当前位置:文档之家› 高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析
高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

一、带电粒子在无边界匀强磁场中运动1专项训练

1.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:

(1)磁感应强度B 的大小; (2)N 点的坐标;

(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.

【答案】(1)0mv qR

(2) 31

(,)22

R R - (3)

0(5)R v π+ 【解析】

(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:

由几何关系可以得到:r R =

由洛伦兹力等于向心力:20

0v qv B m r

=,得到:0mv B qR =.

(2)由图几何关系可以得到:3sin 602

x R R

==

o ,1cos602y R R o

=-=- N 点坐标为:31,2R R ?

-????

. (3)粒子在磁场中运动的周期2m

T qB

π=

,由几何知识得到粒子在磁场在中运动的圆心角

共为180o ,粒子在磁场中运动时间:12

T

t =

,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =

,其中1

32

s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:

()0

5R t v π+=

2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;

(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)12

3r

r n n -

【解析】 【详解】

(1)两小球静止反向弹开过程,系统动量守恒有

A 1

B mv n mv =①

小球A 、B 在磁场中做圆周运动,分别有

2A A A mv qv B r =,2

1B

2B B

n mv n qv B r =②

解①②式得

A

2B

r n r = 磁场运动周期分别为

A 2πm

T qB

=

,1B 22πn m T n qB =

解得运动时间之比为

A

A 2

B B 1

22

T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有

A A L v t =③

竖直方向有

2A A A 12

y a t =

④ 由牛顿第二定律得

A qE ma =⑤

解③④⑤式得

2

A A

()2qE L y m v =

⑥ 小球B 在电场中做类平抛运动,同理有

2

2B 1B

()2n qE L y n m v =

⑦ 由题意知

B y r =⑧

应用几何关系得

B A 2y y r y ?=+-⑨

解①⑥⑦⑧⑨式得

12

3r y r n n ?=-

3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为

2

L

()o ?>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.

(1)求粒子到达O 点时速度的大小;

(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23

能打到MN 板上,求所加磁感应强度的大小;

(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L

φ

=

,若从AB 圆弧面收集到的某粒子经

O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m

?

=2)12m B L q ?=3)060α∴= ;22m L q ?

【解析】 【分析】 【详解】

试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2

102

qU mv =-

2U ???=-=2q v m

?

=

(2)从AB 圆弧面收集到的粒子有

2

3

能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60?,在磁场中运动的轨迹如图甲,轨迹圆心

角060θ=.

根据几何关系,粒子圆周运动的半径:2R L =

由洛伦兹力提供向心力得:2

v qBv m R

=

联合解得:12m B L q

?

=

(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.

2

12qE L t m

=

222mL m

t L qE q ?

==22x Eq qEL q v t m m m ?

=

==

若速度与x 轴方向的夹角为α角 cos x

v v α=

1cos 2

α=060α∴=

4.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规

定垂直纸面向里为磁场正方向,磁感应强度B如图2所示的变化。0

t=时刻,一质量为m,带电量为q的带正电粒子从B点以速度0v沿BC方向射入磁场,其中0B已知,0T未知,不计重力。

(1)若AB BC

=,粒子从D点射出磁场,求AB边长度的可能值及粒子运动的可能时间;

(2)若

3:1

AB BC=

:,粒子仍从D点射出,求AB

边长度的可能值及粒子运动的可能时间;

(3)若AB BC

=,求磁场周期

T需满足什么条件粒子不从AB边射出,并求恰好不射出时0T时刻粒子距BC边的距离。

【答案】(1)0

nmv

AB

qB

=,

2

n m

t

qB

π

=1,

n=

(2,3...);(2)0

33

n mv

AB

qB

=,0

4

3

n m

t

qB

π

=1,

n=

(2,3...);(3)0

5

3

m

T

qB

π

≤,

()0

32mv

d

qB

+

=

【解析】

【详解】

(1)若粒子通过D点,其运动轨迹如图所示,则必须满足:

则必须满足:

2

v

qvB m

r

=

22

AB n r

=1,

n=

(2,3...)

