当前位置:文档之家› 基于BF531的数字存储示波器BootLoader设计

基于BF531的数字存储示波器BootLoader设计

数字示波器的设计

计算机工程应用技术本栏目责任编辑:贾薇薇 数字示波器的设计 刘岩 (天津工业大学信息与通信工程学院,天津300160) 摘要:数字示波器是现代电子测量中最常角的仪器,它是一种可以用来观察、测量、记录各种瞬时电压,并以波形方式显示其与时间关系的电子仪器。本文中详细介绍了数字存储示波器的原理及特点,给出了一种以单片机和可编程逻辑器件为控制核心的设计方案,同时给出了其硬件和软件设计的结构及思路。 关键词:数字示波器;模块化;FPGA 中图分类号:TM935文献标识码:A文章编号:1009-3044(2008)20-30375-02 TheDesignofDigitalOscilloscope LIUYan (TianjinIndustryUniversity,InformationandCommunicationEngineeringInstitute,Tianjin300160,China) Abstract:Themodernelectronicdigitaloscilloscopeisthemostcommonlymeasuredangleoftheapparatus,whichisacanbeusedtoob-serve,measureandrecordallkindsoftransientvoltageandwavetoshowtheirrelationshipwiththetimetheelectronicdevice.Thisarticledescribedthedigitalstorageoscilloscopeindetailandtheprinciplefeaturesofthispaper,amicrocontrollerandaprogrammablelogicdevicetocontrolthecoreofthedesignplan,andgaveitshardwareandsoftwaredesignofthestructureandideas. Keywords:Digitaloscilloscopes;modular;FPGA 1引言 数字示波器是智能化数字存储示波器的简称,是模拟示波器技术、数字化测量技术、计算机技术的综合产物。它能够长期存储波形,可进行负延时触发,便于观侧单次过程和缓变信号,具有多种显示方式和多种输出方式,同时还可以进行数学计算和数据处理,功能扩展也十分方便,比普通模拟示波器具有更强大的功能,因此在电子电信类实验室中使用越来越广泛。 2数字示波器的工作原理 数字存储示波器不是将波形存储在示波管内的存储栅网上,而是存在存储器中,因而存储时间可以无限长。数字存储示波器主要利用A/D转换技术和数字存储技术来工作,它能迅速捕捉瞬变信号并长期保存。该示波器首先对模拟信号进行高速采样以获得相应的数字数据并存储,存储器中储存的数据用来在示波器的屏幕上重建信号波形;然后利用数字信号处理技术对采样得到的数字信号进行相关处理与运算,从而获得所需要的各种信号参数;最后,该示波器根据得到的信号参数绘制信号波形,并对被测信号进行实时、瞬态分析,以方便用户了解信号质量,快速准确地进行故障诊断。数字存储示波器将输入模拟信号经过AD/转换,变成数字信号,储存在半导体存储器RAM中,需要时将RAM中存储的内容读出显示在LCD,或通过DA/转换,将数字信号变换成模拟波形显示在示波管上。数字存储示波器框图如图l所示。数字存储示波器可以采用实时采样,每隔一个采样周期采样一次,可以观察非周期信号川。数字示波器的采样方式包括实时采样和等效采样(非实时采样)。等效采样又可以分为随机采样和顺序采样,等效采样方式大多用于测量周期信号。数字示波器工作原理框架如图1。 图1数字存储示波器的基本原理方框图 3数字示波器的主要特点 与传统的模拟示波器相比,数字存储示波器有其非常突出的特点,其具体表现如下:(1)信号采样速率大大提高数字存储示波器首先在采样速率上有较大地提高。可从最初采样速率等于两倍带宽提高至五倍甚至十倍。相应对正弦波取样引入的失真也从10%降低至3%甚至1%。(2)显示更新速率更高数字存储示波器的显示更新速率最高可达每秒40万个波形,因而在观察偶发信号和捕捉毛刺脉冲方面更加方便。(3)波形的采样、存储与显示可以分离在存储阶段,数字示波器可对快速信号采用较高的速率进行采样与存储,而对慢速信号则采用较低速率进行采样与存储;在显示阶段,不同频率的信号读出速度可以采用一个固定的速率并可以无闪烁地观测极慢信号与单次信号,这是模拟示波器所无能为力的。(4)存储时间长由于数字存储示波器是把模拟信号用数字方式存储起来,因此,其存储时间理论上可以无限长。(5)显示方式灵活多样为适应对不同波形的观测,数字存储示波器有滚动显示、刷新显示、 收稿日期:2008-04-22

