当前位置:文档之家› 浅析引起激光干涉仪测量误差的部分原因

浅析引起激光干涉仪测量误差的部分原因

浅析引起激光干涉仪测量误差的部分原因
浅析引起激光干涉仪测量误差的部分原因

浅析引起激光干涉仪测量误差的部分原因

激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。

因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、

扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。

上表可得:角度1″在500mm 偏置距离下引起的误差大约是2.40um 。 来个实际案例:以检测机床时不同安装高度为具体说明。 线性镜组安装距工作台10cm :

线性镜组安装距工作台30cm

线性镜组安装距工作台50cm

实验结果:按GB/T17421.2《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。

正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。

扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。

环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edl en公式计算空气折射率,以此对激光波长进行补偿。

1000mm示值因环境温度、压力、空气湿度各自变化引起的示值变化量(单位:um)

同时环境补偿单元中材料温度探头能实时高精度测量被测设备温度,对其进行温度补偿。但是往往因为操作人员将材料温度探头放置在错误的位置,致使采集的数据不能真实反映被测物体温度状态,从而增大测量误差。

上图为在测长机上架设激光干涉仪用于检测量块的实际案例。

设备安装在楼层地下室,有良好的温度风流控制,有效处理了环境的震动问题、气流扰动问题。测量时因把材料温度探头以“错误方式”放置在摆放电脑的铁架上,材料温度探头采集了非真实的被测物温度信息,致使300mm量块检测数据超差。

把材料温度探头以“正确方式”放置在被测量块周边,并给予充分的恒温时间,测量结果趋于中国计量院的校准值。

正确方式:在线性测量中,需要开启环境补偿单元,并正确设置补偿材料的种类,放置材料温度探头的位置。在高精度的测量中,需要给予环境补偿单元以及被测物充分的恒温时间。

激光束路径与被测轴之间存在的任何未准直都会造成测得的距离和实际的运动距离之间有差异,此误差被称为余弦误差。

当激光测量系统与运动轴未准直时,余弦误差会使得测量的距离比实际距离要短。随着未准直角度的增加,误差也跟着显著增加,如下表所示:

处理方法:若激光测量出现余弦误差,则激光读数将会小于原本应有的数值。因此,通过“轻微”调整云台的俯仰及偏转旋钮直到取得最大的激光读数,将能消除轴上的余弦误差。

死程误差是在线性测量过程中与环境因素改变有关的误差,在正常状况下,死程误差并不大,而且只会发生在定标后以及测量过程中的环境改变。

死程 L1

测量光程

L2

当测量时系统定标为L 1,若干涉镜及反射镜之间没有动作,且激光束四周的环境状况有所改变,整个路径(L I +L 2)的波长(空气中)都会改变,但激光测量系统只会对L 2距离进行补偿。 因此,死程测量误差会由于光束路径L 1没有获得补偿而产生。

处理方法:在设定定标位置时,固定反射镜和移动镜组应尽量彼此邻接,以此减小死程误差。 将镜组固定牢靠

为了最小化振动作用并加强测量稳定性,镜组应牢靠固定到所需的测量点上;磁力表座应直接吸住机床底座,避免吸装在机床护罩或机床盖等较薄弱的部分;确保吸装的表面平坦且没有杂质。

上图是中国计量科学研究院检测SJ6000激光干涉仪线性位移的数据,这表明SJ6000激光干涉仪在正确的安装手段、正确的环境补偿、稳定的测量环境下即使70米距离都能满足0.1Lum(L测量长度,单位:m)精度,远远超出设备的线性标称精度0.5Lum(L测量长度,单位:m)。

激光干涉仪报告讲解

机械工程综合实 践 实验报告 课程名称机械工程综合实践 专业精密工程 指导教师彭小强 小组成员刘强14033006 谌贵阳 吴志明 实验日期2012.4.2—2011.6.25 国防科学技术大学机电工程与自动化学院

目录 1激光干涉仪 1.1激光干涉仪介绍 1.2激光干涉仪原理 2 激光干涉仪测量机床的直线度 2.1实验器材以及平台的搭建 2.2激光干涉仪的调试 2.3直线度的测量 3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建 3.2激光干涉仪的调试 3.3重复定位精度的测量 4 实验分析与总结

