当前位置:文档之家› 大学物理学答案 第 版 版 上册 北京邮电大学 完全版

大学物理学答案 第 版 版 上册 北京邮电大学 完全版

大学物理学答案 第 版 版 上册 北京邮电大学 完全版
大学物理学答案 第 版 版 上册 北京邮电大学 完全版

z z 大学物理

习题及解答

习题一

1.6 |r ?|与r ?

有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v

有无不同其不同在哪里试

举例说明.

解:(1)r ?是位移的模,?r 是位矢的模的增量,即

r ?12r r -=,12r r r ?

?-=?; (2)t d d r 是速度的模,即t d d r ==v t s

d d . t r

d d 只是速度在径向上的分量.

∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t

r t d d d d d d r r

r += 式中t r

d d 就是速度径向上的分量, ∴t r t d d d d 与

r 不同如题1-1图所示.

题1-1图

(3)t d d v 表示加速度的模,即

t v a d d ?

?=

,t v d d 是加速度a 在切向上的分量. ∵有ττ??(v =v 表轨道节线方向单位矢),所以

式中dt dv

就是加速度的切向分量.

(

t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予讨论) 1.7 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有

人先求出r =22y x +,然后根据v =t r

d d ,及a =22d d t r 而求得结果;又有人先计算速

度和加速度的分量,再合成求得结果,即

v =2

2

d d d d ??? ??+??? ??t y t x 及a =

2

222

22d d d d ???? ??+???? ??t y t x 你认为两种方法哪一种正确为什么两者差别何在

解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有

j y i x r ?

??+=,

故它们的模即为

而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定

义作

其二,可能是将2

2d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明t r d d 不是速度

的模,而只是速度在径向上的分量,同样,2

2d d t r 也不是加速度的模,它只是加速度

在径向分量中的一部分????

???

????

??-=2

22d d d d t r t r a θ径。或者概括性地说,前一种方法只考虑了位矢r ?在径向(即量值)方面随时间的变化率,而没有考虑位矢r ?

及速度v ?的方

向随间的变化率对速度、加速度的贡献。 1.8 一质点在xOy 平面上运动,运动方程为

x =3t +5, y =21

t 2+3t -4.

式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速

度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).

解:(1)

j

t t i t r ???

)4321()53(2-+++=m (2)将1=t ,2=t 代入上式即有

(3)∵ j i r j j r ??????1617,4540

+=-= ∴ 1

04s m 534201204-?+=+=--=??=j i j

i r r t r v ????????

(4) 1

s m )3(3d d -?++==j t i t r v ????

则 j i v ???734

+= 1s m -? (5)∵ j i v j i v ??????

73,3340+=+=

(6) 2

s m 1d d -?==j t v a ???

这说明该点只有y 方向的加速度,且为恒量。

1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2

s m -?,x

的单位为 m. 质点在x =0处,速度为101

s m -?,试求质点在任何坐标处的速度值.

解: ∵ x v

v t x x v t v a d d d d d d d d ===

分离变量:

x x adx d )62(d 2

+==υυ 两边积分得 c

x x v ++=32

2221

由题知,0=x 时,100=v ,∴50=c

∴ 1

3s m 252-?++=x x v

1.10 已知一质点作直线运动,其加速度为 a =4+3t 2

s m -?,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.

解:∵ t t v

a 34d d +==

分离变量,得 t t v d )34(d +=

积分,得 1

223

4c t t v ++=

由题知,0=t ,00=v ,∴01=c

2

23

4t t v += 又因为

2

234d d t t t x v +== 分离变量, t

t t x d )23

4(d 2+=

积分得 2

3221

2c t t x ++=

由题知 0=t ,50=x ,∴52=c

故 5

21

232++=t t x

所以s 10=t 时

一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33

t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少

解: t

t t t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2

s m 362181-?=??==βτR a

(2)当加速度方向与半径成ο

45角时,有

145tan ==

?n

a a τ

即 βωR R =2 亦即 t t 18)9(2

2=

则解得 923=

t 于是角位移为rad

67.292

32323=?+=+=t θ

质点沿半径为R 的圆周按s =2

021bt t v -的规律运动,式中s 为质点离圆周上某点的

弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数

值上等于b .