计算机程序设计数字示波器程序的设计

长安大学电子与控制工程学院 《计算机程序设计综合实验》 综合实验指导书 数字示波器程序的设计 1. 实验目的与要求 通过该实验,使学生掌握面向对象程序设计的基本理论以及视窗程序的基本设计方法,其中包括需求分析、总体设计、详细设计、代码编写及调试等设计环节。要求学生掌握示波器的功能和操作方法,熟练应用时钟、图形绘制功能、文件的读写以及文件内容的检索方法,达到既定的设计效果。 2. 开发环境及先修课程要求 操作系统:Windows7操作系统(或更高版本) 集成开发环境:Visual Studio 2010+MSDN(或更高版本) 先修课程:C/C++程序设计、面向对象程序设计、数据结构与算法 3. Windows编程基础 用Visual C++ 编写Windows应用程序主要有两种方法:(1)使用Windows 提供的应用程序接口(Application Programming Interface,API)函数;(2)使用Microsoft提供的微软基础类(Microsoft Foundation Class,MFC)。在直接使用API函数进行Windows编程时,程序员不仅需要熟记一大堆常用的API函数,而且还要对Windows操作系统有深入的了解,需要编写大量的代码,不适合软件开发的发展潮流,而MFC类库采用面向对象的思想将Windsows应用程序中的API函数做了封装,而且灵活性高,便于程序员的使用。虽然Windows程序设计还有其他的集成开发环境可以使用,但是考虑到前期的教学内容,本实验要求学生采用基于MFC的方法来实现。 MFC大约有200多个类,可以分成两种: (1)Cobject类的派生类。它们以层次结构的形式组织起来,几乎每个子层次结构都与一个具体的Windows实体对应; (2)非Cobject派生类。这些都是独立的类,如表示点的Cpoint类,表示矩形的Crect类等。 在Visual C++中,可以创建以下3类典型的Windows应用程序,且都是通过MFC AppWizard(以下简称AppWizard)向导创建的:

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

简易数字示波器设计_本科论文

摘要 本科毕业设计论文 题目简易数字示波器设计 I

西安交通大学城市学院本科生毕业设计(论文) 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 III

STM32的数字示波器设计

STM32的数字示波器设计 示波器的设计分为硬件设计和软件设计两部分。示波器的控制核心采用ARM9,由于STM32芯片里有自带的AD,采样速率最高为500KSPS,分辨率为10位,供电电压为3.3V,基本上能满足本设计要求,显示部分用3.2寸TFTLCD(分辨率:320*240)模块。软件部分采用C语言进行设计,设计环境为Keil。 硬件总体结构 该设计采用模块化的设计方法,根据系统功能把整个系统分成不同的具有特定功能的模块,硬件整体框图如下图所示。 该示波器由4部分电路构成,分别是: (1)输入程控放大衰减电路; (2)极性转换电路; (3)AD转换电路; (4)显示控制电路; (5)按键控制电路; 整体设计思路是:信号从探头输入,进入程控放大衰减电路进行放大衰减,程控放大器对电压大的信号进行衰减,对电压小信号进行放大以符合AD的测量范围,经过处理后信号进入极性转换电路进行

