当前位置:文档之家› 数值分析期末复习资料-福大研究生版

数值分析期末复习资料-福大研究生版

数值分析期末复习资料-福大研究生版
数值分析期末复习资料-福大研究生版

数值分析期末复习

题型:一、填空 二、判断 三、解答(计算) 四、证明

第一章 误差与有效数字

一、 有效数字

1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零

数字共有n 位,就说x*有n 位有效数字。 2、 两点理解:

(1) 四舍五入的一定是有效数字

(2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为

4、 考点:

(1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3)

二、 避免误差危害原则 1、 原则:

(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a )

(2) 避免相近数相减(方法:有理化)eg. 或

(3) 减少运算次数(方法:秦九韶算法)eg.P20习题14

三、 数值运算的误差估计 1、 公式:

(1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差

(两边同时除以f (x *)) eg.P19习题1、2、5

(2) 多元函数(P8)eg. P8例4,P19习题4

第二章 插值法

一、 插值条件

1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值

yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一

二、 拉格朗日插值及其余项

1、 n 次插值基函数表达式(P26(2.8))

2、 插值多项式表达式(P26(2.9))

3、 插值余项(P26(2.12)):用于误差估计

*(1)

11

102n r a ε--≤?;x εx εx εx ++=-+();1ln ln ln ???

? ??+=-+x εx εx x cos 1-2sin 22x =n i y x P i

i n ,,2,1,0)( ==

4、 插值基函数性质(P27(2.17及2.18))eg.P28例1

三、 差商(均差)及牛顿插值多项式 1、 差商性质(P30):

(1) 可表示为函数值的线性组合

(2) 差商的对称性:差商与节点的排列次序无关 (3) 均差与导数的关系(P31(3.5)) 2、 均差表计算及牛顿插值多项式

四、埃尔米特插值(不用背公式) 两种解法:

(1) 用定义做:设P 3(x)=ax 3+bx 2+cx+d ,将已知条件代入求解(4个条件:

节点函数值、导数值相等各2个)

(2) 牛顿法(借助差商):重节点eg.P49习题14 五、三次样条插值定义

(1) 分段函数,每段都是三次多项式

(2) 在拼接点上连续(一阶、二阶导数均连续) (3)

考点:利用节点函数值、导数值相等进行解题

第三章 函数逼近与曲线拟合

一、 曲线拟合的最小二乘法

解题思路:确定?i ,解法方程组,列方程组求系数(注意?i 应与系数一一对应)eg.P95习题

17

n

j y x S j j ,,1,0,)( ==

形如y=ae bx 解题步骤: (1) 线性化(2)重新制表(3)列法方程组求解(4)回代

第四章 数值积分与数值微分

一、 代数精度 1、 概念:如果某个求积公式对于次数不超过m 的多项式准确成立,但对于m+1次多项式不准确成立,则称该求积公式具有m 次代数精度 2、 计算方法:将f(x)=1,x,x 2, …x n 代入式子求解 eg.P100例1

二、 插值型的求积公式

求积系数

定理:求积公式至少具有n 次代数精度的充要条件是:它是插值型的。

三、 牛顿-科特斯公式

1、 掌握科特斯系数n=1,2的情况即可(P104表4-1),性质:和为1,对称性

2、 定理:当阶n 为偶数时,牛顿-科特斯公式至少具有n+1次代数精度

3、 复合梯形公式(P106)及余项(P107)

4、 复合辛普森公式及余项(P107)

四、 高斯型求积公式

1、定义:如果求积公式具有2n+1次代数精度,则称其节点x k 为高斯点。

第五章 解线性方程组的直接方法

一、 LU 分解

1、特点:L 对角线均为1,第一列等于A 的第一列除以a 11;U 的第一行等于A 的第一行

2、LU 分解唯一性:A 的顺序主子式Di ≠0

二、 平方根法

例题:用平方根法解对称正定方程组 解:先分解系数矩阵

A

??

?

?