解:(1)

bt v t s

v -==

0d d

则 24

02

2

2

)(R bt v b a a a n

-+

=+=τ

加速度与半径的夹角为

(2)由题意应有

即 0)(,)(402

4

02

2

=-?-+=bt v R bt v b b

∴当

b v t 0

=时,b a = 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =

40km ·h -1

沿直线向北行驶,问在船上看小艇的速度为何在艇上看船的速度又为何

解:(1)大船看小艇,则有1221v v v ρ??-=,依题意作速度矢量图如题1-13图(a)

题1-13图

由图可知 1

222121h km 50-?=+=v v v

方向北偏西 ?===87.3643

arctan arctan

21v v θ

(2)小船看大船,则有2112v v v ρ??-=,依题意作出速度矢量图如题1-13图(b),同上

法,得

方向南偏东o

87.36

习题二

一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2

m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计). 解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为

a a a '

-=12

又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有

111a m T g m =-

222a m g m T =-

联立①、②、③式,得

讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.

(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.

题2-1图 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.

解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ?方向为X 轴,

平行斜面与X 轴垂直方向为Y 轴.如图2-2.

题2-2图

X 方向: 0=x F t v x 0= ①

Y

方向: y

y ma mg F ==αsin ②

0=t 时 0=y 0=y v 由①、②式消去t ,得

质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y

f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求 当t =2 s 时质点的 (1)位矢;(2)速度.

解: 2s m 83166-?===

m f a x x

(1)

于是质点在s 2时的速度 (2) 2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m

k e v )(0-;(2) 由0到t 的时间内经

过的距离为

x =(k mv 0)[1-t m k

e )(-];(3)停止运动前经过的距离为)

(0k m v ;(4)证明当k m t =时

速度减至0v 的e 1

,式中m 为质点的质量.

答: (1)∵

t v m kv a d d =

-= 分离变量,得

??-=v

v t m t k v v 00d d ∴ t

m k e

v v -=0

(2)

??---===t

t

t

m k m k

e k mv t e

v t v x 0

00)

1(d d

(3)质点停止运动时速度为零,即t →∞,

故有

?∞

-=

='0

0d k mv t e

v x t

m k

(4)当t=k m

时,其速度为

即速度减至0v 的e 1

.

一质量为m 的质点以与地的仰角θ=30°的初速0v ?从地面抛出,若忽略空气阻力,

求质点落地时相对抛射时的动量的增量.

解: 依题意作出示意图如题2-6图

题图

在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,

而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o

30,则动量的增量为

由矢量图知,动量增量大小为0v m ?,方向竖直向下.

一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并

在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒

解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量

12v m v m p ?

??-=?方向竖直向上,

大小 mg mv mv p =--=?)(12? 碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.

作用在质量为10 kg 的物体上的力为i t F ?

)210(+=N ,式中t 的单位是s ,(1)求4s

后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初

速度j ?

6-m ·s -1的物体,回答这两个问题.

解: (1)若物体原来静止,则

i

t i t t F p t ????1

40

1s m kg 56d )210(d -??=+==???,沿x 轴正向,

若物体原来具有6-1

s m -?初速,则

??+-=+-=-=t t t

F v m t m F v m p v m p 0

00000d )d (,??

?????于是 ??==-=?t p t F p p p 01

02d ?

????, 同理, 12v v ???=?,12I I ?

?=

这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即

亦即 0200102

=-+t t

解得s 10=t ,(s 20='t 舍去)

一质量为m 的质点在xOy 平面上运动,其位置矢量为

求质点的动量及t =0 到ωπ2=

t 时间内质点所受的合力的冲量和质点动量的改变量.

解: 质点的动量为

将0=t 和

ωπ2=

t 分别代入上式,得 j b m p ??