4

T

t n

=1,

n=

(2,3...)

2m

T

qB

π

=

由以上各式解得:

nmv

AB

qB

=,

2

n m

t

qB

π

=1,

n=

(2,3...)

(2)若粒子通过D点,其运动轨迹如图所示:

则必须满足:

2

v

qvB m

r

=

23

BD nr

=1,

n=

(2,3...)

2

3

T

t n

=1,

n=

(2,3...)

又因为

2m

T

qB

π

=

由以上各式解得:

33

n mv

AB

qB

=,

4

3

n m

t

qB

π

=1,

n=

(2,3...)

(3)如图3所示:

粒子恰不从AB边射出时,0

2

T

T

-时的轨迹与AB边相切,故需满足

sin()2r

r

πθ-=

, 解得粒子在0

02

T -

时间内转过的角度不超过150°,则有: 01502360

T T ≤ 0T 时刻粒子离AB 的距离为

2cos30d r r =+?

由以上方程解得:

00

53m

T qB π≤

, ()

00

32mv d qB +=

5.如图所示,地面某处有一粒子发射器A ,发射器尺寸忽略不计,可以竖直向上发射速度介于v 0~2v 0的电子。发射器右侧距离A 为L 的O 处,有一足够长突光板OD ,可绕O 点 转动,使其与水平方向的夹角θ可调,且AOD 在同一平面内,其中OC 段长度也为L , 电子打到荧光板上时,可使荧光板发光。在电子运动的范围内,加上垂直纸面向里的匀 强磁场。设电子质量为m ,电荷量为e ,重力忽略不计。初始θ=45°,若速度为2v 0的电子恰好垂直打在荧光板上C 点,求: (1)磁场的磁感应强度大小B ;

(2)此时速率为1.5v 0的电子打到荧光板上的位置到0点的距离x ;

(3)在单位时间内发射器A 发射N 个电子,保持磁感应强度B 不变,若打在荧光板上的电子数随速率均匀分布,且50%被板吸收,50%被反向弹回,弹回速率大小为打板前速率大小的0.5倍,求荧光板受到的平均作用力大小(只考虑电子与收集板的一次碰撞); (4)若磁感应强度在(B -△B )到(B +△B )之间小幅波动,将荧光板θ角调整到90°,要在探测板上完全分辨出速度为v 0和2v 0的两类电子,则

B

B

?的最大值为多少?

【答案】(1) 02mv eL 34-2

L (3) 0

158Nmv (4)13 【解析】 【详解】

(1)由洛伦兹力提供向心力:

qvB =m 2

v r

2v 0对应半径为L ,得

B=

2mv eL

(2) 1.5v 0对应运动半径为0.75L

cosl35°=2

22

0.25(0.75)20.25L x L L x

+-??()

221

042

x x L L +

-= 解得:

L 取

(3)

F 吸=0002350%24

P mv m v N Nmv t ?+?==?吸

F 反=

0002950% 1.528

P mv m v N Nmv t ?+?=?=?反() F 总=F 吸+F 反=

015

8

Nmv (4)

x 1

x 2

r 1=0

()

mv e B B -? r 2=

2()

m v e B B +?

x 2>x 1

B B ? 最大值为1

3

6.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30o角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.

(1)求A 点与原点距离;

(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;

(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)1

3Blv E =(3)21v v =(4)32d S l =-

【解析】

(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l

粒子2在区域Ⅰ运动半径为R 2由几何关系知

221

32

R R l =+ 23R l =

33

323OA l l l =-=

(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1

313tan 30E

v v v ==?11

1

13q E d v m v =? 又 2

1111

v q v B m l

= 所以111q v m Bl = 1

3Blv E =

(3)粒子2经过区域Ⅱ电场加速获得的速度大小为22

4E 3tan 60v v v ==

?对粒子2在电场中运动有2222

3

q E d m v =? 又 22

2223v q v B m l

= 所以

2223Bl

q v

m = 所以 21v v =

(4)粒子1经过区域Ⅲ时的速度大小为1

312sin 30v v v =

=?

