当前位置:文档之家› 热继选型原则及应注意的问题

热继选型原则及应注意的问题

热继选型原则及应注意的问题
热继选型原则及应注意的问题

使用继电器注意的问题

(1)有若干个电流等级,每一个等级有一个电流调节范围。选择时根据电动机额定电流确定热继电器的热元件电流等级,电动机额定电流应在电流调节范围之中; 线圈电压等于控制电压。

(2)热继电器在电路中是做三相交流电动机的过载保护用,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护

(3)保护三相异步电动机时,至少要用有两个热元件的热继电器。

热继电器的选型及整定原则

1保证电动机正常运行及起动:

在正常起动的起动电流和起动时间、非频繁起动的场合,必须保证电动机的起动不致使热继电器误动。当电动机起动电流为额定电流的6倍、起动时间不超过6s、很少连续起动的条件下,一般可按电动机的额定电流来选择热继电器。(实际中热继电器的额定电流可略大于电动机的额定电流)

2考虑保护对象--电动机的特性:

电动机的型号、规格和特性电动机的绝缘材料等级有A级、E级、B级等,它们的允许温升各不相同,因而其承受过载的能力也不相同。开启式电动机散热比较容易,而封闭式电动机散热就困难得多,稍有过载,其温升就可能超过限值。原则上讲是按电动机的额定电流来考虑,但对于过载能力较差的电动机,它所配的热继电器(或热元件)的额定电流就应适当小

些。在这种场合,也可以取热继电器(或热元件)的额定电流为电动机额定电流的60%-80%。

3考虑负载因素:

如负载性质不允许停车、即便过载会使电动机寿命缩短,也不应让电动机冒然脱扣,以免生产遭受比电动机价格高许多倍的巨大损失。这时继电器的额定电流可选择较大值(当然此工况下电动机的选择一般也会有较强的过载能力)。这种场合最好采用由热继电器和其它保护电器有机地组合起来的保护措施,只有在发生非常危险的过载时方考虑脱扣。

总之,这不是一个教条的公式,应综合考虑。

4热元件整定电流选择:

根据热继电器型号和热元件额定电流,即可查出热元件整定电流的调节范围。通常将热继电器的整定电流调整到电动机的额定电流;对过载能力差的电动机,可将热元件整定值调整到电动机额定电流的0.6-0.8倍;当电动机起动时间较长、拖动冲击负载或不允许停车时,可将热元件整定电流调节到电动机额定电流的1.1-1.15倍。

5热继电器应具有既可靠又合理的保护特性,具体而言应具有一条与电动机容许过载特性相似的反时限特性,且应在电动机容许过载特性之下,而且应有较高的精确度,以保证保护动作的可靠性。

6其它注意事项:

1)操作频率:当电动机的操作频率超过热继电器的操作频率时,如电动机的反接制动、可逆运转和密接通断,热继电器就不能提供保护。这时可考虑选用半导体温度继电器进行保护。

2)对于工作时间较短、间歇时间较长的电动机(例如摇臂钻床的摇臂升降电动机等),以及虽然长期工作但过载的可能性很小的电动机(例如排风机等),可以不设过载保护。

3)对点动、重载起动,连续正反转及反接制动等运行的电动机,一般不宜用热继电器。4)应当具有一定的温度补偿:由于周围介质温度的变化,在相同的过载电流下,热继电器的动作将产生误差,为消除这种误差,应当设置温度补偿措施;

5)一般情况下,应遵循热继电器保护动作后即使热继电器自动复位,被保护的电动机都不应自动再起动的原则,否则应将热继电器设定为手动复位状态。这是为了防止电动机在故障未被消除而多次重复再起动损坏设备。例如:一般采用按钮控制的手动起动和手动停止的控制电路,热继电器可设定成自动复位形式;采用自动元件控制的自动起动电路应将热继电器设定为手动复位形式;凡能自动复位的热继电器,动作后应能在5分钟内可靠地自动复位。而手动复位的在动作后2分钟内用手按下手动复位按钮时,也应可靠地复位。多数产品一般都有手动与自动复位两种方式,并且可以利用螺钉调节成任一方式,以满足不同场合的需要。