电平调整成0—3.3V电压,因为被测信号可能是交流信号,而AD只能测量正极性电信号,经调整后送入AD转换电器对信号进行采样,采样所得数据送入LCD显示,这样实现了波形的显示。按键控制可以通过不同的按键来控制波形的放大和缩小,同时也可以改变采样间隔,以测量更大频率范围的信号。 STM32处理器介绍 STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。按性能分成两个不同的系列:STM32F103“增强型”系列和STM32F101“基本型”系列。增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。两个系列都内置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品。 本设计所用的STM32F103VCT6集成的片上功能如下: (1) 1.2v内核供电,1.8V/2.5V/3.3/V存储器供电,3.3V外部I/O供电 (2)外部存储控制器 (3)(3) LCD 控制器 (4) 4通道DNA并有外部请求引脚 (5) 3通道UART (6) 2通道SPI

数字存储示波器毕业论文

摘要 数字存储示波器是随着数字电路的发展而发展起来的一种具有存储功能的新型示波器。原先人们看好的模拟示波器的一些优点,目前数字示波器已完全能够做到,特别是在捕获非重复信号、避免信号的虚化和闪烁、在时间上从触发事件反问寻迹——实现在电路中隔离故障等方面,数字示波器显示出了模拟示波器无可比拟的优势。因此,数字示波器由于其优势的性能、良好的性能价格化,刚一问世,就显示出它强大的生命力,各行各业均迫切需要,有其广阔的发展前途。 本简易数字存储示波器,以单片机为控制核心,由通道调理、触发、波形显示等功能模块组成。本系统对触发系统、水平扫描速度和垂直灵敏度的自动设置功能(AUTOSET)及波形参数测量等功能进行了重点设计。设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。 关键词:存储器,转换器,数字存储示波器,单片机

ABSTRACT It is that one developed with development of the digital circuit is new-type oscillograph which stores the function that the figure stores the oscillograph . Original ancestors see some advantages of the good simulation oscillograph , the digital oscillograph can already be accomplished at present, catching and is not repeating the signal, avoiding melting and glimmers specially emptily, reply the mark of seeking from the incident of touching off on time of the signal --Realizing it in isolating the trouble in the circuit etc., the digital oscillograph demonstrates the incomparable advantage of the simulation oscillograph . So digital oscillograph because performance , good performance price of advantage their, just coming out , demonstrated its strong vitality, all trades and professions needed urgently , there is its wide development prospect. . T his simple and easy figure stores the oscillograph, regard one-chip computer as the core of controlling, nursed one's health, touched off by the pass-way, the wave form shows, etc. the function module makes up . Such functions as automatic establishment function (AUTOSET ) and wave form parameter that this system scanned the speed and vertical sensitivity in touching off system , level are measured have been designed especially. Have adopt the module design method in the design, has used many kinds of EDA tools, have improved design efficiency. The whole of functions of designing and realizing storing the oscillograph require , reach the higher performance index Keyword: the memory , the converter, the figure stores the oscillograph , Micro Computer Unite

数字示波器的简单使用

预备实验:数字示波器使用方法(简介) 内容提示:1、数字示波器功能简介 2、示波器面板照 3、示波器各按钮操作功能 4、示波显示状态的含义 5、常用功能按钮的操作 6、垂直控制按钮的操作 7、水平控制按钮的操作显示 8、触发电平控制按钮的操作 9、操作注意事项 10、显示、测量直流信号 11、显示、测量交流信号 一、数字示波器功能简介 数字示波器是一种小巧,轻型、便携式的可用来进行以接地电平为参考点测量的数字式实时示波器。它的屏幕既能显示被测信号的波形,还能显示被测信号的电压幅度、周期、频率等有关电参数。 ADS1000CA特点: ●全新的超薄外观设计、体积小巧、携带更方便 ●彩色TFT LCD 显示,波形显示更清晰、稳定 ●双通道,带宽: 25MHZ-100MHZ ●实时采样率:1GSa/s ●存储深度:2Mpts ●丰富的触发功能:边沿、脉冲、视频、斜率、交替、延迟 ●独特的数字滤波与波形录制功能 ●Pass/Fail 功能 ●32 种自动测量功能 ●2 组参考波形、20 组普通波形、20 组设置内部存储/调出;支持波形、设置、CSV 和位图文件U 盘外部存储及调出 ●手动、追踪、自动光标测量功能 ●通道波形与FFT 波形同时分屏显示功能 ●模拟通道的波形亮度及屏幕网格亮度可调 ●弹出式菜单显示模式,用户操作更灵活、自然 ●丰富的界面显示风格:经典、现代、传统、简洁 ●多种语言界面显示,中英文在线帮助系统 ●标准配置接口:USB Host:支持U 盘存储并能通过U 盘进行系统软件升级; USB Device:支持PictBridge 直接打印及与PC 连接远程控制;RS-232