? ??=????? ??????? ??91096858137576321x x x

三、范数

1、向量范数定义及常用范数

2、矩阵范数定义及常用范数

3、条件数

4、谱半径(非常重要)

可用于填空题计算以及大题证明题中判断收敛

第六章 解线性方程组的迭代法

一、 雅克比和高斯-赛德尔迭代法

用向量法

二、 迭代收敛性判断

迭代法收敛的两种判断方法: 1、 严格对角占优

2、 谱半径小于1(谱半径越小,收敛速度越快)

三、 SOR 法

1、 计算公式(P194)

2、 SOR 迭代法收敛的必要条件:SOR 迭代收敛,则0〈W 〈2。

3、 SOR 迭代法收敛的充要条件:A 为对称正定矩阵且0〈W 〈2,则SOR 收敛。

第七章 非线性方程与方程组的数值解法

一、 二分法

1、 优缺点:算法简单且总是收敛,但收敛慢。

2、 公式 <ε

、b 、a ,求n

二、 不动点迭代及收敛性

1、 形式:x k +1=?(x k ) (k =0,1,2, ) (由f (x )=0移项得) x *=?(x *)为?(x )的不动点

2、 定理1(不动点存在唯一性或整体收敛):设?(x)∈C[a, b]满足以下两个条件: 1o 对任意x ∈[a , b ]有a ≤?(x )≤b .

2o 存在正数L <1,使对任意x ,y ∈[a , b ]都有 则?(x )在[a , b ]上存在唯一的不动点x *。

3、 定理2:设?(x )∈C[a , b ]满足定理1中的两个条件,有误差估计式

4、 定理3(局部收敛):设x *

为?(x )的不动点,在x *的某个邻域连续,

,则迭代法x k +1=?(x k )局部收敛.

做法:不动点x *不知道,用x *附近的x 0代替(题目已知“根附近x 0”,代入x 0证明

,则迭代法局部收敛)

)(x ?

'1

)(<'*x ?1

)(<'*x ?111*()()22

n n n n x x b a b a +-≤-=-y x L y x -≤-)()(??.1或.1101k k k k k x x L

L x x x x L L x x --≤---≤-+**

5、 定理4(收敛阶的定义及判定定理):对于迭代过程

,如果在所求根x*的邻近连续,并且 则该迭代过程在x*的邻近是p 阶收敛的. 三、 牛顿迭代法(切线法)及应用(大小题都可考)

1、 公式:

2、 收敛性:x*为单根时,牛顿迭代法在根x*的邻近是二阶(平方)收敛;x*为重根时,仅为线性收敛。

3、 应用:用牛顿法求

解法:令f(x)=x 2-c ,代入公式求解。Eg.P239习题13

第八章 矩阵特征值计算

一、 格什戈林圆盘

掌握λ范围即可。Eg.P243例1 二、 幂法

1、 计算公式:

则有 eg.P248例2

三、 豪斯霍尔德变换(初等反射矩阵) 1、 定义

2、 约化定理(P255)eg.P260例7

考点:用初等反射矩阵将A 进行QR 分解或转化为上海森伯格矩阵(思想相同,不同之处上海森伯格矩阵对角线下还有一列) 四、 吉文斯变换(平面旋转变换)

思想:将每列a ii 以下的元素一个一个变为0. Eg.P257

C ,)max(lim 11

x x u k k =

→.lim 1λμ=∞→k

k .0)(,0)()()()()1(≠===''='**-**x x x x p p ???? )

,1,0()

()(1 ='-=+k x f x f x x k

k k k ()

???????====≠=-向量的规范化 .),2,1( ,max ,

,

0100k k k

k k k k /v u k v Au v u v μμ

第九章 常微分方程初值问题数值解法

一、 欧拉公式

1、公式: eg.P317习题4

二、 梯形公式 1、公式: 考法:用移项做,将右式中的y n+1移到左边,求出y n+1的表达式,再将各节点代入求解y i eg.P317习题3

三、 改进的欧拉方法(二阶R-K 公式)

1、公式:

Eg.P316习题2

四、 局部截断误差

1、定义:T n+1=y (x n+1)-y n+1=O (h

(p+1)

).——p 阶精度

注意点:要求局部截断误差主项时还应多写一项;泰勒展开 eg.P317-318习题6、7、11、12

预测考题: 一、 填空

1、 有效数字计算

2、 避免误差危害原则

3、 误差估计

4、 插值条件定义:求n 次插值多项式

5、 插值基函数性质

6、 差商的对称性

7、 三次样条插值定义:求系数

8、 根据代数精确度定义求解等式右边的系数或求解代数精确度 9、 向量或矩阵范数、条件数计算 10、 二分法:求n

,),(1n n n n y x hf y y +=+.

