当前位置:文档之家› (完整版)小波分析的理解

(完整版)小波分析的理解

(完整版)小波分析的理解
(完整版)小波分析的理解

小波变换是克服其他信号处理技术缺陷的一种分析信号的方法。小波由一族小波基函数

构成,它可以描述信号时间(空间)和频率(尺度)域的局部特性。采用小波分析最大优点是可对信号进行实施局部分析,可在任意的时间或空间域中分析信号。小波分析具有发现其他信号分析方法所不能识别的、隐藏于数据之中的表现结构特性的信息,而这些特性对机械故障和材料的损伤等识别是尤为重要的。如何选择小波基函数目前还没有一个理论标准,常用的小波函数有Haar、Daubechies(dbN)、Morlet、Meryer、Symlet、Coiflet、Biorthogonal 小波等15种。但是小波变换的小波系数为如何选择小波基函数提供了依据。小波变换后的系数比较大,就表明了小波和信号的波形相似程度较大;反之则比较小。另外还要根据信号处理的目的来决定尺度的大小。如果小波变换仅仅反映信号整体的近似特征,往往选用较大的尺度;反映信号细节的变换则选用尺度不大的小波。由于小波函数家族成员较多,进行小波变换目的各异,目前没有一个通用的标准。

根据实际运用的经验,Morlet小波应用领域较广,可以用于信号表示和分类、图像识别特征提取;墨西哥草帽小波用于系统识别;样条小波用于材料探伤;Shannon正交基用于差分方程求解。

现在对小波分解层数与尺度的关系作如下解释:

是不是小波以一个尺度分解一次就是小波进行一层的分解?

比如:[C,L]=wavedec(X,N,'wname')中,N为尺度,若为1,就是进行单尺度分解,也就是分解一层。但是W=CWT(X,[2:2:128],'wname','plot')的分解尺度又是从2~128以2为步进的,这里的“分解尺度”跟上面那个“尺度”的意思一样吗?

[C,L]=wavedec(X,N,'wname')中的N为分解层数, 不是尺度,'以wname'是DB小波为例, 如DB4, 4为消失矩,则一般滤波器长度为8, 阶数为7.

wavedec针对于离散,CWT是连续的。

多尺度又是怎么理解的呢?

多尺度的理解: 如将0-pi定义为空间V0, 经过一级分解之后V0被分成0-pi/2的低频子空间V1和pi/2-pi的高频子空间W1, 然后一直分下去....得到VJ+WJ+....W2+W1. 因为VJ和WJ是正交的空间, 且各W子空间也是相互正交的. 所以分解得到了是相互不包含的多个频域区间,这就是多分辩率分析, 即多尺度分析.

当然多分辨率分析是有严格数学定义的,但完全可以从数字滤波器角度理解它.当然,你的泛函学的不错,也可以从函数空间角度理解.

是不是说分解到W3、W2、W1、V3就是三尺度分解?

简单的说尺度就是频率,不过是反比的关系.确定尺度关键还要考虑你要分析信号的采样频率大小,因为根据采样频率大小才能确定你的分析频率是多少.(采样定理).然后再确定你到底分多少层.

假如我这有一个10hz和50hz的正弦混合信号,采样频率是500hz,是不是就可以推断出10hz和50hz各自对应的尺度了呢?我的意思是,是不是有一个频率和尺度的换算公式?

实际频率=小波中心频率×采样频率/尺度

在小波分解中,若将信号中的最高频率成分看作是1,则各层小波小波分解便是带通

或低通滤波器,且各层所占的具体频带为(三层分解)a1:0~0.5 d1: 0.5~1; a2:0~0.25 d2: 0.25~0.5; a3: 0~0.125; d3:0.125~0.25

可以这样理解吗?如果我要得到频率为0.125~0.25的信号信息,是不是直接对d3的分解系数直接重构之后就是时域信息了?这样感觉把多层分解纯粹当作滤波器来用了,又怎么是多分辨分析??怎样把时频信息同时表达出来??