有 23

1313

2v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为22

43cos303

v v v =

=

? 有 24

242

4

2v Bq v m R = 43R l =

两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜

3E 4E 3412

2cos30++tan 30tan 6022v v S S d d

R R v v +?=

?+??? 32

d S l =-

点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.

7.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=?kg 电荷量

193.210q -=?C 、速度61.010v =?m/s 的带正电的粒子。一感光薄板平行于x 轴放置,其

中心O '的坐标为(0,a ),且满足a >0. 不考虑粒子的重力以及粒子之间的相互作用。 (1)若薄板足够长,且a =0. 2m ,求感光板下表面被粒子击中的长度; (2)若薄板长l =0. 32m ,为使感光板下表面全部被粒子击中,求a 的最大值;

【答案】13

+ (2)0.32m 【解析】 【分析】

(1)带电粒子在磁场中做匀速圆周运动,洛伦兹完全提供向心力,粒子速度大小一定,方向不定,采用旋转圆的方式确定临界点;

(2)作出粒子恰能击中板的最左端与最右端时粒子的轨迹,求出a 的最大值。 【详解】

(1)带电粒子在匀强磁场中做匀速圆周运动,洛伦兹完全提供向心力:

2

v qvB m r

=

解得:0.2m r =

沿y 轴正方向发射的粒子击中薄板的最左端D 点,可知:

10.2m x r ==

而击中薄板最右端E 点的粒子恰好运动了半个圆周,由几何关系可得:

22

22(2)r x r +=

解得:23

m x =

则感光板下表面被粒子击中的长度:1213

m L x x +=+=

(2)粒子恰能击中薄板的最左端点,由几何关系可知:

222()()2

l

a r r +-= 解得:0.32m a =

若粒子恰能击中薄板的最右端点,根据几何知识可知:

222()(2)2

l

a r +=

解得:0.1344m 0.32m a =>

综上所述,为了使感光板下表面全部被粒子击中:0.32m m a =

【点睛】

典型的旋转打板模型,粒子的速度一定,说明运动的轨迹是一个定圆,方向不同,可以采用旋转圆的方式画出临界点,进而求解。

8.如图所示,在屏蔽装置底部中心位置O 点放一医用放射源,可通过细缝沿扇形区域向外辐射速率为v =3.2×106m 的α粒子.已知屏蔽装置宽AB =9cm ,缝长AD =18cm ,α粒子的质量m =6.64×10-27kg ,电量q =3.2×10-19C .若在屏蔽装置右侧条形区域内加一匀强磁

场来隔离辐射,磁感应强度B =0.332 T ,方向垂直于纸面向里,整个装置放于真空环境中.

(1)若所有的α粒子均不能从条形磁场隔离区的右侧穿出,则磁场的宽度d 至少是多少? (2)若条形磁场的宽度d =20cm ,则射出屏蔽装置的α粒子在磁场中运动的最长时间和最短时间各是多少?(结果保留2位有效数字)

【答案】(1)0.34cm ;(2)72.010s -?;86.510s -?. 【解析】 【分析】 【详解】

(1)由题意:AB =9cm ,AD =18cm ,可得:∠BAO =∠ODC =45° 所有α粒子在磁场中做匀速圆周运动的半径相同,设为R ,

根据牛顿第二定律有2

v qvB m R

=,解得R =0.2m =20cm

由题意及几何关系可知:若条形磁场区域的右边界与沿OD 方向进入磁场的α粒子的圆周轨迹相切,则所有α粒子均不能从条形磁场隔离区右侧穿出,如图(1)所示.

设此时磁场宽度为d 0,由几何关系得(045201020.34d R Rcos cm m ?+≈=+= (2)设α粒子在磁场内做匀速圆周运动的周期为T ,则62108

m T s qB ππ

-=

=? 设速度方向垂直于AD 进入磁场区域的α粒子的入射点为E ,如图所示.