)],(),([2111+++++=n n n n n n y x f y x f h

y y ),(1n n n n y x hf y y +=+[]

),(),(2

111+++++=n n n n n n y x f y x f h

y y

二、 判断

1、 插值条件定理(条件缺一不可)。Eg.对给定的数据做插值,插值函数个数可以有许多。(√)

2、 给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的。(×)

3、 代数精确度是衡量算法稳定性的一个重要指标。(×)

4、 求积公式的阶数与所依据的插值多项式的次数一样。(×)

5、 梯形公式与两点高斯公式的精度一样。(×)

6、 SOR 迭代法收敛,则松弛参数0〈W 〈2。(√)

7、 A 对称正定则SOR 迭代一定收敛。(×)

8、 只要矩阵是对称的,则

1A A ∞

≡。(√)

9、 x*为单根时,牛顿迭代法是二阶收敛的,x*为重根时,是线性收敛的。所以牛顿迭代法总是收敛的。(×) 10、

一定收敛。(×)或≥1一定发散。

(√)

11、 |1+h λ |≤1为欧拉法的绝对稳定域,h λ越大越稳定。(√)

三、 计算

1、 牛顿插值多项式计算

2、 最小二乘拟合

3、 复合梯形公式及余项或复合辛普森公式及余项考一题

4、 利用LU 解方程组

5、 代数精确度:求等式右边系数、代数精确度m 、余项

6、 利用初等反射矩阵或吉文斯变换进行QR 分解

7、 用梯形公式或改进的欧拉公式求解初值问题

四、 证明

1、 用雅克比和高斯-赛德尔迭代法证明收敛性(借助谱半径求解)eg.P209习题3、5、6

2、 不动点迭代(应用定理4)

可能考题:证明某个迭代式子至少3阶收敛

解法:计算1阶、2阶导数为0,无需证明3阶不为0(如果题目是“证明某个迭代式子是3阶收敛”,则需证明3阶不为0)eg.P239习题15 3、 局部阶段误差

可能考题:给定y n+1的式子,求式子中的系数及局部阶段误差主项,并说明是几阶

解法:利用局部截断误差的定义并借助泰勒展开

1

)(<'*x ?)(x ?'

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析总复习提纲教材

数值分析总复习提纲 数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。 一、误差分析与算法分析 误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算 截断误差根据泰勒余项进行计算。 基本的问题是 (1)1 ()(01)(1)! n n f x x n θεθ++<<<+,已知ε求n 。 例1.1:计算e 的近似值,使其误差不超过10-6。 解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。由麦克劳林公式,可知 211(01)2!!(1)! n x x n x x e e x x n n θθ+=+++++<<+ 当x=1时,1 111(01)2! !(1)! e e n n θθ=+++ ++ <<+ 故3 (1)(1)!(1)! n e R n n θ=<++。 当n =9时,R n (1)<10-6,符合要求。此时, e≈2.718 285。 2、绝对误差、相对误差及误差限计算 绝对误差、相对误差和误差限的计算直接利用公式即可。 基本的计算公式是: ①e(x)=x *-x =△x =dx ② *()()()ln r e x e x dx e x d x x x x ==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x = ⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,)) ((,))(,) f x x f x x f x x εδ=

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

福大结构力学课后习题详细答案(祁皑).. - 副本知识分享

福大结构力学课后习题详细答案(祁皑).. -副本

结构力学(祁皑)课后习题详细答案 答案仅供参考 第1章 1-1分析图示体系的几何组成。 1-1(a) 解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几何不变体系,且有一个多余约束。 1-1 (b) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (c) (c-1) (a ( a-1) (b ) (b- (b-