6)动作电流值应当可调为能满足生产和使用中的需要,减少规格档次,所以某一规格的热继电器应能通过凸轮的调节来实现。

7)因热元件受热变形需要时间,故热继电器只能作为电动机的过载保护,不能作为短路保护用。因此,在使用热继电器时,应加装熔断器作为短路保护。对于重载、频繁起动的较大容量的重要电动机,则可用过电流继电器(延时动作型的)作它的过载和短路保护。

8)怎样分析热继电器动作特性曲线

7使用环境

使用环境

主要指环境温度,它对热继电器动作的快慢影响较大。热继电器周围介质的温度,应和电动机周围介质的温度相同,否则会破坏已调整好的配合情况。例如:当电动机安装在高温处,而热继电器安装在温度较低处时,热继电器的动作将会滞后(或动作电流大);反之,其动作将会提前(或动作电流小)。

对没有温度补偿的热继电器,应在热继电器和电动机两者环境温度差异不大的地方使用。对有温度补偿的热继电器,可用于热继电器与电动机两者环境温度有一定差异的地方,但应尽可能减少因环境温度变化带来的影响。

应考虑热继电器使用的环境温度和被保护电动机的环境温度。当热继电器使用的环境温度高于被保护电动机的环境温度15℃以下时,应使用大一号额定电流等级的热继电器;当热继电器使用的环境温度低于被保护电动机的环境温度15℃以下时,应使用小一号额定电流等级的热继电器。此外,也应考虑到电动机的负载情况及热继电器可能需要的调整范围。

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

施耐德低压电器选型手册-低压终端配电产品选型指南

第七部分 低压终端配电产品 选型指南 7-1

7-2 A c t i 9系列的主要产 品

Acti 9 断路器安装结构示意图7 8910 11 54 3 2 1 6 1. iC65断路器 2. iMN/iMN s欠压脱扣器或iMSU过压脱扣器 3. iMX/iMX+OF分励脱扣器 4. iSD报警接点或OF/SD+OF双重切换接点 5. iOF辅助接点 6. Vigi iC65剩余电流动作附件 7. Multiclip配电模块 8. 断路器插拔式底座 9. 间隔件 10. 旋转手柄 11. 手柄锁扣 7 7-3

7-4

7-5 i C 65断路器选型表 - / + 说明:1. K 系列i C 65断路器分断能力6000A ,额定电流6~32A ,不可选用剩余电流动作保护附件及电气附件。2. i C 65系列仅B 曲线有3A 的产品。3. i C 65L 无B 曲线产品。 举例:产品号:i C 65N C 20A /2P V E 30m A 。表示:i C 65小型断路器,6k A 分断,C 曲线,额定电流20A ,2极带电子式剩余电流保护附件,额定剩余电流30m A 。

7-6 i C 60L M A 断路器选型表 i C 60 / + 说明:1. i C 60L M A 为单磁式小型断路器,无过载保护。须与热继电器等元件配合,实现过载保护。 举例:产品号:i C 60L M A 16A /3P i M N 。表示:i C 60L M A 单磁式小型断路器,分断能力15k A ,额定电流16A ,3极,配i M N 欠压脱扣单元。

热继电器的选择和计算

看一下本题就知了, 有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值

电缆选用一般原则

电缆选用一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性; 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电 压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件 选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压 水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件 和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算 其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。 电线电缆安装施工 电线电缆敷设安装的设计和施工应按GB502-94《电力工程电缆设