ω=1,i a m p ??ω-=2, 则动量的增量亦即质点所受外力的冲量为

一颗子弹由枪口射出时速率为1

0s m -?v ,当子弹在枪筒内被加速时,它所受的合力

为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合

力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.

解: (1)由题意,子弹到枪口时,有

0)(=-=bt a F ,得

b a t =

(2)子弹所受的冲量

b a

t =

代入,得

(3)由动量定理可求得子弹的质量

一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为

v +m kT 2, v -km T 2

证明: 设一块为1m ,则另一块为2m , 21km m =及m m m =+21

于是得

1,121+=+=

k m

m k km m ①

又设1m 的速度为1v , 2m 的速度为2v ,则有

2222211212121mv v m v m T -+=

2211v m v m mv += ③

联立①、③解得

1

2)1(kv v k v -+=

将④代入②,并整理得

于是有 km T v v 21±

=

将其代入④式,有

又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 证毕.

设N 67j i F ???-=合.(1) 当一质点从原点运动到m 1643k j i r ????++-=时,求F ?所作的

功.(2)如果质点到r 处时需,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.

解: (1)由题知,合F ?

为恒力,

∴ )1643()67(k j i j i r F A ??

?????++-?-=?=合

(2)

w 756.045==?=

t A P

(3)由动能定理,J 45-==?A E k

以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.

解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为

题2-13图

第一锤外力的功为1A

???=

=-='=s s k

y ky y f y f A 1

012d d d ①

式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=. 设第二锤外力的功为2A ,则同理,有

?-=

=2

1

222221d y k ky y ky A ②

由题意,有

2)21(212k

mv A A =

?== ③

即 222

122k k ky =

- 所以, 22=y

于是钉子第二次能进入的深度为

设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n

P r k r E /)(=, 试求质点所受保守力的大小和方向. 解:

1

d )(d )(+-==

n r nk

r r E r F

方向与位矢r ?

的方向相反,即指向力心.

一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下

一重物C ,C 的质量为M ,如题图.求这一系统静止时两弹簧的伸长量之比和弹性势

能之比.

解: 弹簧B A 、及重物C 受力如题图所示平衡时,有 题图

又 11x k F A ?= 所以静止时两弹簧伸长量之比为 弹性势能之比为

(1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少地球质量×1024kg ,地球中心到月球中心的距离×108m ,月球质量×1022kg ,月球半径×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少

解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有 经整理,得

=

22

2422

1035.71098.51035.7?+??81048.3?? 则P 点处至月球表面的距离为

(2)质量为kg 1的物体在P 点的引力势能为

如题图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与

斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.

解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有

式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得

题图

再次运用功能原理,求木块弹回的高度h ' 代入有关数据,得 m 4.1='s ,

则木块弹回高度

题图

质量为M 的大木块具有半径为R 的四分之一弧形槽,如题图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.

解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有

又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有 联立,以上两式,得

一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直.

证: 两小球碰撞过程中,机械能守恒,有

即 222120v v v += ①

题图(a) 题图(b)

又碰撞过程中,动量守恒,即有

亦即 2

10v v v ???+=

由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以0

v ?

为斜边,故知1v ?与2v ?是互相垂直的.

第三习题

一质量为m 的质点位于(11,y x )处,速度为j

v i v v y x ???

+=, 质点受到一个沿x 负方向

的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩. 解: 由题知,质点的位矢为 作用在质点上的力为

所以,质点对原点的角动量为 作用在质点上的力的力矩为

哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =×1010m 时的速率是1v =×104

m ·s -1,它离太阳最远时的速率是2v =×102m ·s -1

这时它离太

阳的距离2r 多少(太阳位于椭圆的一个焦点。)

解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有

∴ m 1026.51008.91046.51075.812

2

4102112?=????==v v r r

物体质量为3kg ,t =0时位于m 4i r ?

?=, 1s m 6-?+=j i v ???,如一恒力N 5j f ??=作用在

物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化. 解: (1)

??-??===?30

1

s m kg 15d 5d j t j t f p ????