收集于网络,如有侵权请联系管理员删除 (c-2) (c-3) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (d) (d-1) (d-2) (d-3) 解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形的,分析要注意确认。 1-1 (e) 解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。在图(e-2 )中阴影所示的刚片与基础只 ( d ( e (e-1) A (e-2)

收集于网络,如有侵权请联系管理员删除 用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体系,缺少一个必要约束。 1-1 (f) 解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定 向支座相连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因此,原体系为几何不变体系,且无多余约束。 1-1 (g) 解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉,只分析其余部分。余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。因此,原体系为几何不变体系,且无多余约束。 1-1 (h) (h (f (f-1) (g (g-1) (g-2) (h-1)

数值分析报告报告材料期末复习资料

数值分析期末复习 题型:一、填空 二、判断 三、解答(计算) 四、证明 第一章 误差与有效数字 一、有效数字 1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说 x*有n 位有效数字。 2、 两点理解: (1) 四舍五入的一定是有效数字 (2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为 4、 考点: (1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3) 二、避免误差危害原则 1、 原则: (1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a ) (2) 避免相近数相减(方法:有理化)eg. 或 (3) 减少运算次数(方法:秦九韶算法)eg.P20习题14 *(1)1 1 102n r a ε--≤ ?; x εx ε x εx ++=-+();1ln ln ln ???? ? ?+=-+x εx εx x cos 1-2sin 22x =

三、数值运算的误差估计 1、 公式: (1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时除以f (x *)) eg.P19习题1、2、5 (2) 多元函数(P8)eg. P8例4,P19习题4 第二章 插值法 一、 插值条件 1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值 yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一 n i y x P i i n ,,2,1,0)(Λ==

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

福大结构力学课后习题详细答案..-副本

结构力学(祁皑)课后习题详细答案 答案仅供参考 第1章 1-1分析图示体系的几何组成。 1-1(a) 解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几何不变体系,且有一个多余约束。 1-1 (b)

解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (c) (c-2) (c-3) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (d)

(d-1)(d-2)(d-3) 解原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形的,分析要注意确认。 1-1 (e) 解原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体

系,缺少一个必要约束。 1-1 (f) 解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因此,原体系为几何不变体系,且无多余约束。 1-1 (g) 解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉,只分析其余部分。余下的部分(图(g-1))在

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

2011年福州大学结构力学研究生真题

福州大学2011研究生试卷 一:选择题(每小空2分,共16分) 1.静定结构在————时,只产生变形和位移,不产生内力。 A温度变化B支座位移C制造误差D荷载作用 2.静定结构在————时,只产生位移,不产生变形和内力。 A温度变化B支座位移C制造误差D荷载作用 3.梁和刚架的位移计算公式,在理论上是—————。 A近似的,误差在工程上是容许的B准确的C近似的,但误差因结构而异4.桁架的位移计算,在理论上是————。 A近似的,误差在工程上是容许的B准确的C近似的,但误差因结构而异5.在工程中,瞬变体系不能作为结构的原因是————。 A会发生微小的位移B约束的数量不足C正常荷载下,可能产生很大的内力6.增加单自由度体系的阻尼(增加后仍是小阻尼),其结果是————。 A自振周期变长B自振周期变短C自振周期不变D不一定 7.在单自由度体系中,在共振区降低结构的动力位移,有效的办法应首选—————,在共振区之外降低结构的动力位移,有效的办法应首选————。 A增加阻尼B改变结构的自振频率 二:判断题(每空2分,共14分)。 1.力法方程,实际上是力的平衡方程。 2.位移法方程,实际上是位移协调方程。 3.三铰拱的合理拱轴线与荷载无关。 4.对于单自由度体系,体系的内力和位移具有统一的动力系数。 5.体系的动力系数一定大于1. 6.去图示结构基本体系,则力法方程△1= ,△2= 。 三:简答题(每小题4分,共12分)。 1.仅用静力平衡方程,即确定全部反力和内力的体系是几何不变体系,而且没有多余约束,为什么? 2.静定结构受荷载作用产生内力,内力大小与杆件截面尺寸无关,为什么? 3.荷载作用在静定多跨梁的附属部分时,基本部分的内力一般不为零,为什么?