目录 一、实验目的与任务 (2) 二、实验内容与要求 (2) 三、实验条件与设备 (2) 四.实验原理 (3) 1.定位精度测量 (3) 2.直线度测量 (4) 五、实验步骤 (5) 1.设定激光测量系统 (5) 2.调整激光光束,使之与机器运动轴准直。 (5) 3.数据记录与数据处理 (6) 六、实验过程和结果 (8) 1.X轴定位精度 (8) 2.X轴直线度 (9) 3.误差分析 (11) 七、实验总结与体会 (14) 1.实验总结 (14) 2.实验心得体会 (14) 3.对课程的一些建议 (14)

综合实践3 伺服系统运动精度建模与评价 一、实验目的与任务 通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。 二、实验内容与要求 (1)直线轴运动误差测量。利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度; (2)垂直度测量。任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价; (3)典型三维进给机构的精度建模。在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型; (4)典型三维进给机构的精度分析与评价。在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。 三、实验条件与设备 双频激光干涉仪,含直线度、定位精度测量组件。具体如图1所示。 (图1 定位精度测量组件直线度测量组件)

实验6-5-迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?cos 2 ② A 点为第k 级亮条纹。 由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条 纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干 涉 ②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹 角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i=0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d 减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对应

双频外差激光干涉仪

双频外差激光干涉仪 班级名:应用物理学1401班 作者:U201410186 赵润晓 同组成员:U201410187 王羽霄 实验时间:2016年11月30日

摘要:本实验在分析双频外差激光干涉仪的基础上,构建光路,实现了利用双频干涉侧脸位移量的功能。 关键词:双频外差激光干涉仪声光调制器光路构建 一、引言 【实验目的及原理】 1.实验目的。 ①了解双频外差激光干涉仪(dual-frequency heterodyne interferometer)的工作原理。 ②熟悉各种光学镜片的功能及原理。 ③熟悉双频外差干涉仪基本光路的设计和搭建,通过声光调制器(或称声光移频器)产生双频激光光束,并观察干涉仪的干涉信号。 2.实验原理。 激光的发明使得精密测量有了新的发展方向,用激光测量长度(位移或距离)主要方法有两种。一是以迈克尔逊干涉仪为基础的单频干涉仪;另一种是双频激光干涉仪。 ①单频激光干涉仪,从激光器发出的光束经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来,会合在分光镜上而产生干涉现象。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件(光电传感器)和电子线路(信号放大器)等转换为电压信号;然后经整形、放大后输入信号采集系统算出相位差,最后再由相位差算出可动反射镜的位移量(一个周期对应半波长)。由于激光频率甚高(1014Hz量级),无法直接测量光的相位,光程差检测的传统方法都是干涉强度法,即测量由相位差所引起的光干涉信号的强度变化,间接地测量光程差。 单品激光干涉仪因此具有稳定性差的缺点。许多内部(电子噪声和长期漂移等)和外部因素(环境变化,如温度、大气压力、折射率等的变化)都会对测量结果产生影响。 ②目前高精度的激光干涉仪大多为双频激光干涉仪,产生双频激光的方法主要是利用塞曼效应(Zeeman Effect)和声光调制器(Acousto-Optical Modulators,AOM)。塞曼效应受频差闭锁现象影响,产生的双频频差一般较小,通常最大频差不超过4MHz。声光调制方法得到的频差通常较大,一些产品双频激光频差达到20MHz以上。双频激光干涉仪是应用直接测量两个信号的相位差来决定位移的。这种位移(亦即光程差)信息载于两种频率光束干涉后产生的拍频信号上;因此,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可直接用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直线度测量、平面度测量和小角度测量。 本实验运用的是基于声光调制器的双频外差激光干涉仪。见图1。氦氖激光器输出的激光光束通过分光镜BS1分成两束,分别经过声光移频器产生频率为f1和f2的光束(原理参考背景知识)。两束光再分别通过分光镜BS2和BS4各自分成两束,频率f1和f2的光束经过分光镜反射后产生干涉,形成参考光束,并通过光电探测器PD1接收干涉信号。另外,透过BS2和BS4的f1