计规范》等有关规定进行,并采用必要的电缆附件(终端和接头)。 供电系统运行质量、安全性和可靠性不仅与电线电缆本身质量有关, 还与电缆附件和线路的施工质量有关。 通过对线路故障统计分析,由于施工、安装和接续等因素造成的 故障往往要比电线电缆本体缺陷造成的故障可能性大得多。因此要正 确地选用电线电缆及配套附件,除按规范要求进行设计和施工外,还 应注意如下几个方面的问题: ⒈电缆敷设安装应由有资格的专业单位或专业人员进行,不符合 有关规范规定要求的施工和安装,有可能导致电缆系统不能正常运行。 ⒉人力敷设电缆时,应统一指挥控制节奏,每隔1.5~3米有一人 肩扛电缆,边放边拉,慢慢施放。 ⒊机械施放电缆时,一般采用专用电缆敷设机并配备必要牵引工具,牵引力大小适当、控制均匀,以免损坏电缆。 ⒋施放电缆前,要检查电缆外观及封头是否完好无损,施放时注 意电缆盘的旋转方向,不要压扁或刮伤电缆外护套,在冬季低温时切 勿以摔打方式来校直电缆,以免绝缘、护套开裂。 ⒌敷设时电缆的弯曲半径要大于规定值。在电缆敷设安装前、后 用1000V兆欧表测量电缆各导体之间绝缘电阻是否正常,并根据电缆 型号规格、长度及环境温度的不同对测量结果作适当地修正,小规格(10mm2以下实芯导体)电缆还应测量导体是否通断。 ⒍电缆如直埋敷设,要注意土壤条件,一般建筑物下电缆的埋设 深度不小于0.3米,较松软的或周边环境较复杂的,如耕地、建筑施 工工地或道路等,要有一定的埋设深度(0.7~1米),以防直埋电缆 受到意外损害,必要时应竖立明显的标志。

施耐德电气选型手册

施耐德低压电器选型接触器: I<=7.5A LC1-D0922M5C I<=10A LC1-D1222M5C I<=15.3AL C1-D1822M5C I<=21A LC1-D2522M5C I<=27.2A LC1-D3222M5C I<=34A LC1-D4022M5C I<=42.2A LC1-D5022M5C;I<=55.5A LC1-D6522M5C I<=68A LC1-D8022M5C I<=82A LC1-D9522M5C I<=98A LC1-D11522M5C I<=128A LC1-D15022M5C;I<=145A LC1-D17022M5C I<=175A LC1-D20522M5C I<=210A LC1-D24522M5C I<=260A LC1-D30022M5C I<=350A LC1-D41022M5C I<=410A LC1-D47522M5C I<=540A LC1-D62022M5C 热继电器: I<=0.16A LRD-01C I<=0.25A LRD-02C I<=0.40A LRD-03C I<=0.63A LRD-04C I<=1A LRD-05C I<=1.6A LRD-06C I<=2.5A LRD-07C I<=4A LRD-08C I<=6A LRD-10C I<=8A LRD-12C I<=10A LRD-14C I<=13A LRD-16C I<=18A LRD-21C I<=24A LRD-22C I<=32A LRD-32C I<=38A LRD-35C I<=50A LRD-3357C I<=65A LRD-3359C I<=70A LRD-3361C I<=80A LRD-3363C I<=104A LRD-4365 I<=120A LRD-4367 I<=140A LRD-4369空气开关: 电机的: I<=11A NSX100HMA12.53P I<=23A NSX100HMA253P I<=45A NSX100HMA503P I<=70A NSX100HMA803P I<=90A NSX100HMA1003P I<=140A NSX160HMA1603P I<=230A NSX250HMA2503P I<=360A NSX400HMIC2.3M4003P I<=570A NSX630HMIC2.3M6303P 配电的: I<=13A NSX100HTM163P I<=18A NSX100HTM253P I<=29A NSX100HTM323P I<=35A NSX100HTM403P I<=45A NSX100HTM503P I<=55A NSX100HTM633P I<=70A NSX100HTM803P I<=90A NSX100HTM1003P I<=110A NSX160HTM1253P I<=140A NSX160HTM1603P I<=180A NSX250HTM2003P I<=225A NSX250HTM2503P I<=360A NSX400HMIC2.34003P I<=600A NSX630HMIC2.36303P 三、中间继电器 40、31、22 CA2-DN□□M5C 常闭接点数量 常开接点数量四、框架断路器: I=800A型号:MT08N13P MIC5.0A

热继电器原理及介绍word资料24页

热继电器原理及介绍 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。

当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲线2所示。考虑各种误差的影响,电动机的过载特性和继电器的保护特性都不是一条曲线,而是一条带子。显而易见,误差越大,带子越宽;误差越少,带子越窄。 由图中曲线l可知,电动机出现过载时,工作在曲线1的下方是安全的。因此,热继电器的保护特性应在电动机过载特性的邻近下方。这样,如果发生过载,热继电器就会在电动机末达到其允许过载极限之前动作,切断电动机电源,使之免遭损坏。 2)热继电器的工作原理 热继电器中产生热效应的发热元件,应串接于电动机电路中,这样,热继电器便能直接反映电动机的过载电流。热继电器的感测元件,一般采用双金属片。所谓双金属片,就是将两种线膨胀系数不同的金属片以机械辗压方式使之形成一体。膨胀系数大的称为主动层,膨胀系数小的称

电缆敷设规范(最全,绝对标准!)

