当前位置:文档之家› 北航高分子物理课件8第3章-3

北航高分子物理课件8第3章-3

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

《高分子物理》课程习题思考题

《高分子物理》课程习题思考题 (王经武执笔,第六次修订) 第一章高分子链的结构(Ⅰ) 一.解释名词、概念 1.高分子的构型2.全同立构高分子3.间同立构高分子4.等规度5.平均(数均)序列长度 6.高分子的构象7.高分子的柔顺性8.链段9.静态柔顺性10.动态柔顺性11.H pq 二.线型聚异戊二烯可能有哪些构型? 三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构? 四.为什么说柔顺性是高分子材料独具的特性? 五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。六.若聚丙烯的等规度不高,能否用改变构象的方法提高其等规度?为什么? 七.天然橡胶和古塔玻胶在结构上有何不同?画出示性结构式。 八.有些维尼纶的湿强度低、缩水性大,根本原因是什么? 九.高分子最基本的构象有哪些?在不同条件下可能呈现的典型的构象有哪些? 十.链段的组成、大小有什么特点? 第一章高分子链的结构(Ⅱ) 一.解释名词、概念 1.等效自由连接链 2.高斯链 3.高分子末端距分布函数 二.已知两种聚合物都是PE,如何鉴别哪一种是HDPE,哪一种是LDPE?举出三种方法并说明其依据。 三.假设一种线型聚乙烯高分子链的聚合度为2000,键角为109.5o,C-C键长为1.54?,求: (1)若按自由连接链处理,=?(2)若按自由旋转链处理,=?(3)若在无扰条件下的溶液中测得高分子链的=6.76nl2,该高分子链中含有多少个链段?链段 的平均长度是多少?(4)计算/,/,/,并说明三个比值的物理意义。 四.求:(1)聚合度为5×104的线型聚乙烯的均方末端距(作为自由旋转链),用两种方法计算;(2)求这种聚乙烯的最可几末端距;(3)末端距为10 ?、100 ?的几率。五.试分析纤维素的分子链为什么是刚性的。 六.一块交联度比较小的橡皮,是软的还是硬的?为什么? 七.说说你用过、见过的高分子制品,各是用什么高分子材料制成的?

高分子物理第五章习题与解答说课讲解

高分子物理第五章习 题与解答

一.选择题 1.聚乙烯(PE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)三种聚合物的结 晶能力的强弱顺序为() (a)PE>PVC>PVDC (b)PVDC>PE>PVC (c)PE>PVDC>PVC (d)PVDC>PVC>PE 2.退火处理使得聚合物的结晶度() (a)增加(b)减小(c)不变 3.聚丙烯的熔融过程和聚苯乙烯的玻璃化转变过程分别是:()。 A. 都是力学状态转变过程; B. 都是热力学相变过程; C. 前 者是热力学相变过程,后者是力学状态转变过程 4. 聚合物的玻璃化转变温度不能用以下哪个方法测定?() A.差示量热扫描仪; B. 膨胀计; C. 熔融指数仪 5.玻璃态高聚物和结晶高聚物的拉伸情况的区别在于:() A.前者只发生分子链的取向,不发生相变;而后者还包含有结晶的破坏、取 向和再结晶等过程; B.两者都只发生分子链的取向,不发生相变; C.两者都发生结晶的破坏、取向和再结晶等过程 6.结晶高聚物的熔点与其结晶温度的关系是() A. 在越低温度下结晶,熔点越低,而且熔限越窄; B. 在越低温度下结晶,熔点越高,而且熔限越宽; C. 在越高温度下结晶,熔点越高,而且熔限越窄; 7.共聚物的玻璃化转变温度通常是()

A.低; B.高; C.介于两者之间 8.下列聚合物结晶能力从大到小的顺序是:() A.高密度聚乙烯>聚异丁烯>自由基聚合得到的聚苯乙烯 B.自由基聚合得到的聚苯乙烯>聚异丁烯>高密度聚乙烯 C.聚异丁烯>高密度聚乙烯>自由基聚合得到的聚苯乙烯 9.下列聚合物的玻璃化转变温度从高到低的顺序是:() A.聚甲基丙烯酸甲酯>聚丙烯酸丁酯>聚丙烯酸甲酯 B.聚丙烯酸丁酯>聚丙烯酸甲酯>聚甲基丙烯酸甲酯 C.聚甲基丙烯酸甲酯>聚丙烯酸甲酯>聚丙烯酸丁酯 10.聚合物在结晶过程中,体积() A.变大 B.变小 C.不变 11.下列方法中不能测定玻璃化温度的是:() A.体膨胀计B. 差示扫描量热法C. 动态机械分析仪D. X 射线衍射仪 12.下列聚合物中,熔点最高的是() A.尼龙10 B.尼龙11 C.尼龙12 13.下列聚合物中,玻璃化温度最高的是() A.PDMS B.PE C.PS D.PP 14.测定熔点的方法有() A.偏光显微镜 B.DSC C.DMA D.密度法 15.非晶态聚合物的玻璃化转变即玻璃-橡胶转变,下列说法正确的是()。 A、T g是塑料的最低使用温度,又是橡胶的最高使用温度。