这个问题非常好,我刚开始的时候也是被这个问题困惑住了,咱们确实是把它当成了滤波器来用了,也就是说我们只看重了小波分析的频域局部化的特性。但是很多人都忽略其时域局部化特性,因为小波是变时频分析的方法,根据测不准原理如果带宽大,则时窗宽度就要小。那么也就意味着如果我们要利用其时域局部化特性就得在时宽小的分解层数下研究,也就是低尺度下。这样我们就可以更容易看出信号在该段时间内的细微变化,但是就产生一个问题,这一段的频率带很宽,频率局部化就体现不出来了。

对d3进行单支重构就可以得到0.125-0.25的信号了,当然频域信息可能保存的比较好,但如果小波基不是对称的话,其相位信息会失真。

小波变换主要也是用在高频特征提取上。

层数不是尺度,小波包分解中,N应该是层数,个人理解对应尺度应该是2^N

小波分解的尺度为a,分解层次为j。如果是连续小波分解尺度即为a。离散小波分解尺度严格意义上来说为a=2^j,在很多书上就直接将j称为尺度,因为一个j就对应者一个尺度a。其实两者是统一的。

小波基:一般从线性相位,消失矩,相似性,紧支撑等来选择。

Daubechies小波基的构造

% 此程序实现构造小波基

% periodic_wavelet.m

function ss=periodic_wavelet;

clear;clc;

% global MOMENT; % 消失矩阶数

% global LEFT_SCALET; % 尺度函数左支撑区间

% global RIGHT_SCALET; % 尺度函数右支撑区间

% global LEFT_BASIS; % 小波基函数左支撑区间

% global RIGHT_BASIS; % 小波基函数右支撑区间

% global MIN_STEP; % 最小离散步长

% global LEVEL; % 计算需要的层数(离散精度)

% global MAX_LEVEL; % 周期小波最大计算层数

[s2,h]=scale_integer;

[test,h]=scalet_stretch(s2,h);

wave_base=wavelet(test,h);

ss=periodic_waveletbasis(wave_base);

function [s2,h]=scale_integer;

% 本函数实现求解小波尺度函数离散整数点的值

% sacle_integer.m

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

h=wfilters('db10','r'); % 滤波器系数

h=h*sqrt(2); % FI(T)=SQRT(2)*SUM(H(N)*FI(2T-N)) N=0:2*MOMENT-1;

for i=LEFT_SCALET+1:RIGHT_SCALET-1

for j=LEFT_SCALET+1:RIGHT_SCALET-1

k=2*i-j+1;

if (k>=1&k<=RIGHT_SCALET+1)

a(i,j)=h(k); % 矩阵系数矩阵

else

a(i,j)=0;

end

end

end

[s,w]=eig(a); % 求特征向量,解的基

s1=s(:,1);

s2=[0;s1/sum(s1);0]; % 根据条件SUM(FI(T))=1,求解;

% 本函数实现尺度函数经伸缩后的离散值

% scalet_stretch.m

function [s2,h]=scalet_stretch(s2,h);

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

for j=1:LEVEL % 需要计算到尺度函数的层数

t=0;

for i=1:2:2*length(s2)-3 % 需要计算的离散点取值(0,1,2,3 -> 1/2, 3/2, 5/2)

t=t+1;

fi(t)=0;

for n=LEFT_SCALET:RIGHT_SCALET; % 低通滤波器冲击响应紧支撑判断

if ((i/2^(j-1)-n)>=LEFT_SCALET&(i/2^(j-1)-n)<=RIGHT_SCALET) % 小波尺度函数紧支撑判断

fi(t)=fi(t)+h(n+1)*s2(i-n*2^(j-1)+1); % 反复应用双尺度方程求解

end

end

end

clear s

n1=length(s2);

n2=length(fi);

for i=1:length(s2)+length(fi) % 变换后的矩阵长度

if (mod(i,2)==1)

s(i)=s2((i+1)/2); % 矩阵奇数下标为小波上一层(0,1,2,3)离散值

else

s(i)=fi(i/2); % 矩阵偶数下标为小波下一层(1/2,3/2,5/2)(经过伸缩变换后)的离散值end

end

s2=s;

end

% 采用双尺度方程求解小波基函数PSI(T)