大影响激光干涉仪测量精度的因素完整版

大影响激光干涉仪测量 精度的因素 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

6大激光干涉仪影响因素,提高数控机床检测准确度全靠它了! 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 角度、偏置距离引起的误差表(单位:um) 上表可得:角度1″在500mm偏置距离下引起的误差大约是2.40um。 来个实际案例:以检测机床时不同安装高度为具体说明。

线性镜组安装距工作台10cm: 线性镜组安装距工作台30cm 线性镜组安装距工作台50cm 实验结果:按GB/T17421.2《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。 正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edlen公式计算空气折射率,以此对激光波长进行补偿。

激光干涉仪测量三坐标示值误差方法步骤

激光干涉仪测量三坐标示值误差方法步骤 仪器的校准是产品控制的重要一环。随着三坐标测量机的不断发展,传统的校准方法已经无法满足一些大型三坐标测量机的校准工作。JJF1064-2010《坐标测量机校准规范》是我国各计量技术机构及校准实验室对三坐标测量机进行校准的唯一技术依据。JJF 1064-2010中规定,在实物标准器无法满足测量要求时,可使用激光干涉仪进行位置示值误差测量,并且测量可以只在使用尺寸实物标准器不能满足要求的轴向进行。关于尺寸实物标准器的要求中有“在尺寸实物标准器的最大长度无法达到空间对角线的66%时,可以增加测量位置或使用激光干涉仪进行位置示值误差测量”的规定。 激光干涉仪测量三坐标测量机 本文以深圳中图仪器公司的SJ6000激光干涉仪为例,因其具有极高的测量准确度、广泛的用途度,能够实现准确定位、距离测量、重复性测量等任务。激光干涉仪的示值误差直接影响对三坐标测量机示值误差的校准结果,因此要尝试各种不同的校准试验方法,尽量避免或减少由激光干涉仪的激光友生器(以下简称激光器)、XC80环境补偿系统、夹持器组、线性长度测量镜组、重负荷三脚架等引入的测量误差。 1.测量系统的建立 选择工作状态良好、稳定、测量数据准确可靠的三坐标测量机为被测对象,其测量范围为X轴方向0~ 900 mm;Y轴方向0~1600 mm;Z轴方向0~ 800 mm。在稳定的温度、湿度和大气压测量环境中,选用双频激光干涉仪对三坐标测量机进行校准试验。校准试验过程如下:确立试验方法和步骤,建立测量模型(包括如何减小激光干涉仪引入的各项误差),通过线位移法,按照试验流程图1进行校准试验,最后得到测量结果。 校准过程中首先对三坐标测量机X、Y、Z坐标轴上的移动距离进行测量,并将三坐标测量机的示值与激光干涉仪的示值进行比对,得到三坐标测量机的示值误差。因为在三个坐标轴方向上的测量过程类似,而在Y方向的测量范围为0~1 600 mm,是本次试验对象中测量范围最大的一个方向,用标准实物量具无法有效测量Y轴全量程的示值误差,所以Y轴是本次试验中最有效的一个测量轴方位。本次试验仅对Y轴的测量进行详细说明。

激光干涉仪软硬件介绍讲解

激光干涉仪软硬件介绍 本次试验我们使用的仪器为:Renishaw 激光器测量系统。 这个系统由“软件”与“硬件”两个部分组成,所以我们认识他,就是搞清楚各是什么硬件和软件。 看到这个章节时,可定有人会问还有什么硬软件之分的吗?答案是肯定的! 先问大家一个问题:只有躯体的人就是一个正常的人吗?答案是否定的! 一个正常的人不但须要一个实实在在的躯体,还需要由看不见的意识性的东西——思想的存在! 3.1 激光干涉仪是由什么硬件组成 3.1.1 什么是硬件? 硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为“Renishaw 激光干涉仪”的东西(事实上,它是由一些机壳和电路板等物构成)。因为是一些看得见、摸得着的东西,又因为都是“硬”的,所以被人们形象地称为“硬件”。 3.1.2具体硬件名称以及各自的用途是什么? 一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器: (1)ML10 激光器 Renishaw ML10 Gold Standard 激光器

以上四个图案为激光罩在不同的状态下的作用 A)无光束射出 B)缩小横截面光束及目标 C)最答光束及目标 D)标准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard 激光器:

ML10 是一种单频 HeNe 激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。 其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据。 (2)三脚架