(完整版)高分子物理重要知识点

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

北航材料考研经验贴

亲爱的学弟学妹,你们好。我叫**,是你们的大四学长。我今年考取的是北航材料院高分子复合材料系的专业型硕士研究生,初试总分378,政治73 英语68 数学115 专业课122。 作为你们的学长,去年这个时候,也是对未来充满着疑惑和幻想。考研这一路走来,我明白了许多道理,自己也变的更加成熟。今天在这里分享下自己一路考研的心路历程,希望能帮到大家。 希望看到这个贴子的同学都已经下定决心要考研了,我个人不建议做两手准备。我去年这个时候,只是在纠结要考哪所学校,本来是在西工大和南航之间纠结的,个人从来没想过会去报考北航,但是看了**学长的经验贴之后,和学长面谈了好久,学长给我了很多鼓励,从而坚定了我考北航的决心,所以说自信心非常重要。 顺便说一下北航材料的大概情况:北航材料学院有三个方向,金属、高分子复合材料、陶瓷。其中以金属专业最为庞大,每年招收的研究生人数也是最多的,客观的说,考上的可能性也相对大一些。高分子专业小而精,招的人数少而且最近几年异常火爆,往年学术硕士最终实际录取分数都在380+,所以我为了求稳,最终报考了专硕。今年高分子学硕进复试的只有10个人,而专硕有20个人,可能是往年学硕竞争太激烈,大家都没敢报了,明年什么情况就不知道了。陶瓷方向貌似不是他们的强势专业,也是往年报考人数最少的,当然录取分数也是最低。关于学

硕和专硕的区别,大家可以百度一下,北航材料院学硕和专硕是独立招生的,二者不能相互调剂,培养机制都一样,学硕毕业要求发一篇SCI,专硕要求发一篇EI。今年北航材料专硕线325学硕线340。 现在就以时间轴谈一下我的考研全程计划: 4月份:这段时间应该就属于考研前的准备工作了,这段时间就要搜集各种报考学校报考专业的信息,考试科目是什么,用哪本参考书等等,可以多看看网上的经验贴,了解一下大概的考研流程框架。信息越是灵敏,以后复习才能从容不迫。我强烈推荐一个QQ群叫材料人17年考研群,或者搜一下材料人考研、材料人的微信公众号,可以获取超级多的考研信息。后期的各种电子版资料群里都有的,超级全,不能再赞了。 5、6月份:这段时间属于考研的预热阶段吧。买本考研词汇,每天记记单词,在暑假之前把高数课本复习一遍,课后习题一定要认真做的,尤其是微积分的计算题。希望大家前期能抽空多复习一点,因为六月底有各种期末考试,复习也会受到影响。 暑假7、8月份:我认为暑假是考研复习的黄金时期,也是巩固基础的关键阶段(暑假没回家)。英语:我是每天坚持记单词和做两篇阅读,用的书是《考研阅读理解150篇》,其实只有100篇,暑假足可以做完。数学:7月份我用20天把考研数学(二)复习全书高数部分看完并做了同步习题册,10天看线代课本和全书的线代部分。当然如果看不完可以占用八月份一些时间。8