因磁场宽度d =20cm

max T t s s π

--=

=?≈? 若α粒子在磁场中做匀速圆周运动对应的圆弧轨迹的弦最短,则α粒子穿过磁场时间最短.最短的弦长为磁场宽度d .

设在磁场中运动的最短时间为min t ,轨迹如图所示.因R =d ,则圆弧对应圆心角为60°,

则6810 6.510648

min T t s s π

--=

=?≈? 【点睛】

当粒子(速度一定)在有界磁场中轨迹是劣弧时,粒子在磁场中运动轨迹的弦最短,粒子在磁场中运动时间最短.

9.如图在光滑绝缘平面上有一直角三角形区域AOC ,AC 上放置一个绝缘材料制成的固定挡板,其长度AC L =,30A ∠?=,现有一个质量为m ,带电量为q +可视为质点的小球从A 点,以初速度v 沿AO 方向运动,小球与挡板的碰撞均为弹性碰撞(打到C 点时也记一次碰撞),且不计一切摩擦和碰撞时间,若在AOC 区域施加一个垂直水平面向里的匀强磁场,则:

(1)要使小球能到达C 点,求磁感应强度的最小值min B ;

(2)要使小球能到达C 点,求小球与AC 边碰撞次数n 和磁感应强度大小B 应满足的条件.

(3)若在AOC 区域施加一个沿O 到C 方向的匀强电场,则: ①要使小球能到达C 点,求电场强度的最小值min E ;

②要使小球能到达C 点,求小球与AC 边碰撞次数和电场强度大小E 应满足的条件。

【答案】(1)min

q B mv L =;(2)min n q B mv L =,其中n N ∈※;(3)①2

min 43mv E qL

=;

②n .

【解析】 【详解】

(1)根据几何关系可知粒子能够运动到C 点的最大半径为r L = 根据

2

v Bqv m r

=

解得:

min q

B mv L =

(2)粒子与板发生n 次碰撞所对应的轨道半径为:

L r n

=

根据

2

v Bqv m r

=

解得:

min n q

B mv

L =

,其中n N ∈※ (3)①在区间加竖直向上的电场时,且带电粒子做一次类平抛运动到C 点时电场强度最小,水平方向上:

cos L t v θ=

=

竖直方向上:

2

22

1328OC

EqL L at mv ==

解得::

2

min

43mv E qL

= ②将电场力沿平行AC 和垂直AC 分解

//sin 2Eq Eq

a m m

θ=

=

cos Eq a m θ⊥=

=

02sin v t a θ⊥=

=

沿AC 方向的运动是初速度为//3

2

v v =,加速度为//

2Eq a m =的匀加速直线运动 得到

2/2

///1324Eq L v t a t vt t m

=+=+

所以

22343m v EqLm mv

t +-=

t n t =

229123m v EqLm mv

n +-=

10.如图所示,xOy 平面内,A 、B 、C 三点恰好组成一个直角三角形,∠B =90°,∠C =60°,BC 长为l .D 为AC 的中点,D 为AD 的中点.第二象限内有沿-y 方向的匀强电场;三角形BCD 区域内有匀强磁场I ,AB 下方有匀强磁场Ⅱ,方向均垂直纸面向里,一质量为m ,电荷量为q (q >0)的带电粒子从B 点以速度v 0沿+y 方向进入磁场I ,离开磁场I 后又刚好从坐标原点O 沿与-x 成30°的方向进入电场,又从A 点离开电场进入磁场Ⅱ,经磁场Ⅱ偏转后回到B 点,回到B 点的速度方向仍沿+y 方向,之后带电粒子重复上述运动过程.不计粒子重力.求:

(1)磁场I 的磁感应强度B 及匀强电场的场强E 的大小; (2)带电粒子运动的周期.