5 电缆敷设 5.1 一般规定 5.1.1电缆的路径选择,应符合下列规定: 1应避免电缆遭受机械性外力、过热、腐蚀等危害。 2 满足安全要求条件下,应保证电缆路径最短。 3 应便于敷设、维护。 4 宜避开将要挖掘施工的地方。 5 充油电缆线路通过起伏地形时,应保证供油装置合理配置。 5.1.2 电缆在任何敷设方式及其全部路径条件的上下左右改变部位,均应满足电缆允许弯曲半径要求。 电缆的允许弯曲半径,应符合电缆绝缘及其构造特性要求。对自容式铅包充油电缆,其允许弯曲半径可按电缆外径的20倍计算。 5.1.3同一通道内电缆数量较多时,若在同一侧的多层支架上敷设,应符合下列规定: 1 应按电压等级由高至低的电力电缆、强电至弱电的控制和信号电缆、通讯电缆“由上而下”的顺序排列。 当水平通道中含有35kV以上高压电缆,或为满足引入柜盘的电缆符合允许弯曲半径要求时,宜按“由下而上”的顺序排列。 在同一工程中或电缆通道延伸于不同工程的情况,均应按相同的上下排列顺序配置。 2 支架层数受通道空间限制时,35kV及以下的相邻电压级电力电缆,可排列于同一层支架上,1kV及以下电力电缆也可与强电控制和信号电缆配置在同一层支架上。 3 同一重要回路的工作与备用电缆实行耐火分隔时,应配置在不同层的支架上。 5.1.4同一层支架上电缆排列的配置,宜符合下列规定: 1 控制和信号电缆可紧靠或多层叠置。 2 除交流系统用单芯电力电缆的同一回路可采取品字形(三叶形)配置外,对重要的同一回路多根电力电缆,不宜叠置。 3 除交流系统用单芯电缆情况外,电力电缆相互间宜有1倍电缆外径的空隙。 5.1.5交流系统用单芯电力电缆的相序配置及其相间距离,应同时满足电缆金属护层的正常感应电压不超过允许值,并宜保证按持续工作电流选择电缆截面小的原则确定。 未呈品字形配置的单芯电力电缆,有两回线及以上配置在同一通路时,应计入相互影响。 5.1.6交流系统用单芯电力电缆与公用通讯线路相距较近时,宜维持技术经济上有利的电缆路径,必要时可采取下列抑制感应电势的措施: 1 使电缆支架形成电气通路,且计入其他并行电缆抑制因素的影响。 2 对电缆隧道的钢筋混凝土结构实行钢筋网焊接连通。 3 沿电缆线路适当附加并行的金属屏蔽线或罩盒等。 5.1.7明敷的电缆不宜平行敷设在热力管道的上部。电缆与管道之间无隔板防护时的允许距离,除城市公共场所应按现行国家标准《城市工程管线综合规划规范》GB50289执行外,尚应符合表5.1.7的规定。 表5.1.7 电缆与管道之间无隔板防护时的允许距离(mm) 5.1.8抑制电气干扰强度的弱电回路控制和信号电缆,除应符合本规范第3. 6.6条~第3.6.9