三脚架及云台可用来安装 ML10 激光器,将 ML10 激光器设置在不同的高度,并充分控制 ML10 激光束的准直。对于大多数机床校准设置,建议将 ML10 激光器安装在三脚架和云台上。 三脚架、安装云台和 ML10 激光器三合一体,可为 ML10 光束准直提供下列调整:高度调整 水平平移调整 角度偏转偏转调整 角度俯仰调整 其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。 (3)EC10 环境补偿装置

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

大影响激光干涉仪测量精度的因素

大影响激光干涉仪测量 精度的因素精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

6大激光干涉仪影响因素,提高数控机床检测准确度全靠它了! 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 角度、偏置距离引起的误差表(单位:um)

上表可得:角度1″在500mm偏置距离下引起的误差大约是。 来个实际案例:以检测机床时不同安装高度为具体说明。 线性镜组安装距工作台10cm: 线性镜组安装距工作台30cm 线性镜组安装距工作台50cm 实验结果:按GB/《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。

正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edlen公式计算空气折射率,以此对激光波长进行补偿。 1000mm示值因环境温度、压力、空气湿度各自变化引起的示值变化量(单位:um)

双频激光干涉仪测量

双频激光干涉仪测量 激光干涉仪测长原理 典型的激光干涉仪由激光器L、偏振分光镜PBS测量反射镜M参考反射镜R、光电检测器D检偏器P和三个入14波片Q1、Q2和Q3组成。激光为线偏振光,经偏振分光镜分为E1和E2两线偏振光。当两干涉臂中入/4波片快轴(或慢轴)与X轴夹角相等且为45 度时,两束光通过入/4波片后均成为圆偏振光,反射后再次通过入/4波片,又转换为线 偏振光,但其振动方向相对原振动方向旋转了90度,且由于两干涉臂光程产生了相位差 0 ,根据公式: 0 =2 0 = 0 =4n L/ 入 式中:入为激光波长,干涉光路的作用是把位移L转变为合成光振动方向的旋转角 0,进而 转换成光电信号的相位0,信号处理器的作用就是测量出0 ,从而计算出位移L。 垂直度的测量工具在一台机器 施工实例:多轴系统 双频激光干涉仪的工作原理双频激光干涉仪其双频激光测量系统由氦氖双频遥置激光干涉仪和电子实时分解系统所组成。它具有以下优点:稳定性好,抗干扰能力强,可在较快的位移速度下测量较大的距离,使用范围广,使用方便,测量精度高。 基本原理:如图11-2 所示,激光双频干涉仪的氦氖激光管,在外加直流轴向磁场的作用下,产生塞曼效应,将激光分成频率为fl和f2,旋向相反的两圆偏振光,经入/4波 片变为线偏振光。调整入/4玻片的旋转角度,使 fl 和f2 的振动 平面相互垂直,以互垂直, 以作激光干涉 图11-2 双频激光干涉仪的工作原理图 1.激光管 2.入/4波片 3.参考分光镜 4.偏振分光棱境 5.基准锥体棱镜 6.移动测量棱体 7.10.12. 检偏振镜8.9.11. 光电管13. 光电调制器 仪的光源。当两个线偏振光经过参考分光镜3时(见图11-2),大部分则由偏振分光棱境4 分成两束。偏振面垂直入射面的f2 全反射到与分光镜固定在一起的基准锥体棱镜上;

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

激光干涉仪如何测量五轴机床的垂直度误差

激光干涉仪如何测量五轴机床的垂直度误差SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。

SJ6000激光干涉仪典型应用就是数控机床精度测量,本文讲解如何用激光干涉仪测量五轴机床的垂直度误差。 对于三根平移轴而言,其轴间误差即垂直度误差有三个:xy ε、z x ε和yz ε。激光干涉仪测量垂直度误差的根本原理是与直线度测量原理一致。它是通过一个共同的基准来测量两个垂直的轴的直线度从而实现垂直度的测量。这个共同的基准就是直线度反射镜,因此在整个测量过程中,它相对于工作台不可移动,不可调整,如下所示。图中的方块就是光学直角器,它用来保证在测量第一个轴时的激光光束完全垂直于第二个轴测量时的激光光束。