虚拟数字示波器的设计和实现

一、绪论 1.1 虚拟示波器背景 示波器是电子测量行业最常用的测量仪器之一,主要用来测量并显示被测信号的参数和波形,在科学研究、科学实验以及现场监测等许多领域被广泛应用。随着科学研究的不断深入和各种高新技术的不断发展,传统示波器的诸如波形不稳定、测读不准确等许多缺陷逐渐显露出来,而且体积大,耗电多,越来越不能满足现代应用的需要。 “虚拟仪器”这一新概念测量仪器的诞生,使示波器突破了传统,在功能和作用等多方面发生了根本性变化。虚拟仪器将计算机和测量系统融合于一体,用计算机软件代替传统仪器的某些硬件的功能,用计算机的显示器代替传统仪器物理面板。 虚拟示波器是虚拟仪器的一种,它不仅可以实现传统示波器的功能,具有存储、再现、分析、处理波形等特点,而且体积小,耗电少。虚拟示波器使用功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同的方式(如数据、图形、图表等)表示测量结果,完成各种规模的测量任务。鉴于虚拟示波器的种种优点及广泛用途,研究出性能优越、价格低廉的虚拟示波器是十分重要的。 1.2 性能指标 本示波器与常见的示波器比较,最大的特点是可以定量地给出信号的各种参量,比如最大、最小值和频率等,无需使用者再去数格子,然后还要计算。特别适合于学校教学实验的需求,在学校教学中可以直联投影机,使全体学生都可以远距离看到信号波形的演示。 本示波器采样USB接口,其频率比并口示波器略高,同样支持直流测量,可以定量测量信号,主要技术指标如下: 采样频率:共八挡可调:323.53kHz、100kHz、50kHz、20kHz、10kHz、5kHz、2kHz、1kHz。本机测量的信号频率应在70kHz以下。 最高输入电压:共两挡可选:±2.5V,±12.5V,如果接入10:1示波器探棒,最大输入电压可达±125V。 输入阻抗:1MΩ。 供电电压:无需外部供电,直接从PC机的USB口取电。 接口:USB接口。 二、硬件设计 具体电路原理图见附录一,从图中可以看出电路的输入信号调理部分和信号转换部分与常见的并口示波器相同,R10、R11、R12、R13、R14、C19、C20和C21构成输入交直流切换和衰减网络,提供交直流输入切换和1:1、1:5的输入信号切换功能;TL074中的一个运放U 1 A和其周边元件构成一个跟随放大器,提供了输入保护和阻抗转换功能;TL074中的另一个运放U1B

基于STM32的简易数字示波器

山东科技大学 课程设计报告 设计题目:基于STM32的简易数字示波器 专业: 班级学号: 学生姓名: 指导教师: 设计时间: 小组成员:

基于STM32的数字示波器设计 -----------硬件方面设计 摘要 本设计是基于ARM(Advance RISC Machine)以ARM9[2]为控制核心数字示波器的设计。包括前级电路处理,AD转换,波形处理,LCD显示灯模块。前级电路处理包括程控放大衰减器,极性转换电路,过零比较器组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。充分使用了Proteus Multisim仿真工具,大大提高了设计效率,可测量输入频率范围为1HZ—50KHZ 的波形,测量幅度范围为-3.3V—+3.3V,并实现波形的放大和缩小,实时显示输入信号波形,同时测量波形输入信号的频率。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本。 关键词:AD ,ARM,实时采样,数字示波器

目录 前言---------------------------------------------------------------------------------3第一章绪论--------------------------------------------------------------------4 1.1课题背景---------------------------------------------------------------------4 1.2课题研究目的及意义----------------------------------------------------4 1.3课题主要的研究内容----------------------------------------------------5 第二章系统的整体设计方案--------------------------------------------6 2.1硬件总体结构思路--------------------------------------------------------6 第三章硬件结构设计------------------------------------------------------------7 3.1程控放大模块设计-------------------------------------------------------7 3.1.1程控放大电路的作用-------------------------------------------7 3.1.2程控放大电路所用芯片---------------------------------------7 3.1.3AD603放大电路及原理----------------------------------------8 3.2极性转换电路设计------------------------------------------------------10 3.3 AD转换电路及LED显示电路等(由组内其他同学完成) 第四章软件设计(由组内其他同学完成) 第五章性能能测试与分析--------------------------------------------------15 第六章设计结论及感悟-----------------------------------------------17参考文献----------------------------------------------------------------------18

基于STM32的数字示波器设计

山东科技大学电子技术综合实践报告 设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 1001050903 学生姓名: 指导教师: 设计时间:2013.6.18 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率范围为1HZ—50KHZ的波形,测量幅度范围为-3.3V—+3.3V,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 (1) 第1章绪论 (2) 1.1课题背景 (2) 1.2课题研究的目的和意义 (2) 1.3课题的主要研究工作 (3) 第2章系统整体设计方案 (3) 2.1硬件总体结构 (3) 2.2系统实现的原理介绍 (4) 2.2.1 STM32处理器介绍 (4) 2.2.2 LCD显示介绍 (5) 2.3软件整体设计 (6) 2.4数字手持示波器技术参数 (6) 第3章软件编程与调试 (7) 3.1软件设计总体框图 (7) 3.2键盘控制程序 (7) 3.3峰峰值测量程序设计 (8) 3.4LCD显示程序设计 (9) 第四章性能测试与分析 (11) 第五章总结 (13) 第六章参考文献 (14)

简易数字存储示波器

简易数字存储示波器 06204526 程杰

图片预览

一、任务分析 制作一个简易数字存储示波器,其结构框图如下图所示 二、方案论证与比较 1.波形采集模块 波形采集模块采用AD 转换芯片将模拟波形信号转换为数字信号发送给单片机,有如下几种方案: 方案1 采用片外并行AD 芯片,如ADC0809。 优点:使用广泛,参考资料很多。 缺点:并行接口占用单片机口线较多,接线复杂。 方案2 采用单片机内置AD 转换功能,如A VR 、C8051等单片机内置的ADC 优点:集成在单片机内部,不需要额外连线,方便易行。 缺点:片内集成的ADC 速度较低,无法采集频率高的信号,没有独立多路AD , 多通道AD 会降低采样速度。 方案3 采用片外串行高速ADC 芯片如maxim 公司的高速ADC 串行芯片,外加 FPGA 控制采样。 优点:速度块,占用单片机口线少,可以很容易实现MHz 级别的波形采样 缺点:价格昂贵,资料较少。