(2)解(一) 73400=+=+=t v x x x

即 i r ??41=,j i r ???

5.2572+=

即 j i v ???611+=,j i v ??

?112+=

∴ k j i i v m r L ?????

??72)6(34111=+?=?=

∴ 1

212s m kg 5.82-??=-=?k L L L ????

解(二) ∵

dt dz

M =

∴ ???=?=?t t t

F r t M L 0

d )(d ????

题2-24图

平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题2-24图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少

解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即

2

001ωmr g M = ① 挂上2M 后,则有

2

21)(ω''=+r m g M M ②

重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00

ωω''=?2020r r ③

联立①、②、③得 飞轮的质量m =60kg ,半径R =,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题2-25图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:

(1)设F =100 N ,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 (2)如果在2s 内飞轮转速减少一半,需加多大的力F 解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力. 题图(a ) 题图(b)

杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有

对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反. ∵ N F r μ= N N '=

F l l l N F r 1

2

1+='=μ

μ

又∵

,21

2mR I =

F mRl l l I R F r 1

21)(2+-=-

=μβ ①

以N 100=F 等代入上式,得

由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为

可知在这段时间里,飞轮转了1.53转.

(2)1

0s rad 602900-??=π

ω,要求飞轮转速在2=t s 内减少一半,可知

用上面式(1)所示的关系,可求出所需的制动力为

固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题图所示.设R =, r =,m =4 kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.

解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).

题(a)图 题(b)图 (1) 1m ,2m 和柱体的运动方程如下:

2222a m g m T =- ① 1111a m T g m =- ②

βI r T R T ='

-'21 ③

式中 ββR a r a T T T T ==='='122211,,,

而 222121mr MR I +=

由上式求得 (2)由①式 由②式

计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为

M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r = m

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,

a m T g m 222=- ①

a m T 11= ②

对滑轮运用转动定律,有

β

)21

(212Mr r T r T =- ③

又, βr a = ④

联立以上4个方程,得

题(a)图 题(b)图

题图

如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有

∴ l g 23=

β

(2)由机械能守恒定律,有

∴ l g θωsin 3=

题图

如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值;

(2)相撞时小球受到多大的冲量

解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的

速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:

mvl I l mv +=ω0 ①

2

220212121mv I mv +=ω ②

上两式中

2

31Ml I =

,碰撞过程极为短暂,可认为棒没有显着的角位移;碰撞后,

棒从竖直位置上摆到最大角度o

30=θ,按机械能守恒定律可列式:

)30cos 1(2212?-=l

Mg I ω ③

由③式得 由①式

ml I v v ω

-

=0 ④

由②式

m I v v 2

20

2

ω-

= ⑤

所以 求得

(2)相碰时小球受到的冲量为 由①式求得

负号说明所受冲量的方向与初速度方向相反.

题图

一个质量为M 、半径为R 并以角速度ω转动着的飞轮(可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少

(2)求余下部分的角速度、角动量和转动动能. 解: (1)碎片离盘瞬时的线速度即是它上升的初速度 设碎片上升高度h 时的速度为v ,则有 令0=v ,可求出上升最大高度为

(2)圆盘的转动惯量221MR I =

,碎片抛出后圆盘的转动惯量2221mR MR I -=',碎片

脱离前,盘的角动量为ωI ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内

力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即 式中ω'为破盘的角速度.于是 得ωω='(角速度不变) 圆盘余下部分的角动量为 转动动能为 题图

一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘(如题3。17图所示方向). (1)开始时轮是静止的,在质点打入后的角速度为何值

(2)用m ,0m 和θ表示系统(包括轮和质点)最后动能和初始动能之比. 解: (1)射入的过程对O 轴的角动量守恒

R m m v m )(sin 00

0+=θω (2) 0

20200200020sin 2

1]

)(sin ][)[(21

m m m v m R m m v m R m m E E k k +=++=

θ

θ

弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N ·m -1;定滑轮的转动惯量是·m 2,半径为 ,问当 kg 质量的物体落下 时,它的速率为多大 假设开始时物体静止而弹簧无伸长.