垂直度测量配置主要由SJ6000主机、短直线度镜组(或长直线度镜组)、垂直度镜组(含光学直角尺)、SJ6000静态测量软件等组件构成。 附:SJ6000激光干涉仪垂直度测量精度。 轴向量程测量范围测量精度分辨力 短距离(0.1~3.0)m±3/M±(2.5+0.25%R+0.8M)0.01μm/m 长距离(1.0~15.0)m±3/M±(2.5+2.5%R+0.08M)0.01μm/m 注:R为垂直度结果;M为测量距离,单位:m

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

激光干涉仪讲解

第一章、前言 一、本次我们主要研究:如何检测机床的螺距误差。因此我们主要的任务在于: 1. 应该使用什么仪器进行测量 2. 怎么使用测量仪器 3. 怎么进行数据分析 4. 怎么将测量所得的数据输入对应的数控系统 二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统,此仪器检测的范围包括: 1. 线性测量 2. 角度测量 3. 平面度测量 4. 直线度测量 5. 垂直度测量 6. 平行度测量 线性测量:是激光器最常见的一种测量。激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。 三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。因此,我们此次使用的检测方法——线性测量。 总结以上我们的核心在于:如何操作Renishaw 激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。这样做的目的在于——提高机床的精度。 - 1 - 第二章、 2.1 什么是螺距误差? 基础知识 开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知: 螺距误差是指由螺距累积误差引起的常值系统性定位误差。 2.2 为什么要检测螺距误差? 根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。 2.3 怎么检测螺距误差? (1)安装高精度位移检测装置。 (2)编制简单的程序,在整个行程中顺序定位于一些位置点上。所选点的数目及距离则受数控系统的限制。 (3)记录运动到这些点的实际精确位置。 (4)将各点处的误差标出,形成不同指令位置处的误差表。(5)多次测量,取平均值。 (6)将该表输入数控系统,数控系统将按此表进行补偿。 2.4 什么是增量型误差、绝对型误差? ①增量型误差 增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差 绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么? 螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将

迈克尔逊干涉仪的原理与应用

迈克尔逊干涉仪的原理与应用 在大学物理实验中,使用的是传统迈克尔逊干涉仪,其常见的实验内容是:观察等倾干涉条纹,观察等厚干涉条纹,测量激光或钠光的波长,测量钠光的双线波长差,测量玻璃的厚度或折射率等。 由于迈克尔逊干涉仪的调节具有一定的难度,人工计数又比较枯燥,所以为了激发学生的实验兴趣,增加学生的科学知识,开阔其思路,建议在课时允许的条件下,向学生多介绍一些迈克尔逊干涉仪的应用知识。这也是绝大多数学生的要求。下面就向大家介绍一些利用迈克尔逊干涉仪及其原理进行的测量。 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量[11-14];采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度. 纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的He-Ne激光波长作为测量基准,采用干涉条纹计数,用静态光电显微镜作为环规端面瞄准装置,对环

规进行非接触、绝对测量,配以高精度的数字细分电路,使仪器分辨力达到5nm;静态光电显微镜作为传统的瞄准定位技术在该装置中得以充分利用,使其瞄准不确定度达到30nm;精密定位技术在该装置中也得到了很好的应用,利用压电陶瓷微小变动原理,配以高精度的控制系统,使其驱动步距达到5nm。 测振结构的设计原理用半导体激光器干涉仪对微振动进行测量时,用一弹性体与被测量(力或加速度)相互作用,使之产生微位移。将这一变化引到动镜上来,就可以在屏上得到变化的干涉条纹,对等倾干涉来讲,也就是不断产生的条纹或不断消失的条纹。由光敏元件将条纹变化转变为光电流的变化,经过电路处理可得到微振动的振幅和频率。 压电材料的逆压电效应研究:压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。 2. 角度测量[15-16]:刘雯等人依照正弦原理改型设计了迈克尔逊干涉仪,可以完成小角度测量。仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。

浅析引起激光干涉仪测量误差的部分原因

浅析引起激光干涉仪测量误差的部分原因 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、 扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 上表可得:角度1″在500mm 偏置距离下引起的误差大约是2.40um 。 来个实际案例:以检测机床时不同安装高度为具体说明。 线性镜组安装距工作台10cm :