综合考虑价格和易行性,本系统采用方案2,采用A VR mega64芯片中的内置ADC。2.微处理控制模块 微处理控制模块采用单片机来完整,经济可行: 方案1 采用经典80C51系列单片机 优点:使用广泛,资料丰富 缺点:功能较少,性能较弱 方案2 采用atmel公司的高档8位单片机A VRmega64 优点:高性能,价格相对较低,内置ADC 缺点:上市时间较短,资料少 方案3 采用atmel公司的高档8位单片机A VRmega64控制显示部分,外加一片FPGA控制采样 优点:FPGA采样速度快,单片机控制显示方便,取长补短 缺点:系统较为复杂 由于本人对A VR单片机使用较为熟悉,所以本系统采用方案2,即A VRmega64来完成,其基本性能指标如下: ·先进RISC结构,性能达到1MHz有1MIPS ·64KB Flash程序存储空间 ·4KB SRAM 、4KB EEPROM ·内置I2C、SPI、PWM、ADC等功能 ·支持在线编程ISP功能 3.存储模块 存储模块采用SRAM来存储波形采集模块所采集到的波形,有如下三种方案: 方案1 采用外置一片62256和74HC573作为锁存器,扩展单片机的存储空间优点:外扩空间容量很大 缺点:接线复杂,出现错误不容易排查 方案2 采用A VR 单片机内置4KB RAM,划分出约2KB空姐供存储波形数据,也可以存储数十页的数据。 优点:无须接线,体现了高档单片机RAM大的优势 缺点:空间较少,需要大量存储时仍然不够 方案3 利用FPGA内部的SRAM

数字示波器使用方法总结

数字示波器使用小方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU→Type(main)→Edge(pop-up)→Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU键,再按显示屏下方的T ype键,重复按这个钮直到Edge高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC键。 注:main代表显示屏下方的键,Side代表显示屏右方的键,pop-up代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (1) 二.使用探头 (2) 三.触发方式 (11) 四.测试方法 (15) 五.小常识、小经验 (23)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线)说明为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端说明交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。 尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头。 说明避免对示波器和探头造成损伤,尤其是有源探头。厂家说明。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏说明信号幅度超过±40V时,用有源探头P6245和P6243测量会造成探头的损坏。不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: 图3.数字存储示波器的基本原理框图 数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成离散的数字序列,然后进行恢复重建波形,从而达到测量波形的目的。 输入缓冲器放大器(AMP)将输入的信号作缓冲变换,起到将被测体与示波器隔离的作用,示波器工作状态的变换不会影响输入信号,同时将信号的幅值切换至适当的电平范围(示波器可以处理的范围),也就是说不同幅值的信号在通过输入缓冲放大器后都会转变成相同电压范围内的信号。 A/D单元的作用是将连续的模拟信号转变为离散的数字序列,然后按照数字序列的先后顺序重建波形。所以A/D单元起到一个采样的作用,它在采样时钟的作用下,将采样脉冲到来时刻的信号幅值的大小转化为数字表示的数值。这个点我们称为采样点。A/D转换器是波形采集的关键部件。 多路选通器(DEMUX)将数据按照顺序排列,即将A/D变换的数据按照其在模拟波形上的先后顺序存入存储器,也就是给数据安排地址,其地址的顺序就是采样点在波形上的顺序,采样点相邻数据之间的时间间隔就是采样间隔。 数据采集存储器(Acquisition Memory)是将采样点存储下来的存储单元,他将

基于STM的数字示波器设计

基于S T M的数字示波器 设计 The Standardization Office was revised on the afternoon of December 13, 2020

山东科技大学电子技术综合实践报告 设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 03 学生姓名: 指导教师: 设计时间: 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率范围为1HZ—50KHZ的波形,测量幅度范围为—+,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 0 第1章绪论 (1) 课题背景 (1) 课题研究的目的和意义 (1) 课题的主要研究工作 (2) 第2章系统整体设计方案 (2) 硬件总体结构 (2) 系统实现的原理介绍 (3) STM32处理器介绍 (3) LCD显示介绍 (4) 软件整体设计 (5) 数字手持示波器技术参数 (5) 第3章软件编程与调试 (6) 软件设计总体框图 (6) 键盘控制程序 (7) 峰峰值测量程序设计 (7) LCD显示程序设计 (8) 第四章性能测试与分析 (8) 第五章总结 (9) 第六章参考文献 (9)