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

2017-2018年北航材料科学与工程911材料综合考研大纲重难点

911材料综合考试大纲(2017年) 《材料综合》满分150分,考试内容包括《物理化学》、《材料现代研究方法》《材料科学基础》三门课程,其中《物理化学》占总分的50%,《材料现代研究方法》占总分的30%,《材料科学基础》占总分的20%。特别注意:《材料科学基础》分为三部分,考生可任选其中一部分作答。 物理化学考试大纲(2017年) 适用专业:材料科学与工程专业 《物理化学》是化学、化工、材料及环境等专业的基础课。它既是专业知识结构中重要的一环,又是后续专业课程的基础。要求考生通过本课程的学习,掌握化学热力学及化学动力学的基本知识;培养学生对化学变化和相变化的平衡规律及变化速率规律等物理化学问题,具有明确的基本概念,熟练的计算能力,同时具有一般科学方法的训练和逻辑思维能力,体会并掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并能结合具体条件应用理论分析解决较为简单的化学热力学及动力学问题。 一、考试内容及要求 以下按化学热力学基础、化学平衡、相平衡、电化学、以及化学动力学五部分列出考试内容及要求。并按深入程度分为了解、理解(或明了)和掌握(或会用)三个层次进行要求。 (一)化学热力学基础 理解平衡状态、状态函数、可逆过程、热力学标准态等基本概念;理解热力学第一、第二、第三定律的表述及数学表达式涵义;明了热、功、内能、焓、熵和Gibss函数,以及标准生成焓、标准燃烧焓、标准摩尔熵和标准摩尔吉布斯函数等概念。 熟练掌握在物质的p、T、V变化,相变化和化学变化过程中求算热、功以及各种热力学状态函数变化值的原理和方法;在将热力学公式应用于特定体系的时候,能应用状态方程(主要是理想气体状态方程)和物性数据(热容、相变热、蒸汽压等)进行计算。 掌握熵增原理和吉布斯函数减小原理判据及其应用;明了热力学公式的适用条件,理解热力学基本方程、对应系数方程。 (二)化学平衡 明了热力学标准平衡常数的定义,会用热力学数据计算标准平衡常数; 理解并掌握Van't Hoff等温方程及等压方程的含义及其应用,能够分析和计算各种因素对化学反应平衡组成的影响(如系统的温度、浓度、压力和惰性气体等)。 (三)相平衡 理解并掌握Clapeyron公式和Clausius-Clapeyron方程,并能进行有关计算。 理解相律的意义;掌握单组分体系和二组分体系典型相图的特点和应用,能用杠杆规则进行相组成计算,会用相律分析相图。 (四)电化学

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

高分子物理题海战术——填空题

1.聚合物在溶液中通常呈无规线团构象,在晶体中呈锯齿或螺旋形构象。 2. 高聚物的静态粘弹性行为表现有蠕变、应力松弛。 3. 高聚物在极高压力下可以得到的晶体类型是伸直链晶体,在偏光显微镜下可以观察到“黑十字”现象的晶体类型是球晶。 4. 高聚物链段开始运动的温度对应的是该高聚物的玻璃化转变温度。 5. 橡胶弹性是熵弹性,弹性模量随温度的升高而增加,在拉伸时放热。 6.相对于脆性断裂,韧性断裂的断裂面较为粗糙,断裂伸长率较长,而且断裂之前存在屈服。 7.写出三种测定聚合物结晶度的测定方法: X射线衍射、量热法和密度法。 8、写出判定聚合物溶解能力的原则中的2个原则:极性相近、溶剂化原则。 9.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量大的部分,是依据体积排除机理机理进行分离的。 10.液晶分子中必须含有长棒状的结构才能够称为液晶,其长径比至少为4 才有可能称为液晶,或者为盘状状,其轴至多为1/4 。 11. 一般情况下,高聚物的结晶温度区域为Tg-Tm,在此区间较高温度下结晶可使高聚物的Tm 较高,熔限较窄,结晶尺寸较大。 12. 膜渗透压法测定的是数均Mn 分子量;凝胶色谱法(GPC)测定可得到Mn,Mw,Mz,Mη ,d=Mw/Mn= Mz/ Mw ,从色谱柱中最先分离出来的是分子量较大的级份。 13. PE、等规PP的溶解过程为先熔融,后溶胀,再溶解,硫化橡胶遇溶剂后只溶胀,不溶解。 14. 动态粘弹性一般用储能模量(E′),损耗模量(E”) ,损耗因子(tanδ)等参数来表征;从分子结构来讲,顺丁橡胶、丁苯橡胶、丁晴橡胶、丁基橡胶四种橡胶中内耗最大的是丁基橡胶(IIR)。 15. 大多数聚合物熔体属假塑性流体,,其n值为<1,表明它们具有剪切变稀特性。 16. 共混高聚物是指两种或以上的高聚物通过物理或化学方法制备的高分子-高分子混合物,其聚集态特征为亚微观非均相,宏观均相。 17. 玻璃态高聚物发生冷拉(强迫高弹形变)的温度区间是Tb~Tg,结晶聚合物的冷拉温度区间是Tb(Tg)~ Tm 。 18. 顺丁橡胶分子链的结构单元化学组成属碳链高聚物,键接结构属1-4键接,构型属顺式构型。 19. 高密度PE与低密度PE相比,其支化度低,结晶度高,熔点高拉伸强度高,冲击强度低 20. 高聚物的粘弹性行为表现有应力松弛、蠕变、滞后现象和内耗。 21. 具有规则几何外形的聚合物晶体类型是单晶,在很稀溶液中缓慢冷却才可以得到;在偏光显微镜下可以观察到“黑十字”现象的晶体类型是球晶。 22. 对于平均分子量相同而分子量分布不同的同种聚合物,在低剪切速率时,分子量分布宽的聚合物的剪切粘度大,而在高剪切速率下,分子量分布窄的聚合物的剪切粘度大。 23. 根据时温等效原理,可以在较高温度下,较短时间内观察刀的力学松弛现象,也可以在低温度下,长时间内观察到。