线性镜组安装距工作台30cm

线性镜组安装距工作台50cm

实验结果:按GB/T17421.2《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。 正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edl en公式计算空气折射率,以此对激光波长进行补偿。 1000mm示值因环境温度、压力、空气湿度各自变化引起的示值变化量(单位:um)

单频-双频激光干涉仪

激光干涉仪 - 单频与双频激光干涉仪比较 单频的激光器它的一个根本弱点就是受环境影响严重,在测试环境恶劣,测量距离较长时,这一缺点十分突出。其原因在于它是一种直流测量系统,必然具有直流光平和电平零漂的弊端。激光干涉仪可动反光镜移动时,光电接收器会输出信号,如果信号超过了计数器的触发电平则就会被记录下来,而如果激光束强度发生变化,就有可能使光电信号低于计数器的触发电平而使计数器停止计数,使激光器强度或干涉信号强度变化的主要原因是空气湍流,机床油雾,切削屑对光束的影响,结果光束发生偏移或波面扭曲。这种无规则的变化较难通过触发电平的自动调整来补偿,因而限制了单频干涉仪的应用范围,只有设法用交流测量系统代替直流测量系统才能从根本上克服单频激光干涉仪的这一弱点。 而双频激光干涉仪正好克服了这一弱点,它是在单频激光干涉仪的基础上发展的一种外差式干涉仪。和单频激光干涉仪一样,双频激光干涉仪也是一种以波长作为标准对被测长度进行度量的仪器,所不同者,一方面是当可动棱镜不动时,前者的干涉信号是介于最亮和最暗之间的某个直流光平,而后者的干涉信号是一个频率约为1.5MHz的交流信号;另一方面,当可动棱镜移动时,前者的干涉信号是在最亮和最暗之间缓慢变化的信号,而后者的干涉信号是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。因而对于双频激光干涉仪来说,可用放大倍数较大的交流放大器对干涉信号进行放大,这样,即使光强衰减90%,依然可以得到合适的电信号。由于这一特点,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。总之,双频激光干涉仪的优越性主要有以下几点: 1. 精度高双频激光干涉仪以波长作为标准对被测长度进行度量的仪器。即使不做细分也可达到μm 量级,细分后更可达到n m量级。(安捷伦5530激光干涉仪线性精度能达到0.4PPM) 2. 应用范围广双频激光干涉仪除了可用于长度的精密测量外,测量角度、直线度、平面度、振动距离及速度等等,还可以分光进行多路测量。 3. 环境适应力强即使光强衰减90%,仍然可以得到有效的干涉信号。由于这一特点,双频激光干涉仪既可在恒温、恒湿、防震的计量室内检定量块、量杆、刻尺、微分校准器和坐标测量机,也可以在普通的车间内为大型的机床的刻度进行标定。

干涉仪原理与使用

第一章:为何使用干涉仪做检测 1- 1干涉度量学 第一章 为什么要使用干涉仪检测首先我们要先了解, 什么是干涉度量学? 所谓干涉度量学是指 利用光干涉的效应来量测特定物理量的方法 ,也就是说藉由观察干涉条纹的变化 ,来量测岀待 测物的特征 1- 2何谓干涉仪 干涉仪是什么? 一般来说,只要是利用光干涉的原理来量测的仪器便可以称为干涉仪 ,但是干 利用光干涉原理量測之儀器便屬於干曲儀。 % *, Q ? T 部應腔■测之H 僮■於干涉■ 涉仪的种类众多且多变化,因此本课程中将针对最为外界常用之种类作介绍 ■f I? 卫莘技痢研究陕. 干渉堪调

1- 3干涉仪之优缺点 干涉仪的优点及缺点 第一高精度 以光学组件来说,因为组件的微小变化均会严重改变原有的光学质量, 因此必须要有非常精确的 量测仪器,干涉仪具有精度非常高的优点 ,最高可达1/100的波长甚至到1/1000的波长,波长 是指干涉仪中使用光源的波长值 .举例来说:一般干涉仪的波长为 632.8( nm ),而632.8的百分 之一约为6个(nm),目前的奈米科技是在这个尺度,甚至有些更好的干涉仪可以到 0.6个(nm ), 从此可以看出干涉仪的精度有多好了 j_ -U D n UID 卜一 干涉 兽■!&酥 TUtt !M 千那■利用光 辛 嗤左境當钊之确邕槌?FW *强傑 利用光干涉原理量剧之儀器便凰於干涉儀。