解: 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有 又 R v /=ω

故有 I mR k kh mgh v +-=

22

2)2(

题图

习题四

惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′

系相对S 系的速度是多少 (2) S '系中测得的两事件的空间间隔是多少 解: 设)(S '相对S 的速度为v ,

(1) )(1211

x c v t t -='γ 由题意 012

='-'t t 则 )

(12212x x c v

t t -=-

8

12122

105.12?-=-=--=c

x x t t c v 1s m -?

(2)由洛仑兹变换 )(),(222111

vt x x vt x x -='-='γγ 代入数值, m 102.541

2?='-'x x 长度0l =1 m 的米尺静止于S ′系中,与x ′轴的夹角'θ=30°,S ′系相对S 系沿

x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45?. 试求:(1)S ′系和S

系的相对运动速度.(2)S 系中测得的米尺长度.

解: (1)米尺相对S '静止,它在y x '',轴上的投影分别为:

m 866.0cos 0='='θL L x ,m 5.0sin 0='='θL L y

米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即

22

1tan c v L L L L L L x

y

x

y x

y -''=

'=

=

θ

把ο45=θ及y x L L '

',代入

则得

866.05.0122=

-c v 故 c v 816.0=

(2)在S 系中测得米尺长度为m

707.045sin =?=

y

L L

4.5两个惯性系中的观察者O 和O '以(c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇 解: O 测得相遇时间为t ?

O ' 测得的是固有时t '?

∴ v L t

t 2

01βγ-=

?='?

s 1089.88

-?=,

6.0==

c v

β , 8.01=

γ ,

或者,O '测得长度收缩,

观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.

(2)乙测得这两个事件发生的地点间的距离.

解: 甲测得0,s 4==x t ??,乙测得s 5=t ?,坐标差为12

x x x '-'='?′ (1)∴

t

c

v t x c v

t t ?-?=?+

?='?2

2

)(11)(λγ

解出

c c t t c v 53)54(1)(

122=-='??-= (2) ()0

,45

,=?=?'?=?-?='?x t t t v x x γγ ∴ m

1093453

458?-=-=??-=-='c c t v x ?γ?

负号表示012

<'-'x x . 6000m 的高空大气层中产生了一个π介子以速度v =飞向地球.假定该π介子在

其自身静止系中的寿命等于其平均寿命2×10-6

s .试分别从下面两个角度,即地球上的观测者和π介子静止系中观测者来判断π介子能否到达地球.

解: π介子在其自身静止系中的寿命s 1026

0-?=t ?是固有(本征)时间,对地球观测者,由于时间膨胀效应,其寿命延长了.衰变前经历的时间为 这段时间飞行距离为m 9470==t v d ?

因m 6000>d ,故该π介子能到达地球.

或在π介子静止系中,π介子是静止的.地球则以速度v 接近介子,在0t ?时间内,地球接近的距离为m 5990=='t v d ?

m 60000=d 经洛仑兹收缩后的值为:

d d '>',故π介子能到达地球. 设物体相对S ′系沿x '轴正向以运动,如果S ′系相对S 系沿x 轴正向的速度也

是,问物体相对S 系的速率是多少

解: 根据速度合成定理,c u 8.0=,c v x 8.0='

∴ c c c c c c c v u u v v x x x 98.08.08.018.08.0122=?+

+='++'=

4.9 飞船A 以的速度相对地球向正东飞行,飞船B 以的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B

飞船的观测者测得两颗信号弹相隔的时间间隔为多少

解: 取B 为S 系,地球为S '系,自西向东为x (x ')轴正向,则A 对S '系的速度c v x 8.0=',S '系对S 系的速度为c u 6.0=,则A 对S 系(B 船)的速度为 发射弹是从A 的同一点发出,其时间间隔为固有时s 2='t ?,

题3-14图

∴B 中测得的时间间隔为:

(1)火箭A 和B 分别以和的速度相对地球向+x 和-x 方向飞行.试求由火箭B 测得A 的速度.(2)若火箭A 相对地球以的速度向+y 方向运动,火箭B 的速度不变,求A 相对B 的速度. 解: (1)如图a ,取地球为S 系,B 为S '系,则S '相对S 的速度c u 6.0=,火箭A 相对S 的速度c v x 8.0=,则A 相对S '(B )的速度为:

或者取A 为S '系,则c u 8.0=,B 相对S 系的速度c v x 6.0-=,于是B 相对A 的速度为:

(2)如图b ,取地球为S 系,火箭B 为S '系,S '系相对S 系沿x -方向运动,速度

c u 6.0-=,A 对S 系的速度为,0=x v ,c v y 8.0=,由洛仑兹变换式A 相对B 的速度

为:

∴A 相对B 的速度大小为 速度与x '轴的夹角θ'为

题3-15图

静止在S 系中的观测者测得一光子沿与x 轴成?60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何 解: S 系中光子运动速度的分量为

由速度变换公式,光子在S '系中的速度分量为 光子运动方向与x '轴的夹角θ'满足 θ'在第二象限为ο2.98='θ

在S '系中,光子的运动速度为

c

v v v y x ='+'='22

正是光速不变.

(1)如果将电子由静止加速到速率为,须对它作多少功(2)如果将电子由速率为加速到,又须对它作多少功

解: (1)对电子作的功,等于电子动能的增量,得

161012.4-?=J=eV 1057.23?

(2) )()(202120221

2c m c m c m c m E E E k k k

---=-='?

)

1111(

2

212

22202122c

v c

v

c m c m c m --

-=-=)

μ子静止质量是电子静止质量的207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6

s ,试问其质量是电子静止质量的多少倍 解: 设μ子静止质量为0m ,相对实验室参考系的速度为c v β=,相应质量为m ,电

子静止质量为e m 0,因

2

711,102

2

==

--=

ττββττ即

由质速关系,在实验室参考系中质量为:

故 725

27207120720=?=-=βe m m

一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之几 解: 设静止质量为0m ,运动质量为m ,

由题设 10.000

=-m m m

由此二式得 10

.0111

2

=--β

10.1112=

在运动方向上的长度和静长分别为l 和0l ,则相对收缩量为:

氢原子的同位素氘(2

1

H)和氚(31

H)在高温条件下发生聚变反应,产生氦(42

He)原子核和一个中子(10

n),并释放出大量能量,其反应方程为21H + 31H →42

He + 10

n 已知氘核的静止质量为原子质量单位(1原子质量单位=×10-27kg),氚核和氦核及中子的质量分别为,,原子质量单位.求上述聚变反应释放出来的能量. 解: 反应前总质量为0290.50155.30135.2=+amu 反应后总质量为0102.50087.10015.4=+amu 质量亏损 0188.00102.50290.5=-=?m amu 由质能关系得

()2

82921031012.3???==-mc E ??

习题五

符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动:

(1)拍皮球时球的运动;

(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).

题4-1图

解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用.或者说,若一个系统的运动微分方程能用

描述时,其所作的运动就是谐振动.

(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.

(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为

θsin mg -,如题4-1图(b)所示.题 中所述,S ?<<R ,故R

S

?=

θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有

令R

g

=

2ω,则有 质量为kg 10103

-?的小球与轻弹簧组成的系统,按)SI ()3

28cos(1.0π

π+

=x 的规律作谐振动,

求:

(1)振动的周期、振幅和初位相及速度与加速度的最大值;

(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等

(3)s 52

=t 与s 11=t 两个时刻的位相差;

解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:

又 πω8.0==A v m 1s m -? 51.2=1s m -?

(2) N 63.0==m m a F 当p k E E =时,有p E E 2=,

即 )21(212

122kA kx ?=

∴ m 20

222±=±=A x (3) ππωφ32)15(8)(12=-=-=?t t

一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:

(1)A x -=0;

(2)过平衡位置向正向运动;

(3)过2A

x =

处向负向运动; (4)过2

A

x -=处向正向运动.