【答案】(1)2

3mv E ql

=、02mv B ql =

(2

)()0

9536l v π+

【解析】

试题分析:(1)画出粒子运动如图所示

由几何关系,粒子在磁场I 中运动的轨道半径为2

l

r =

由牛顿第二定律可得20

0v qv B m r

=,解得02mv B ql =

粒子在电场中运动时,沿y 方向,qE ma =,0

02sin 30v at =

沿x 方向()

0cos302l v t =,解得2

03mv E ql

=

(2)粒子在磁场I 中的运动时间1100

6s l

t v v π=

= 粒子离开磁场I 到达O 的路程0

22(cos30)2

l s =,所用时间2200

32s l t v v =

=, 根据

()

00cos302l v t =可得粒子在电场中的运动时间30

3l t = 根据几何关系可得粒子在磁场II 中运动的轨道半径为R l = 粒子在磁场中转过的圆心角为

43π

粒子在磁场II 中的运动时间4400

43s l t v v π=

= 周期(12340

9536l T t t t t v π+=+++=

考点:考查了带电粒子在组合场中的运动

【名师点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径

11.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.

求:(1)电场强度的大小.

(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.

【答案】22

B qL

E m

=;2B E t t π= 【解析】 【分析】 【详解】

(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,

则有2

0v qv B m R

= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为1

4

圆周,故有2

R =

以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212

E R at =

竖直方向上:0E R v t =

由以上各式,得 22

B qL E m

= 且E m

t qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为

1

4

圆周,即142B t T m qB π==

所以2

B E t t π

=

12.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。一质量为m 、电荷量为q 的粒子以速度v 0沿AC 方向由A 点射入。粒子经D 点时速度的偏向角(偏离原方向的夹角)θ=60°。(不计重力)

(1)试求AD 间的距离;

(2)若去除磁场,改为纸平面内垂直于AC 方向的匀强电场,要想由A 射入的粒子仍然能经过D 点,试求该电场的强度的大小及方向;粒子此时经D 点时速度的偏向角比60°角大还是小?为什么? 【答案】(1)o

mv R=

Bq

(2)a<60? 【解析】 【详解】

(1)带电粒子在磁场中做匀速圆周运动,速度偏角为60?,则粒子转过的圆心角为60?, 即AD=R

由20

0v qv B m R

=

得AD =0

mv R Bq

=

(2)经D 点3

cos302

x R R

=?=,1sin302y R R =?= 而0x v t =,212y at =,qE

a m

= 解得04

3

E Bv =

,方向垂直AC 向上 速度偏向角y x

v v tana =

,y v at =

解得2

tan 2tan 3033

α=?=

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

带电粒子在磁场中运动之多解周期运动问题

考点4.7 周期性与多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作 用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能穿过去,也可能转过180°从入射界面这 边反向飞出,从而形成多解,如图丙所示. 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示. 一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀 强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中 M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子 自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方 向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰 撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R.

(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处 由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界。已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁 场。一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求: (1)要使粒子从P点射出后在最快时间通过B点,则从P点射出 时的速度v0为多大? (2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的 距离是多少? (3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出 粒子的轨迹并计算。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

高中物理带电粒子在磁场中的运动解题技巧及练习题

高中物理带电粒子在磁场中的运动解题技巧及练习题 一、带电粒子在磁场中的运动专项训练 1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度; (2)粒子从P 点射出到再次回到P 点所用的时间。 【答案】(1)8qBL v m =;(2)41(1)45m t qB π=+ 【解析】 【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得: 5sin37o QC L = 15sin37O OQ O Q L = = 在y 轴左侧磁场中做匀速圆周运动,半径为1R , 11R O Q QC =+

2 1 v qvB m R = 解得:8qBL v m = ; (2)由公式2 2 v qvB m R =得:2mv R qB =,解得:24R L = 由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t 5cos37o PC L = 1PC t v = 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t 12m T qB π= 21 37360 o o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t 22·2m m T q B qB ππ= = 3212 t T = 从P 点到再次回到P 点所用的时间为t 12222t t t t =++ 联立解得:41145 m t qB π??=+ ?? ? 。 2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 图1 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示. 图2 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示. 典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()

图17 A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场 B .若该带电粒子在磁场中经历的时间是23 t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54 t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC 解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨 迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面 以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可 知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56 t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53 t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求: 图18 (1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm (n =1,2,3,…)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

相关主题
文本预览
相关文档 最新文档