当前位置:文档之家› 通信电子线路相位鉴频器实验报告

通信电子线路相位鉴频器实验报告

通信电子线路相位鉴频器实验报告
通信电子线路相位鉴频器实验报告

课程名称通信电子电路实验报告

实验项目相位鉴频器成绩

学院信息学院专业通信工程学号姓名

实验时间实验室指导教师

一、实验目的

1、熟悉变容二极管调频器和相位鉴频器电路原理及构成。

2、了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。

3、特变容一极管调频器与相位鉴频器两实验板进行联机试验,进一步

了解调频和解调全过程及整机调试方法。

二、预习内容

1,认真阅读实验内容,预习有关相位鉴频的工作原理,以及典型电路和实用电路。

2.分析初级回路、次级回路和耦合回路有关参数对鉴频器工作特性(S曲

线)的影响。

三、实验仪器设备

1、取踪示波器(RIGOLDS5062cA数字存储示波器)

2.频率计(AT-F1000-C数字频率计)

3.扫频仪(BT3C宽带扫频仪)

4.万用表(DT9205数字万用表)

5.清华科教TPE-GP2型高频电路实验箱及G4实验板

6.高频信号发生器(前锋QF1055A/1056B信号发生器)

四、实验原理

从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原出调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

五、实验步骤及内容记录(包括数据、图表、波形、程序设计等)

1,用扫频仪调整相位鉴频器的S型鉴频特性。

2、鉴频器的静态测试

输入信号改接高频信号发生器,输入电压约为100Mvp-p,用万用表测鉴频器的输出电压,在5.5MHZ-7.5MHZ范围内,以梅格0.2MHZ条件下测得相应的输出电压。填入表

5.56

6.57

7.5

3、FM信号的解调

FM调频电路输入端不接音频信号,将频率计接到调频器的F端,C3(=100pf)电容开路,调整Rpl使Ed=4V,调RP2使f0=6.5MHZ,将f=2KHZ,Vm=400mVpp的音频调制信号加至调频电路输入进行调频。鉴频器中心频率也调谐在6.5MHZ,将

调频电路与鉴频电路连接,调频输出信号送入鉴频器输入端。用双踪示波器同时观测记录调制信号和解调信号,比较二者的异同,将音频信号逐渐加大,观察波形变化,结果记录在表9.2中。

曲线为:

六、实验结果分析

通过实验数据以及绘制的图形可看出:鉴频器的静态曲线,近似为S型曲线;调制信号与解调信号的包络变化趋势基本相同,但幅度不同,解调出来的波与调制波形基本一样,当音频信号逐渐增大后,会出现波形的失真。

七、实验小结

通过本实验学习了调频波的解调,也就是利用相位鉴频器,借助谐振电路将等幅的调频波转化为幅度随瞬时频率变化的调幅调频波,然后再利用二极管包络检波进行幅度检波,最终还原出调制信号。鉴频特性为S型曲线,不同的参数会影响S曲线的斜率以及上下幅度等等。

八、思考题及解答

通过S型鉴频特性曲线说明相位鉴频器是如何实现调波信号解调的?

答:相位鉴频器,是利用回路的相位-频率特性来实现调频波转化为调幅调频波的,它是将调频的信号频率转化为两个电压之间的相位变化,再将相位变化转化为对应的幅度变化,然后利用幅度检波器检出幅度的变化。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

通信电子线路实验报告4

大连理工大学 本科实验报告 课程名称:通信电子线路实验 学院:电子信息与电气工程学部专业:电子信息工程 班级:电子0904 学号: 200901201 学生姓名:朱娅 2011年11月20日

实验四、调幅系统实验及模拟通话系统 一、实验目的 1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与 解调的系统概念。 2.掌握系统联调的方法,培养解决实际问题的能力。 3.使用调幅实验系统进行模拟语音通话实验。 二、实验内容 1.实验内容及步骤,说明每一步骤线路的连接和波形 (一)调幅发射机组成与调试 (1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。将其加到由MC1496 构成的调幅器的载波输入端。 波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。 (2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V. 波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。 (3)观察调幅器输出,应为普通调幅波。可调整VR8、VR9 和VR11,

使输出的波形为普通的调幅波(含有载波,m 约为30%)。 (4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。 波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。f?=1.6kHz,Vpp=0.8V,m≈30%。 (5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。 (6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。给末级丙类功放加上+12V 电源,调节VR4 使J8(JF.OUT)输出6Vp-p左右不失真的放大信号,在丙类功放的输出端,可观察到经放大后的调幅波,改变电位器VR6 可改变丙类放大器的增益,调节CT2 可以看到LC 负载回路调谐时对输出波形的影响。 波形:此时示波器上为放大后的调幅波,f?=1.6kHz,Vpp=8V,m≈30%。 (二)调幅接收机的组成与调试 从GP-4 实验箱的系统电路图可以看出调幅接收机部分采用了二次变频电路,其中频频率分别为:第一中频6.455MHz,第二中频455kHz。由于该二次变频接收机的两个本机振荡器均采用了石英晶体振荡器,其中第一本振频率16.455MHz,第二本振频率6.000MHz,也就是说本振频率不可调。这样实验箱的调幅接收机可以接收的频率就因为第一本振频率不可调而被固定下来,即该机可以接收的已调波的中心频率应该为10.000MHz(第1本振频率-第1中频频率 = 16.455MHz - 6.455MHz =