高分子物理第章五

高分子物理第章五 第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的4个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 答:①玻璃态区:在此区域内聚合物类似玻璃通常是脆性的分子运动主要限于振动和短程的旋转运动 ②玻璃-橡胶转变区:此区域内在20~30℃范围模量下降了近1000倍聚合物的行为与皮革相似。玻璃化转变温度(Tg )通常取作模量下降速度最大处的温度。 ③橡胶-弹性平台区:在此区域内由于分子间存在物理缠结、聚合物呈现远程橡胶弹性 ④橡胶流动区:在这个区域内聚合物既呈现橡胶弹性又呈现流动性。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中微晶体起着类似交联点的作用这种试样仍然存在明显的玻璃化转变随着结晶度的增加相当于交联度的增加非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加到结晶度大于40%后微晶体彼此衔接形成贯穿整个材料的连续晶相宏观上不易察觉明显的玻璃化转变其曲线在熔点以前不出现明显的转。 3. 写出四种测定聚合物玻璃化温度的方法简述其基本原理。不同实验方法所得结果是否相同?为什么? 答:①膨胀计法原理:Tg前后试样比容发生突变膨胀计内的水银高度发生偏; ②量热法(DSC法)原理:给基准物和样品相同的热量(仪器采用两侧等速升温或降温进行控制)基准物是热惰性的而样品在温度改变时会出现各种转变会吸热或放热与基准物的温度有一差值(通过热电偶测出)将温度差值—温度作一图线就可以得到差热曲线。曲线上的转对应于Tg;

③温度-形变法(热机械法)原理:动态模量和力学损耗一温度的变化制成样品在仪器上进测试得到内耗-温度曲线最高损耗峰的峰位对应的温度就是Tg; ④核磁共振法(NMR) 原理:在Tg变化前后核磁共振谱线的宽度有很大变化根据线宽的变化就可以得到Tg。 不同的测试方法所得结果不同因为实验速率不同 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关不是热力学的平衡过程而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的类似于液态。 5. 试用玻璃化转变的自由体积理论解释: (1)非晶态聚合物冷却时体积收缩速率发生变化; Tg前后聚合物自由体积膨胀情况不同 (2)速度愈快测定的Tg值愈高。 外力 作用时间短链段来不及发生运动呈现出玻璃态Tg↑ 6. 玻璃化转变的热力学理论基本观点是什么? 热力学研究表明相转变过程中自由能是连续的而与自由能的导数有关的性质发生不连续的变化。以温度和压力作为变量与自由能的一阶导数有关的性质如体积、熵及焓在晶体熔融和液体蒸发过程中发生突变这类相转变称为一级相转变。与自由能的二阶导数有关的性质如压缩系数、膨胀系数及比热容出现不连续变化的热力学转变称为二级相转变。 W.Kauzmann发现将简单的玻璃态物质的熵外推到低温当温度达到绝对零度之前

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

高分子物理第5章

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的4个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 答:①玻璃态区:在此区域内,聚合物类似玻璃,通常是脆性的,分子运动主要限于振动和短程的旋转运动 ②玻璃-橡胶转变区:此区域内,在20~30℃范围,模量下降了近1000倍,聚合物的行为与皮革相似。玻璃化转变温度(Tg )通常取作模量下降速度最大处的温度。 ③橡胶-弹性平台区:在此区域内,由于分子间存在物理缠结、聚合物呈现远程橡胶弹性 ④橡胶流动区:在这个区域内,聚合物既呈现橡胶弹性,又呈现流动性。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 3. 写出四种测定聚合物玻璃化温度的方法,简述其基本原理。不同实验方法所得结果是否相同?为什么? 答:①膨胀计法原理:Tg前后试样比容发生突变,膨胀计内的水银高度发生偏折; ②量热法(DSC法)原理:给基准物和样品相同的热量(仪器采用两侧等速升温或降温进行控制),基准物是热惰性的,而样品在温度改变时会出现各种转变,会吸热或放热,与基准物的温度有一差值(通过热电偶测出),将温度差值—温度作一图线,就可以得到差热曲线。曲线上的转折对应于Tg; ③温度-形变法(热机械法)原理:动态模量和力学损耗一温度的变化制成样品,在仪器上进测试得到内耗-温度曲线最高损耗峰的峰位对应的温度就是Tg; ④核磁共振法(NMR) 原理:在Tg变化前后,核磁共振谱线的宽度有很大变化,根据线宽的变化就可以得到Tg。

相关主题
文本预览
相关文档 最新文档