常用热继电器型号

NR2热继电器 NR2-11.5/Z 0.1-13A NR2热继电器 NR2-25G/Z 0.1-10A NR2热继电器 NR2-25G/Z 13-25A NR2热继电器 NR2-36G/Z 23-36A NR2热继电器 NR2-93G/Z 23-80A NR2热继电器 NR2-93G/Z 80-93A NR2热继电器 NR2-150/Z 80-150A NR2热继电器 NR2-200 80-200A NR2热继电器 NR2-630G 160-630A NR3热继电器 NR3-16 0.11-17.6A NR3热继电器 NR3-25 0.1-8.5A NR3热继电器 NR3-25 11-14A NR3热继电器 NR3-25 19-32A NR3热继电器 NR3-45 0.32-21A NR3热继电器 NR3-45 27-45A NR3热继电器 NR3-85 6-100A NR3热继电器 NR3-105 27-115 NR3热继电器 NR3-170 170-200A NR3热继电器 NR3-250 100-400A NR4热继电器 NR4-12.5/Z 0.1-14.5A NR4热继电器 NR4-25/Z 0.1-25A NR4热继电器 NR4-32/Z 4-36A NR4热继电器 NR4-45/Z 1-45A NR4热继电器 NR4-63/F 0.1-63A NR4热继电器 NR4-80/Z 12.5-88A NR4热继电器 NR4-180/F 80-180A 1 JR20-16 5.4-8A 热继电器 2 JR20-6 3 24-36A 热继电器 3 JR20-10 1.8-2.6A 热继电器 4 JR20-250L 170A 热继电器 5 JR20-63L 4U 56A 热继电器 6 JR20-16 10-14A 热继电器 7 JR20-10 8.6-11.6A 热继电器 8 JR20-16 3.6-5.4A 热继电器 9 JR20-16 8-12A 热继电器 10 JR20-16 12-16A 热继电器 11 JR20-16 14-18A 热继电器12 JR20-25 7.8-11.6A 热继电器 13 JR20-25 11.6-17A 热继电器 14 JR20-25 21-29A 热继电器 15 JR20-63 16-24A 热继电器 16 JR20-63 32-47A 热继电器 17 JR20-63 40-55A 热继电器18 JR20-63 47-62A 热继电器 19 JR20-63 55-71A 热继电器 20 JR20-160 33-47A 热继电器 21 JR20-160 47-63A 热继电器 22 JR20-160 63-84A 热继电器 23 JR20-160 74-98A 热继电器 24 JR20-160 85-115A 热继电器 25 JR20-160 100-130A 热继电器 26 JR20-160 130-170A 热继电器 27 JR20-160 144-176A 热继电器 28 JR20-250 130-195A 热继电器 29 JR20-250 167-250A 热继电器

施耐德低压电器选型手册-2012-13 软启动产品选型指南

第十三部分 软起动器产品选型指南

A T S 48 软起动器选型 表 例如:A T S 48-75代表A T S 48 Q 系列产品应用于400V 75K W 标准负载电机 /--

标准负载应用 电机 起动器 230/415V-50/60Hz 电机功率 额定电流 出厂设置 额定负载下 产品型号 重量 (2) (IcL) 电流 的耗散功率 (3) (5)230 V 400 V kW kW A A W kg 4 7. 5 17 14.8 59 ATS-48D17Q 4.900 5.5 11 22 21 74 ATS-48D22Q 4.9007.5 15 32 28.5 104 ATS-48D32Q 4.9009 18.5 38 35 116 ATS-48D38Q 4.90011 22 47 42 142 ATS-48D47Q 4.90015 30 62 57 201 ATS-48D62Q 8.30018.5 37 75 69 245 ATS-48D75Q 8.30022 45 88 81 290 ATS-48D88Q 8.30030 55 110 100 322 ATS-48C11Q 8.30037 75 140 131 391 ATS-48C14Q 12.40045 90 170 162 479 ATS-48C17Q 12.40055 110 210 195 580 ATS-48C21Q 18.20075 132 250 233 695 ATS-48C25Q 18.20090 160 320 285 902 ATS-48C32Q 18.200110 220 410 388 1339 ATS-48C41Q 51.400132 250 480 437 1386 ATS-48C48Q 51.400160 315 590 560 1731 ATS-48C59Q 51.400- 355 660 605 1958 ATS-48C66Q 51.400220 400 790 675 2537 ATS-48C79Q 115.000250 500 1000 855 2865 ATS-48M10Q 115.000355 630 1200 1045 3497 ATS-48M12Q 115.000 重型负载应用 电机 起动器 230/415V-50/60Hz 电机功率 额定电流 出厂设置 额定负载下 产品型号 重量 (2) (4) 电流 的耗散功率 (5)230 V 400 V kW kW A A W kg 3 5.5 12 14.8 46 ATS-48D17Q 4.9004 7.5 17 21 59 ATS-48D22Q 4.9005.5 11 22 28.5 74 ATS-48D32Q 4.9007.5 15 32 35 99 ATS-48D38Q 4.9009 18.5 38 42 116 ATS-48D47Q 4.90011 22 47 57 153 ATS-48D62Q 8.30015 30 62 69 201 ATS-48D75Q 8.30018.5 37 75 81 245 ATS-48D88Q 8.30022 45 88 100 252 ATS-48C11Q 8.30030 55 110 131 306 ATS-48C14Q 12.40037 75 140 162 391 ATS-48C17Q 12.40045 90 170 195 468 ATS-48C21Q 18.20055 110 210 233 580 ATS-48C25Q 18.20075 132 250 285 695 ATS-48C32Q 18.20090 160 320 388 1017 ATS-48C41Q 51.400110 220 410 437 1172 ATS-48C48Q 51.400132 250 480 560 1386 ATS-48C59Q 51.400160 315 590 605 1731 ATS-48C66Q 51.400- 355 660 675 2073 ATS-48C79Q 115.000220 400 790 855 2225 ATS-48M10Q 115.000250 500 1000 1045 2865 ATS-48M12Q 115.000 (1) 其它电压等级产品型号请参见相关产品目录。(2) 电机铭牌上所示的值。 (3) 对应于 10 级中的最大持续电流。IcL 对应于起动器额定值。 (4) 对应于 20 级中的最大持续电流。 (5) 出厂设置电流对应于标准 4 极、400V 10 级电机的额定电流值 (标准应用场合)。应根据电机额定电流调整该设定值。 ATS-48D17Q ATS-48C14Q ATS-48M12Q 106762 106761 106758 电源电压 230/415V 直接连接至电机产品型号说明(1)