% wavelet.m

function wave_base=wavelet(test,h);

MOMENT=10; % 消失矩阶数

LEFT_SCALET=0; % 尺度函数左支撑区间

RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间

LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间

RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间

MIN_STEP=1/512; % 最小离散步长

LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)

MAX_LEVEL=8; % 周期小波最大计算层数

i=0;

for t=LEFT_BASIS:MIN_STEP:RIGHT_BASIS; % 小波基支撑长度

s=0;

for n=1-RIGHT_SCALET:1-LEFT_SCALET % g(n)取值范围

if((2*t-n)>=LEFT_SCALET&(2*t-n)<=RIGHT_SCALET) % 尺度函数判断

s=s+h(1-n+1)*(-1)^(n)*test((2*t-n)/MIN_STEP+1); % 计算任意精度的小波基函数值end

end

i=i+1;

wave_base(i)=s;

end

一维数字滤波器filter():

Y=filter(B, A, X) 由传递函数模型向量B、A描述的滤波器对向量X中的元素进行滤波,并将结果数据存放在向量Y中。

[Y, Zf]=filter(B, A, X, Zi) 给出了滤波器延时的初始和终止条件Zf和Zi。

例子:

人体心电信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能判断心脏功能的有用信息。下面给出一实际心电图信号采样序列样本x(n),其中存在高频干扰。在试验中以x(n)作为输入序列,滤除其中的干扰成分。

{ x(n) } = {-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4, -2,-4,8,12,12,10,6,6,4,0,0,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0}

Matlab程序设计如下:

X=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8, 12,12,10,6,6,4,0,0,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];

figure;

plot(X);

xlabel('时间');

ylabel('幅值');

wp=40; ws=50; rp=0.5; rs=40; Fs=200;

[N, Wn] = buttord(wp/(Fs/2), ws/(Fs/2), rp, rs);

[b, a]=butter(N, Wn);

figure;

[H, W]=freqz(b, a);

plot(W*Fs/(2*pi), abs(H)); grid;

xlabel('频率/Hz');

ylabel('幅值');

Y=filter(b,a,X);

figure

plot(Y)

xlabel('时间');

ylabel('幅值');

figure

psd(X, [ ],200);

figure

psd(Y, [ ],200);

end;

分析这段程序可知包括以下几部分:

(1)首先绘制原始数据的图形;

(2)设计一个Butterworth低通滤波器并绘制出它的幅频响应曲线;

(3)用设计的滤波器对原数据进行滤波;

(4)绘制滤波以后的数据图形;

(5)绘制原数据功率谱图形;

(6)绘制滤波以后数据功率谱图形。

滤波器的主要目的是按照设计者的目的,突出或抑制一些频段。在本程序中,设计了一个低通滤波器,主要是抑制高频段突出低频段;在心电图信号分析中,要滤除工业高频干扰,突出低频部分.

有时某些信号容易受到噪声污染,导致无法直接辨别信号的发展趋势。由于信号的发展趋势往往代表信号的低频部分,因此通过信号的多尺度分解,在分解的低频系数中可以观察到信号的发展趋势。

由于噪声的污染,从原始信号x中无法观察信号的发展趋势。通过进行五尺度的小波分解,在小波分解的低频系数重构中可以明显地看到原始信号的发展趋势。这是因为信号的发展趋势往往是信号的低频成分,在小波变换中对应着最大尺度小波变换的低频系数。此外还可以在低频中理解它,在进行低频成分的尺度分解时,随着分解层数的增加,它所含的高频成分会随之减少,因此随着尺度的增加,更多高频的信号被滤掉,可以看到信号的发展趋势。