学习数值分析的经验

数值分析实验的经验、感受、收获、建议班级:计算131 学号:2012014302 姓名:曾欢欢数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。 数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议 数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。 首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到

手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。 其次,应从公式所面临的问题以及用途出发。比如插值方法,就是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有一定条件下的一般性的公式。。 建议学习本门课程要结合知识与实际,比如在物理实验里面很多地方有用到线性拟合的知识,这样我们可以对数值分析得类容加以巩固,在学习中不能死记硬背,应该理解记忆,以及结合列题加以记忆和应用,只能在题里面我们才能去应用它。对于本学期的期末考试,由于本人注重了理论知识的记忆和应用,但是在复习过程中自己没有亲自去导致计算能力较弱,在考试过程中一道大题的计算耗费了大量的时间且错了,虽然解答题目的步骤和思想应该是没有问题的,所以同学们除了掌握基本的理论知识以外,得加强计算能力的锻炼,避免不必要的浪费时间以及精力,导致不愉快的结果。

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

福大结构力学课后习题详细答案(祁皑)

结构力学(祁皑)课后习题详细答案 答案仅供参考 第1章 1-1分析图示体系的几何组成。 1-1(a) 解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几何不变体系,且有一个多余约束。 1-1 (b) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (c) (c-1) (a ) (a-1) (b ) (b-1) (b-2)

(c-2) (c-3) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (d) (d-1) (d-2) (d-3) 解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形的,分析要注意确认。 1-1 (e) 解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体系,缺少一个必要约束。 1-1 (f) 解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相 连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其 余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因此,原体系为几何不变体系,且无多余约束。 1-1 (g) (d ) (e ) (e-1) A (e-2) (f ) (f-1) (g ) (g-1) (g-2)

数值分析期末试卷

数值分析2006 — 2007学年第学期考试 课程名称:计算方法 A 卷 考试方式:开卷[] 闭卷[V ] 半开卷[] IV 类 充要条件是a 满足 二、(18分)已知函数表如下 1?设 f(0) = 0, f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二 2 ?设 AJ <2 -3 -1 ,则X ,A := A 1 1 j — 3 ?计算积分 xdx ,取4位有效数字。用梯形公式求得的近似值为 "0.5 (辛普森)公式求得的近似值为 ,用 Spsn 4?设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收 敛阶是 5 ?要使求积公式 1 1 [f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ , 0 4 6 ?求解线性方程组 x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的 10 11 12 13 In x 2.3026 2.3979 2.4849 2.5649

三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。 2 f (x)dx : A o f (0) A f (1) A2f(2) o

X 2 4 6 8 y 2 11 28 40 五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式: 试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。 (1)X =1 ?丄,迭代公式 X 1 X k 1 = 1 - X k (2) X 2二1 ,迭代公式 X —1 2 (X k ); X k 1

数值分析考试复习总结

1 误差 相对误差和绝对误差得概念 例题: 当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差 6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差. 解 a 的相对误差:由于 31021|)(|-?≤-≤a x x E . x a x x E r -=)(, 221018 1 10921)(--?=?≤ x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25 .0210113 21??≤ -+---a x x a =310- 33 104110|)(|--?=-≤a f E r . □ 2有效数字 基本原则:1 两个很接近的数字不做减法: 2: 不用很小得数做分母(不用很大的数做分子) 例题: 4.改变下列表达式使计算结果比较精确: (1) ;1||,11211<<+--+x x x x 对 (2) ;1,11>>- - +x x x x x 对 (3) 1||,0,cos 1<<≠-x x x x 对. 解 (1) )21()122x x x ++. (2) ) 11(2x x x x x -++. (3) x x x x x x x cos 1sin )cos 1(sin cos 12+≈ +=-. □

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

文本预览
相关文档 最新文档