基于DSP的数字示波器GUI开发与软件设计流程

基于DSP的数字示波器GUI开发与软件设计流程 随着嵌入式系统应用领域的不断扩大,系统复杂性也在不断提高。所以在嵌入式系统中实现用户图形化(GUI),已经成为大势所趋。在测量仪器中,图形化界面也是广泛采用,一种是嵌入操作系统,大多数的用户图形化界面(GUI)都是在操作系统(如OS、WinCE、Linix)的支持下,调用系统的各种API函数实现的。这些操作系统为实现GUI提供了大量的库函数,也为编程人员提供了界面设计的良好平台。但是这种嵌入技术,对硬件要求高,相当于嵌入一台计算机,如利用WinCE就可以十分方便的设计出具有Windows风格的图形界面。另一种是,直接利用DSP技术,开发小型系统。这种系统精简,对硬件要求低,但功能相对单一。其用户图形界面(GUI)是在VisualDSP++ 4.0 Kernel 的基础上开发的,界面风格紧紧与仪器的功能相联系。在完成了仪器的波形和菜单等显示的基础上,团队也做了一些通用性的用户图形界面,如文件管理器等。当然,所设计的用户图形界面,在功能强大方面是远不能与WinCE等所比拟的,但是对于仪器的使用者来说,已经是足够的方便——因为这毕竟是仪器的用户图形界面,而不是掌上电脑PDA的用户图形界面。 用户界面实现原理 用户图形界面的实现,需要硬件、软件上的支持。通过操作平台(operation platform)的调配,调用显示程序,显示程序刷新显示缓存,再由显示驱动程序,将显示缓存中的内容显示到液晶屏上。 下面简要的介绍主要的几个组成部分。 GUI图形标准库 要在用户图形界面上显示各种的图形、图案,除了硬件电路的支持外,还需要强大的软件支持。而其中(GUI)的图形标准库为最基础,而不可或缺的。用户图形界面(GUI)的图形标准库包括最基本的画点、画线、画矩形、填充矩形、画圆形、放置bmp格式的图案、显示中、英文等函数,该图形库功能越强大,就越可以支持复杂的用户图形界面(GUI)。GUI的操作平台的支持

GDS-2102型数字存储示波器使用

附录1 GDS-2102型数字存储示波器使用说明 GDS-2102型数字存储示波器是100MHZ的宽带数字示波器,主要用以观察比较波形形状,测量电压、频率、时间、相位和调制信号的某些参数,具有自动测试、存储功能。下面介绍的基本使用方法。 (一)主要技术指标 1.垂直轴(Y轴) 输入灵敏度:2mv/div~5v/div,按1、2、5顺序步进,各档均可微调,其微调增益变化范围大于指示灵敏度值的2.5倍。 精度:校准后,在20℃~30℃下,精度为±3%,在使用“×5MAG”时为±5%。 频率范围:DC耦合时为0~100MHz;AC耦合时为10Hz~100MHz。 上升时间:约3.5ns 输入阻抗:1MΩ±2%,16PF 最大输入电压:300V(直流加交流峰值) 过冲:≤8% 2.水平轴(X轴或时间轴) 扫描时间(即扫描速率范围):1ns/div~10s/div,按1、2、5顺序步进,校准后各档精度为±5%,各档均可微调,其微调范围大于指示值的2.5倍。 3.校正信号:1KHz(20%)、幅值2Vpp(±3%)、占空比最小为48:52的方波信号。 4.电源:47Hz~63Hz,电压有AC100V~240v、正常情况下已设为220V,其它情况需进行设置。 5.最大允许输入电压:直接输入300V(DC+AC峰值1KHz) 使用探头输入400V(DC+AC峰值1KHz) 外触发输入300V(DC+AC峰值1KHz) Z轴输入30V(DC+AC峰值)(二)面板结构 GDS-2102型数字示波器面板结构如图F1.1所示,各按键(旋钮)功能及基本用法说明如下。 125