1.监测信号的自相似性

直观上讲,小波分解系数表示了信号与小波之间的“相似指数”,如果相似程度越高,则相似指数越大。因此如果一个信号的不同的尺度之间相似,则小波系数在不同的尺度上也应该相似。因此可以通过小波分解检测信号的自相似性,即检测信号的分形特征。实践表明,通过小波分解可以很好地研究信号或图像的分形特征。

下面通过一个简单的例子来说明小波分析在检测信号自相似性中的应用,待检测的信号是经过反复迭代生成的信号,因此具有自相似性。

程序代码如下:

load vonkoch;

x=vonkoch;

subplot(211);

plot(x);

title('原始信号');

subplot(212);

%进行一维连续小波变换

f=cwt(x,[2:2:128],'coif3','plot');

从图中可以看出分解后的小波系数在许多尺度上看上去都非常相似。

2.信号的奇异性检测

信号的突变点和奇异点等不规则部分通常包含重要信息。

一般信号的奇异性分为两种情况:(1)信号在某一时刻其幅值发生突变,引起信号的非连续,这种类型的突变称为第一类型的间断点;(2)信号在外观上很光滑,幅值没有发生突变,但是信号的一阶微分有突变发生且一阶微分不连续,这种类型的突变称为第二类型的间断点。

应用小波分析可以检测出信号中的突变点的位置、类型以及变化的幅度。下面介绍小波分析在信号奇异性检测中的应用。

(1)第一类型间断点的检测

下面举例说明小波分析用于检测第一类型的间断点。

在本例中,信号的不连续是由于低频特征的正弦信号在后半部分突然有高频特征的正弦信号加入,首先利用傅里叶变换分析对信号在频域进行分析,发现无检测突变点,接着利用小波分析进行分析,结果证明它能够准确地检测出了信号幅值突变的位置,即高频信号加入的时间点。

程序代码如下:

load freqbrk;

x=freqbrk;

%对信号进行傅里叶变换

f=fft(x,1024);

f=abs(f);

figure;

subplot(211);

plot(x);

subplot(212);

plot(f);

%使用db6小波进行6层分解

[c,l]=wavedec(x,6,'db6');

figure(2);

subplot(811);

plot(x);

ylabel('x');

%对分解的第六层低频系数进行重构

a=wrcoef('a',c,l,'db6',6);

subplot(812);

plot(a);

ylabel('a6');

for i=1:6

%对分解的第6层到第1层的高频系数分别进行重构

d=wrcoef('d',c,l,'db6',7-i);

subplot(8,1,i+2);

plot(d);

ylabel(['d',num2str(7-i)]);

end

由图中可以看出,由于傅里叶变换不具有时间分辨力,因此无法检测信号的间断点。而在小波分析的图中,在信号的小波分解的第一层高频系数d1和第二层高频系数d2中,可以非常清楚地观察到信号的不连续点,用db1小波比用db6小波要好。

这个例子也表明小波分析在检测信号的奇异点时具有傅里叶变换无法比拟的优越性,利用小波分析可以精确地检测出信号的突变点。

在信号处理中,信号中通常都包含噪声,而噪声的存在增加了辨别信号不连续点的难度。一般来说,如果信号小波分解的第一层能够估计出噪声的大体位置,则信号的间断点就能够在小波分解的更深层次上表现出来。

下面通过例子说明如何应用小波分析识别某一频率区间上的信号:

在本例中,使用小波分析一个由三个不同频率的正弦信号叠加的信号,看是否能将这三个正弦信号区分开来,结果证明小波分析可以很好地识别某一频率区间的信号。

程序代码如下:

load sumsin;

x=sumsin;

figure;

subplot(611);

plot(x);

ylabel('x');

title('原始信号以及各层近似信号');