试求出相应的初位相,并写出振动方程.

解:因为 ???-==0

00

0sin cos φωφA v A x

将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有 一质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:

(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.

解:由题已知 s 0.4,m 10242=?=-T A

∴ 1s rad 5.02-?==ππ

ωT

又,0=t 时,0,00=∴+=φA x 故振动方程为

(1)将s 5.0=t 代入得

方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,

t t =时 3

,0,2

φ=<+=t v A x 故且

∴ s 3

22/

3==

?=

π

πω

φ

t (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-?=v ,求振动周期和振动表达式.

解:由题知

12

311m N 2.010

9.48.9100.1---?=???==x g m k 而0=t 时,-12020s m 100.5m,100.1??=?-=--v x ( 设向上为正)

又 s 26.12,510

82.03===?==

-ωπ

ωT m k 即 ∴ m )4

5

5cos(1022π+?=-t x

图为两个谐振动的t x -曲线,试分别写出其谐振动方程.

题图

解:由题图(a),∵0=t 时,s 2,cm 10,,2

3,0,0000===∴>=T A v x 又πφ

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学第二版第章习题解答精编

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理学教案(上册)

大学物理学I 课程教案

大学物理学I 课程教案

第三章质点动力学 教材分析: 在前两章中,我们以质点为模型讨论了力学中的基本概念以及物体作机械运动的基本规律。在这一章中,我们将拓展这些概念和规律,把它们应用到刚体运动的问题中。本章主要讨论刚体绕定轴转动的有关规律,在此基础上,简要介绍刚体平面平行运动。 3.1 定轴转动刚体的转动惯量 教学目标: 1 理解刚体的模型及其运动特征; 2 理解转动惯量的概念和意义; 教学难点: 转动惯量的计算;动量矩守恒定律的应用 教学内容: 1 转动惯量的定义 2 转动惯量的计算(匀质长细杆的转动惯量、均匀细圆环的转动惯量、均匀薄圆盘的转动惯量、均匀球体的转动惯量) 3 平行轴定理 3.2刚体的定轴转动定理3.3 转动定理的积分形式——力矩对时间和空间的积累效应 3.5 守恒定律在刚体转动问题中的应用 教学目标: 1理解力矩的物理意义,掌握刚体绕定轴转动的转动定律 2 理解力矩的功和刚体转动动能的概念,并能熟练运动刚体定轴转动的动能定理和机械能守恒定律 3 用类比方法学习描述质点和刚体运动的物理量及运动规律 4 理解刚体对定轴转动的角动量概念和冲量矩的概念 5 掌握刚体对定轴转动的角动量定理和角动量守恒定律 教学难点: 刚体定轴转动定律 教学内容: 1 力矩 2 定轴转动的角动量定理 3 定轴转动的动能定理(力矩的功、定轴转动的动能、定轴转动的动能定理) 4 刚体的重力势能 5 机械能守恒定律的应用 6 角动量守恒定律及其应用 课后作业: 小论文: 1 关于转动惯量的讨论 2 陀螺运动浅析

第5章机械振动 教材分析: 与前几章所讨论的质点和刚体的运动相似,振动也是物质运动的基本形式,是自然界中的最普遍现象。振动几乎涉及到科学研究的各个领域。例如,在力学中有机械振动,在电磁学中有电磁振荡。近代物理学中更是处处离不开振动。本章将讨论机械振动的基本规律。 5.1 弹簧振子和单摆的运动方程 教学目标: 理解弹簧振子的动力学和运动学方程;理解单摆的动力学方程和运动学方程 教学重/难点: 弹簧振子的动力学方程的建立;单摆动力学方程的建立 教学内容: 弹簧振子的动力学方程、弹簧振子的运动学方程、单摆的运动方程 5.2 简谐振动 教学目标: 理解简谐振动的定义、简谐振动的运动方程 理解简谐振动的振幅、周期、相位的意义 掌握用旋转矢量表示简谐振动、理解简谐振动能量的特征 教学重/难点: 简谐振动的特征量:振幅、周期、相位 旋转矢量法、简谐振动的动能、势能 教学内容: 简谐振动的基本概念、简谐振动的旋转矢量图表示法、简谐振动的能量 5.3 同方向同频率的简谐振动的合成 教学目标: 理解同方向同频率的两个或多个简谐振动的合成 教学重/难点: 两个或多个同方向同频率简谐振动的合成 教学内容: 两个同方向同频率的简谐振动的合成、多个同方向同频率的简谐振动的合成 作业:P166 5.2 5.3 5.8 5.23