126 A LCD B F1~F5 Variable D ON/ E Main Trigger Trigger Horizontal Horizontal Time/ K Vertical L CH1~CH2 M Volts/Trigger Input Terminal key Connector ON/OFF key Compensation Output Terminal CH1~CH2 图F1.1 GDS-2102型数字示波器前面板结构 前面板说明 A LCD 显示器 TFT 彩色LCD 显示器具有320×234 的分辨率。 B F1~F5 功能键 一组位于显示器右边相互关连的功能键。 C Variable 旋钮 顺时针旋转此钮为增加数值或移动到下一个参数。 反时针旋转此钮则减少数值或回到前一个参数。 D On/Standby 键 按一次为开机(亮绿灯),再按一次为待机状态(亮红灯)。 E 主要功能键 Acquire 键 为波形撷取模式。 Display 键 为显示模式的设定。 Utility 键 为系统设定。用于Go-No Go 测试, 打印,与Hardcopy 键 并用可作数据传输和校正。 Program 键与Auto test/Stop 键并用可用于程序设定,和播放。 Cursor 键 为水平与垂直设定的光标。 Measure 键 用于自动测试。 Help 键 为操作辅助的说明。 Save/Recall 键 为储存/读取USB 和内部存储器之间的图像,波形和设定储存。 Auto Set 键 为自动搜寻信号和设定。 Run/Stop 键 进行或停止浏览的信号。

基于单片机数字示波器的设计

目录 (一)实训内容 (1) (二)实训目的 (1) (三)数字示波器原理 (1) 1.机型介绍 (1) 1.1.整体介绍 (1) 1.2.功能简介 (1) 2.本机参数介绍 (2) 3.基本原理 (3) 3.1.硬件总体框图 (3) 3.2.耦合方式选择电路 (3) 3.3灵敏度选择电路① (4) 3.4.电压跟随器 (5) 3.5.灵敏度选择电路② (5) 3.6.信号调理电路 (6) 3.7.触发电路 (7) 3.8.档位控制电路 (7) 3.9.去耦合电路 (8) 3.10.电源供电电路 (8) 3.11.单片机接口电路 (9) 4.元器件功能与检测 (10) 4.1.STM32F103Cx单片机 (10) 4.2.TL084运算放大器 (10) 4.3.LM7805三端稳压集成电路 (11) 4.4.LM7905三端稳压集成电路 (11) 4.5.LM11173.3三端稳压集成电路 (11) 5.PCB版 (11) (四)数字示波器的组装 (11) (五)数字示波器的调试 (12) (六)小组分工 (13) (七)实训心得 (13) (八)参考文献 (14) (九)附录 (15)

(一)实训内容 1.利用套件中各种电子元器件/模块组装数字示波器。 2.学习数字示波器原理与系统组成。 (二)实训目的 1.理解数字示波器内部组成结构和工作原理。 2.学习数字示波器的组装、调试、维修以及升级方法。 3.锻炼学生动手与实践能力。 (三)数字示波器原理 1.机型介绍 1.1.整体介绍: DSO138数字示波器采用9V电源供电,以STM32F103Cx单片机为核心处理器,具有将信号数字化后再建波形,记忆、存储被观测信号的功能,还可以用来观测和比较单次过程和非周期现象、低频和慢速信号。采用彩色TFT LCD屏幕,使示波器灵敏度、可视度得到很大的提高,并留有USB端口可供二次升级开发。总体来说DSO138示波器具有体积小、重量轻,便于携带,操作方便,能自动测量波形的频率、周期、峰峰值、有效值、最大值、最小值等特点。 1.2.功能简介: 3个拨动开关:CPL、SEN1、SEN2。其中CPL开关有GND、AC、DC三种耦合

相关主题
文本预览
相关文档 最新文档