%使用db3小波进行5层分解

[c,l]=wavedec(x,5,'db3');

for i=1:5

%对分解的第5层到第1层的低频系数分别进行重构

a=wrcoef('a',c,l,'db3',6-i);

subplot(6,1,i+1);

plot(a);

ylabel(['a',num2str(6-i)]);

end

figure;

subplot(611)

plot(x);

ylabel('x')

for i=1:5

%对分解的第5层到第1层的高频系数进行重构

d=wrcoef('d',c,l,'db3',6-i);

subplot(6,1,i+1);

plot(d);

ylabel(['d',num2str(6-i)]);

end

分析:

在本例中,该信号是由周期分别为200、20、2的信号组成的,它们的采样周期均为1,为方便起见,在此分别称为低频、中频和高频的正弦信号。从图中可以看出,低频、中频和高频信号分别对应于分解的近似信号a4、细节信号d4以及细节信号d1。

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波变换-完美通俗解读

小波变换和motion信号处理(一) 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一

些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

小波变换 完美通俗解读2

这是《小波变换和motion信号处理》系列的第二篇,深入小波。第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。 在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。 还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样: 其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅 立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。 我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的? 在这一篇文章里,我们就来讨论一下这些特性背后的原理。 首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交: 另外,为了方便处理,父小波和母小波也需要是正交的。可以说,完整的小波展开就是由母小波和父小波共同定义的。

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

小波变换完美通俗解读

小波变换完美通俗解读 转自: 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。对小波变换的认识也就停留在神秘的"图像视频压缩算法之王"上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂;国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

小波变换的直观解释

小波变换的若干直观解释 唐常杰 川大计算机学院 说明: 1假定听者已经听说过或阅读过小波,但觉得缺乏直观感觉,本PPT的直观解释仅仅为了辅助理解,不能取代严格的描述和证明 2仅仅是讲稿草案,还不成熟,待修改

小波简史(与石油勘探中人工地震技术相关) n由法国石油信号处理的工程师J.Morlet在1974提出 n通过物理直观和信号处理实际需要的建立反演公式,未得认可。 n1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家 https://www.doczj.com/doc/6a11144707.html,grange,https://www.doczj.com/doc/6a11144707.html,place以及A.M.Legendre的认可 n七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备 n J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年

小波简史 n比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》推动小波普及 n它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换, n通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(MultiscaleAnalysis), n解决了Fourier变换不能解决的许多困难问题 n被誉为“数学显微镜”

小波特点与应用 n压缩比高,速度快 n压缩后能保持信号与图象的特征不变 n传递中可以抗干扰。 n基于小波分析的压缩方法:小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。n小波在信号分析中的应用 n边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测。n工程应用。 n包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学

近代数学小波计算题答案

2.计算下列分形维数: (1)康托尔集合(the Cantor set) l o g l o g2 0.631 l o g l o g3 s m D c =-=≈ (2)科赫曲线(Koch) log4 1.262 log3 s D=-≈ (3)谢尔平斯基(Sierpinski)地毯、垫片、海绵 地毯: log log8 1.893 log log3 f D β κ ==≈ 垫片: log log3 1.585 log log2 f D β κ ==≈ 海绵: log log20 2.763 log log3 f D β κ ==≈ (4)阿波罗尼斯垫圆: 解:不在此圆内部的点形成一个面积为零的集合,可以说它多于一条线但少于一个面,因此它的分形维数 (5)皮亚诺曲线: log ln9 2 1ln3 log() s N D β === 1.求按下列各图所示方法生成的分形图的分维 初始元: 生成元: (a)(b)(c) (a) log ln8 1.5 1ln4 log() s N D β ==≈ (b) log ln5 1.465 1ln3 log() s N D β ==≈ (c) log ln5 1.465 1ln3 log() s N D β ==≈

2、计算康托尔三分集相似维、Hausdorff 维 解:相似维:log ln 2 0.63111log()ln 3s N D β= =≈ Hausdorff 维:log log 20.631log log 3 f D βκ= =≈ 3、计算不规则分形盒维数(只计算右下端) ε=1/10 ()N ε=N(1/10) ()ln ln 54ln 54 1.732 1ln ln10ln 10B N D εε=- =-=≈

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

相关主题
文本预览
相关文档 最新文档