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

最新《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗?0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单

《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出22r x y = + dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

赵近芳版大学物理学(上册)课后答案

. . . . .. .. .. 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

最新赵近芳版《大学物理学上册》课后答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理(第二版)下册答案-马文蔚剖析

物理学教程(二)下册 答案9—13 马文蔚 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图 (B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电

场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零 (D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ). *9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止 (B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题 9-4 图 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ). 9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10 -21 e ,而中子电量与零差值的最大范围也不会超过±10 -21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10 -21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-??+= 二个氧原子间的库仑力与万有引力之比为 1108.2π46202max <

《大学物理》第二版课后习题答案第九章

习题精解 9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有 2122()d x F k k x ma m dt =-+== 化简得 212 20k k d x x dt m ++ = 令2 12k k m ω+=则22 20d x x dt ω+=所以物体做简谐振动,其周期 22T π ω = =; 9-2 如图所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。试证明这种摆动是近似的简谐振动,并求其振动周期。设电荷的质量皆为m ,重力忽略不计。 解 取逆时针的力矩方向为正方向,当电偶极子在如图所示位置时,电偶极子所受力矩为 sin sin sin 22 l l M qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为 2 2 21 222 l l J m m ml ????=+= ? ????? 由转动定律知 2221sin 2d M qEl J ml dt θθβ=-==? 化简得 222sin 0d qE dt ml θθ+= 当角度很小时有sin 0θ≈,若令2 2qE ml ω= ,则上式变为 ~

222sin 0d dt θ ωθ+= 所以电偶极子的微小摆动是简谐振动。而且其周期为 22T π ω = = 9-3 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。汽车为开动时,上下为自由振动的频率应保持在 1.3v Hz = 附近,与人的步行频率接近,才能使乘客没有不适之感。问汽车正常载重时,每根弹簧松弛状态下压缩了多少长度 解 汽车正常载重时的质量为m ,振子总劲度系数为k ,则振动的周期为2T π = 率为1v T = = 正常载重时弹簧的压缩量为 22220.15()44mg T g x g m k v ππ==== 9-4 一根质量为m ,长为l 的均匀细棒,一端悬挂在水平轴O 点,如图所示。开始棒在平衡 位置OO , 处于平衡状态。将棒拉开微小角度后放手,棒将在重力矩作用下,绕O 点在竖直平面内来回摆动。此装置时最简单的物理摆。 若不计棒与轴的摩擦力和空气的阻力,棒将摆动不止。试证明摆角很小的情况下,细棒的摆动为简谐振动,并求其振动周期。 解 设在某一时刻,细棒偏离铅直线的角位移为θ,并规定细棒在平衡位置向右时θ为正,在向左时为负,则力矩为 . 1 sin 2 M mg l θ =- 负号表示力矩方向与角位移方向相反,细棒对O 点转动惯量为2 13 J ml = ,根据转动定律有 222 11sin 23d M mgl J ml dt θθβ=-== 化简得 223sin 02d g dt l θθ+= 当θ很小时有sin θθ≈,若令2 32g l ω= 则上式变为 222sin 0d dt θ ωθ+=

大学物理学第三版下册课后答案

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无 关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为 θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θE =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量 3 0π2cos r p E r εθ = 垂直于r 方向,即θ方向场强分量 3 00π4sin r p E εθ =

相关主题
文本预览
相关文档 最新文档