第二章:非球面玻璃模造的原理 第二.非接触式量测 另一种量测用的轮廓仪是使用接触式的量测方式,即使目前已可以微调接触的力量,但对于表 面较脆弱的被量测物是否真的完全不会造成损害则仍无法确定.而当用干涉仪量测时,是把光照 射到被量测的物体上,所以干涉仪上的探针也就是光,并不会对物体表面照成任何伤害 第三使用探针来量测时无法一次量测所有的面积,而可能必需分很多扫瞄线去量测,相对来说干涉仪的量测速度就非常快了,可能几秒钟就量完了,而不需要等待几个小时的时间. 第四则是干涉仪的缺点,一个操作员在会使用干涉仪却不太清楚干涉仪的使用限制、条件及原 理的时候,可能会量测到不是他所要的东西,而且,因为干涉仪是用光线量测,在调整上也会

激光干涉仪测量步骤

激光干涉仪线性测量步骤 一、做以下准备: (1)将云台所有旋钮(仰俯、摆动、平移)调至中间位置; (2)将三角架支座脚调至中间位置; (3)带5m长接线板; (4)带百分表、磁力表座、直角尺; (5)带两块水平仪,看机床工作台安装水平; (6)电脑提前开机,并打开测量软件; (7)补偿装置带进场之前提前接好; (8)两个人调光路的同时,一个人输入测量程序。 二、光路调整 1. 将激光头置于三角架上,放在机床的右侧。接电源线预热5分钟左右(激光头指示灯,红灯常亮或闪烁 绿灯常亮),预热时将激光头与电脑之间相连的数据线连接上,之后调节三角架的高低,并用水平仪将激光头调水平。 技巧:(1)大调调三角架支架腿,微调调脚架支座脚。 2)目测激光头相对于反光镜的高低,此时调整可用三角架中间升降摇把。 2. 将反射镜固定在工作台左侧。 注:(1)提前综合布局干涉镜、反光镜与激光头的位置,使它们上下左右对齐,并且反射镜尽量靠近干涉镜。反射镜红点朝下安装。 (2)反射镜架设应满足全行程(例如:450mm)要求,并且不能和干涉镜相撞。 (3)将激光头尽可能接近工作台右侧行程限位。 技巧:(1)用直角尺将反射镜磁力表座与工作台T型槽调平行; 2)用百分表将反射镜磁力表座与工作台T型槽拉平行。 3. 调整反光镜和激光头之间的光路。 (1)旋转激光器的光靶,白点朝下,使激光器发出较小的光束; (2)将机床工作台移动到激光器最近处,将一个光靶置于前端,白点朝上;(3)搬动激光头三角架,并调节三角架中间升降摇把,使激光束打到反射镜光靶白点中心; (4)移动机床X轴,使其逐渐远离激光头,观察反射镜光靶白点上的激光束,看其是否偏移出中心位置,一旦偏移出白点,则暂停机床,调整激光头云台上的水平摆动旋钮(左后侧小旋钮),使光束移动到以光靶白点为中心的水平对称位置,再调整激光头云台上的平移旋钮(左前侧大旋钮),使光束移动到光靶白点中轴线位置,然后调整三角架中间升降摇把,使光束移动到光靶白点中心位置。(5)接着移动机床X轴,到最远处,观察反射镜光靶白点上的激光束,若未在中心位置,则按步骤(4)继续调整,若已在中心位置,则执行步骤(6);(6)移动机床X轴,使其逐渐接近激光头,观察反射镜光靶白点上的激光束,若未在中心位置,则按步骤(4)、(5)继续调整,若已在中心位置,则反光镜和激光头之间的光路已调好。(反射镜光靶不摘。) 4. 架设干涉镜(分光镜、反射镜组),吸附在主轴箱箱体右侧。注意分光镜上的光路出射、入射方向,并且使分光镜上红点朝下。 5. 将光靶放至干涉镜进光口,白点朝上。调整干涉镜上下左右位置,使光束打在光靶中心。摘下干涉镜光靶,观察反射光束是否射在激光头光靶白点处,如果

相关主题
文本预览
相关文档 最新文档