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验 配置一:PSK(DPSK)模块 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一) PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输出π相载波,两个模拟开关输出通过载波输出开关37K02 合路叠加后输出为二相PSK 调制信号。另外,DPSK 调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{a n},通过码型变换器变成相对码序列{b n},然后再用相对码序列{b n},进行绝

通信电子线路实物实验报告

东南大学电工电子实验中心 实验报告 课程名称:电子电路与综合实验 第一次实物实验 院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130 实验室:高频实验室实验组别: 同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:

实验一常用仪器使用 一、实验目的 1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作 原理; 2.通过实验掌握振幅调制、频率调制的基本概念。 二、实验仪器 示波器(带宽大于 100MHz) 1台 万用表 1台 双路直流稳压电源 1台 信号发生器 1台 频谱仪 1台 多功能实验箱 1 套 多功能智能测试仪1 台 三、实验内容 1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。 答: (1)频谱仪结构框图为: 频谱仪的主要工作原理: ①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。 (2)示波器的测量精度与示波器带宽、被测信号频率之间的关系: 示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。 2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。 答: 上电时间示意图: 工作原理: 捕获这个过程需要示波器采样周期小于过渡时间。示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。这样,就可以利用游标读出电源上电的上升时间。 3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的? 答: 载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00 t ()()t t c f t dt t k u t dt θωωθΩ =++? ?()= 所以FM 已调波的表达式为:000 ()cos[()]t om c f u t U t k u t dt ωθΩ =++? 当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+ 其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即 m f f U M k Ω=Ω 。这样,调制信号的幅度与频率信息是已加到 FM 波中。

振幅调制电路实验报告(DOC)

西南科技大学 课程设计报告 课程名称:高频电路课程设计 设计名称:振幅调制电路 姓名:李光伟 学号: 20105315 班级:电子1001 指导教师:魏冬梅 起止日期:2012.12.24-2013.1.6 西南科技大学信息工程学院制

课程设计任务书 学生班级:电子1001 学生姓名:李光伟学号:20105315 设计名称:振幅调制电路 起止日期:2012.12.24-2013.1.6指导教师:魏冬梅 设计要求:波信号为1MHz,低频调制信号为1kHz,两个信号均为正弦波信号。这两个输入信号可以采用实验室的信号源产生,也可以自行设计产生,采用乘法器1496设计调幅电路。 产生DSB信号,输出信号幅度>200mV。

课程设计学生日志时间设计内容

课程设计考勤表 周星期一星期二星期三星期四星期五 课程设计评语表指导教师评语: 成绩:指导教师: 年月日

振幅调制电路 一、 设计目的和意义 目的:实现抑制载波的双边带调幅。产生DSB 信号,输出信号幅度>200mV 。 意义:实现抑制载波的双边带调幅。 二、 设计原理 由集成模拟乘法器MC1496构成的振幅调制电路,可以实现普通调幅、抑制载波的双边带调幅以及单边带调幅。本次实验采用MC1496模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件。主要功能是实现两个互不相关信号相乘.即输出信号与两输入信号相乘输出,总电路图如图1所示。 [1] 振幅调制就是使载波信号的振幅随调制信号的变化规律而变化的技术。通常载波信号为高频信号,调制信号为低频信号。设载波信号的表达式为: ()t U u c cm c ωcos =, 调制信号的表达式为t V t u cm Ω=Ωcos )(则调制信号的表达式 为:t t m V u c cm ωcos )cos 1(0Ω+= =t mV t t mV t V c cm c cm c cm )cos(21)cos(21cos Ω-+Ω++ ωωω错误!未找到 引用源。

通信电子线路实验报告三点式振荡

通信电了线路课程设计 课程名称通信电子线路课程设计_________________ 专业___________________ 通信工程 ______________________ 班级___________________________________________ 学号___________________________________________ 姓名___________________________________________

指导教师________________________________________ 、八 刖 现代通信的主要任务就是迅速而准确的传输信息。随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。 在本课程设计中,着眼于无线电通信的基础电路一一LC正弦振荡器的分析和研究。常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。正弦波振荡器在各种电子设备中有着广泛的应用。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

实验报告simulink

班级:姓名:学号:

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

通信电子线路实验报告解析

LC与晶体振荡器 实验报告 班别:信息xxx班 组员: 指导老师:xxx

一、实验目的 1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。 2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。 3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。 4)、比较LC 与晶体振荡器的频率稳定度。 二、实验预习要求 实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。 三、实验原理说明 三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。 1、起振条件 1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质 的电抗,且它们之间满足下列关系: 2)、幅度起振条件: 图1-1 三点式振荡器 式中:q m ——晶体管的跨导, F U ——反馈系数, A U ——放大器的增益, LC X X X X Xc o C L ce be 1 |||| )(= -=+-=ω,即)(Au 1 * 'ie L oe m q q q Fu q ++ >

q ie——晶体管的输入电导, q oe——晶体管的输出电导, q'L——晶体管的等效负载电导, F U一般在0.1~0.5之间取值。 2、电容三点式振荡器 1)、电容反馈三点式电路——考毕兹振荡器 图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。 L1L1 (a)考毕兹振荡器(b)交流等效电路 图1-2 考毕兹振荡器 2)、串联改进型电容反馈三点式电路——克拉泼振荡器 电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

通信电子线路实验报告刘紫豪

实验报告 课程名称通信电子线路 专业通信工程 班级1301 学号21 姓名刘紫豪 指导教师张鏖烽 2015年11 月10 日 实验一 OrCAD系统基本实验1、实验目的 掌握OrCAD电子设计自动化(EDA)软件的应用。 掌握基本的电子电路仿真实验方法。

2、实验环境 P4微机; OrCAD 10.5工具包。 3、实验内容 (1)实验相关的基本知识掌握 认真阅读本实验指导书的第一部分; 掌握OrCAD 10.5电子设 计自动化(EDA)软件系统 中的电子电路原理图设计包 ——Capture CIS的使用方法 和基本操作,为今后的实验 和研究作技术上的准备。 (2)给定实验内容 A. 按本实验指导书的 第一部分中介绍的方法,使 用OrCAD 10.5完成二极管限 幅电路的计算机仿真实验。 B. 利用Capture CIS为 本实验建立一个新的 PSpice项目,项目名可以自 行选取。 C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。仿真电路中各元器件的参数如下表: 元件代号值仿真库备注 D1 D1N3940 DIODE.OLB D2 D1N3940 DIODE.OLB R1 1K ANALOG.OLB R2 3.3K ANALOG.OLB R3 3.3K ANALOG.OLB R4 5.6K ANALOG.OLB C1 0.47u ANALOG.OLB 0 SOURCE.OLB 零接地 V1 5V SOURCE.OLB Vin 0V SOURCE.OLB V2 SINE SOURCSTM.OLB 后面实验需要 V3 VAC SOURCE.OLB 后面实验需要 D. 完成本电路的偏置点分析参数设置(参见本指导书的6.2.1节),运行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;

高频实验九 电容耦合相位鉴频器实验报告

实验九 电容耦合相位鉴频器实验 一.实验目的 1. 进一步学习掌握频率解调相关理论。 1. 了解电容耦合回路相位鉴频器的工作原理。 3. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.电容耦合相位鉴频器实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 三、实验基本原理与电路 1. 实验基本原理 从调频波中取出原来的调制信号,称为频率检波,又称鉴频。完成鉴频功能的电路,称为鉴频器。在调频波中,调制信息包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 鉴相器采用两个并联二极管检波电路。假设二极管D3的检波电路和二极管D4的检波电路完全对称,两个检波电路的电压传输系数完全相等,检波后的输出信号为两个检波电路的输出电压差。即034D D U U U =- 当瞬时频率0f f =时, 2U 比1U 滞后90°,但|3D U |=|4D U |,这时,鉴频器输出为零。当0f f >时, 2U 滞后于1U 的相角小于90°,|3D U |>|4D U |,鉴频器的输出大于零。当0f f <时,2U 滞后于1U 的相角大于90°,

|3D U |<|4D U |,鉴频器的输出小于零。相位鉴频器鉴频特性的线性较好,鉴频灵敏度也较高。 图9-1频率电压转换原理图。 (ω<ω0)U 2(ω=ω0) (ω>ω0) . U 1.. U 2 .2U 2. 2 .. U 1 .U 2 .2 U 2. 2 . . U 2 .2 U 2. 2 (a) (b)(ω=ω0)(c)(ω>ω0) (d)(ω<ω0) 图9-1频率电压转换原理图。 鉴频器的主要参数: (1) 鉴频跨导 鉴频器的输出电压与输入调频波的瞬时频率偏移成正比,其比例系数称为鉴频跨导。图9-3为鉴频器输出电压V 与调频波的瞬时频偏f ?之间的关系曲线,称为鉴频特性曲线。它的中部接近直线部分的斜率即为鉴频跨导。它代表每单位频偏所产生的输出电压的大小,希望鉴频器的鉴频跨导应该尽可能的大。 (2)鉴频灵敏度 指鉴频器正常工作时,所需要输入调频波的最小幅度。其值越小,鉴频器灵敏度越高。 (3)鉴频器频带宽度 从上图的鉴频特性曲线中可以看出,只有特性曲线中间一部分的线性度较好,我们称2m f ?为频带宽度。一般,要求2m f ?大于输入调频波频偏的两倍,并

相关主题
文本预览
相关文档 最新文档