剪计算 输入V设= N710520 0.7ftbh0=704704 输入半径R= mm500 输入混凝土ft= MPa 1.43 箍筋强度fyv= MPa270 计算Asv/S=0.026925926构造Min(Asv/S)= 1.118578 设S= mm200计算Asv=223.7156 箍筋单肢As1= mm2111.8577778 环形截面受弯构件均匀配筋--已知配筋求承载弯矩环形截面受弯构件均匀配筋--已知弯矩求配筋 输入外半径r1= mm500输入纵筋rs=r1-as mm470输入外半径r1= mm500输入纵筋rs=r1-as mm450输入内半径r2= mm400环形截面积A=282744输入内半径r2= mm300环形截面积A=502656输入混凝土fc= MPa16.7输入混凝土fc= MPa16.7

弯桥设计技术要点探讨

弯桥设计技术要点探讨 摘要:作者结合自己的设计经验,就弯桥设计中的侧向限位及支座偏心等技术要点做了相关分析探讨,对指导弯桥设计有积极的意义。 关键词:侧向限位,支座偏心,截面 一、引言 无论是在公路还是市政道路设计过程中,平面线形是衡量道路好坏的一个重要指标,综合考虑各方面的因素后,很有可能在道路的某一段需要设置弯桥。但是弯桥的结构受力与直桥有很大区别,如若在结构分析时没有解决这些问题,便会造成运营不久就出现各种病害。 二、主要技术难点分析 笔者从事路桥设计多年,自认为对弯桥设计有些心得,与大家分享。 2.1、侧向限位设置 弯桥在运营过程中会向弯外侧“爬移”,所以无论是在最初设计还是出现病害后对主梁复位,都必须考虑侧向限位设施。 弯桥“爬移”问题主要表现在支座的横向支反力、竖向支反力、梁体的横向位移和扭转变形上,因此,设计合理的限位措施,就是要避免支座横向支反力过大、避免支座出现脱空现象、避免弯梁与桥墩出现较大的横桥向相对位移、避免弯箱梁的扭转变形过大。 引起爬移问题的荷载因素,诸如温度效应、车辆行驶作用等是由外界条件决定的,一般是人为不可以控制的;因而,侧向限位措施主要是从弯桥自身的构造着手,比如支座类型的选择、支座的布置方法、箱梁截面形式、下部结构的构造形式等等。下面分别对一些限位措施进行介绍。 l)采用盆式橡胶支座。盆式橡胶支座是钢构件和橡胶相组合而成的新型桥梁支座,具有承载力大、水平位移量大、转动灵活等特点。支座按照使用性能分有三种型式,即双向活动支座、单向活动支座和固定支座,这三种型式的支座进行合理的布置后,能够很好地满足弯桥的变形特点,弯桥的受力、变形也比较明朗。双向活动支座能够很好地放松对弯箱梁的约束,避免弯梁在平面内出现额外的内力;单向活动支座不仅能够给弯梁作导向作用,还可以约束弯梁的横向位移;固定支座以及单向活动支座能够很好地使得梁体与桥墩协调变形。

桥梁纵横截面设计的主要内容

桥梁纵横截面设计的主要内容:纵断面设计包括桥梁总跨径的确定,桥梁的分孔,桥面标高与桥下尽空,桥上与桥头的纵坡设计。横断面的设计主要是确定横截面布置形式,包括主梁截面形式,主梁间距,截面各部分尺寸。 大跨度公路预应力混凝土连续桥为什么大多采用不等跨和变截面的形式:连续梁跨径的布置一般采用不等跨的形式。如果采用等跨布置,则边跨内力将控制全桥设计,这样是不经济的。此外,边跨过长消灭了边跨刚度,将增大活载在中跨跨中截面的弯矩变化幅值,增加预应力刚劲数量。从预应力混凝土连续梁的受力特点来分析,连续梁的立面应采用便高度的布置为宜。连续梁在恒活载作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩往往大于跨中截面的正弯矩,因此采用变高度梁能较好的符合梁的内力分布规律。 阐述斜板桥的工作特性:间之斜板的纵向主弯矩比跨径的矩形板要小,并随斜交角的增大而减小。(2)斜板的荷载,一般又向支撑边的最短距离传达分配的趋势,宽度比较小的情况下,主弯矩方向朝支撑边的垂直方向偏转;宽度比较大的情况下,办中央的主弯矩计划垂直于支撑边,边缘的主弯矩平行于自由边。(3)纵向最大弯矩的位置随角的增大而从跨中向钝角部位移动。(4)斜板中除了斜跨径方向的主弯矩外,在钝角部位的角平分线垂直方向上,将产生接近于跨中弯矩值的相当大的负弯矩,其值随角的增大而增加,但分布范围较小,并迅速消减。(5)斜板的最大纵向弯矩虽然比相应的正版小,可是横向弯矩却比正版大得多,尤其是跨中部分的。(6)斜板在支撑边上的反力很不均匀(7)斜板的扭矩分布很复杂。 刚架桥的内力计算有哪些原则和假定:计算图式的轴线取支柱厚度的中分线盒平面主梁跨中截面高度的水平线。对于截面高度或厚度变化较大的钢架桥,则以各截面高度中分点的连线作为计算图式的理论轴线。(2)计算内力时,截面包括全部混凝土截面,不考虑钢筋。对于T形和箱型截面,不论其顶板地板厚度如何,均全部计入计算截面。(3)计算变位时一般可略去轴向力和剪力,仅计弯矩的影响,但在计算张拉力作用所产生的住内力时则必须计入轴向力和变位的影响。(4)当采用变截面的主梁和支柱时,如果在同一截面中最大惯性矩超过最小惯性矩两倍时,则应考虑次变化的影响。(5)当钢架奠基于压缩性很小的土壤时,支柱低端可认为是固定的。若奠基于中等坚实的土壤时则仅在下列情况下可以认为是固定的:即由于基础有足够大的尺寸,致使基础底面一边的土压应力与另一边之比不大于3倍时。(6)关于混凝土的弹性模量,根据现行规范规定,截面刚度按0·8EHI计。其中I的计算规定如下:对于静定结构,不计混凝土受拉区,计入钢筋;对于超静定结构,包括全部混凝土截面,不计钢筋。

相关主题
文本预览
相关文档 最新文档