热继电器的合理选择与使用

电动机保护用热继电器的合理选择与使用 1.前言 热继电器是一种传统的保护电动机的电器,它具有与电动机容许过载特性相同的反时限动作特性,主要用于三相交流电动机的过载保护与断相保护。从目前的情况来看,由于没有选择与使用好热继电器而引起电动机烧毁的事故,仍然时有发生。如何合理地选择与使用热继电器,也仍是一个值得关注的问题。我们从长期的实际工作中,全面总结出了这方面的经验,供大家参考。 2.热继电器类型的选择 从结构上来说,热继电器分为两极型和三极型,其中三极型又分为带断相保护和不带断相保护两种,其型号及其意义如下。 另外,从热继电器的产品目录上还有额定电压、额定频率、额定工作制、使用温度范围、安装类别、防护等级等有关数据。 三极型的热继电器主要用于三相交流电动机的过载与断相保护。当电动机定子绕组为星形接法时,可以选用一般的三极型热继电器。因为星形接法的电动机,相电流等于线电流,无论电动机是过载运行还是断相运行,串接在主回路中的热元件都会因电流过大而使热继电器触头动作,保护电动机;如果电动机定子绕组为三角形接法,一般需要选用带断相保护的热继电器。因为三角形接法的电动机,当其引出线上发生一相断线(常见的是熔断器熔断)而缺相运行时,线电流I L等于电机相电流I P的1.5倍(如图1),不再是倍的关系,使得线电流不能正确反映出相电流,即串接在主回路中的热元件不能准确反映电机绕组是否真正过载,此时如果选用不带断相保护的热继电器,就不能很好地起到保护作用。 图1 热继电器产品目录上的其它数据,在类型选择时,考虑一下与热继电器实际使用情况相一致就行。

图2 除了上述通用型热继电器的选择外,还有些专用型热继电器。如大容量电动机用的自带专用互感器的JR20-160及以上的热继电器;重载起动的电动机用的3VA型热继电器等等。只要按它们各自适用的情况选择就行了。 值得提醒的是,有些类型的热继电器,如JR0、JR9、JRl4、JRl5、JRl6—A、B、C、D 等,国家已下令淘汰,选择时就不应再考虑了。 3.热继电器电流的选择 热继电器电流的选择包括热继电器额定电流的选择与热元件额定电流的选择两个方面。 1)热继电器的额定电流,选择时一般应等于或略大于电动机的额定电流;对于过载能力较弱且散热较困难的电动机,热继电器的额定电流为电机额定电流的70%左右。如果热继电器与电动机的使用环境温度不一致时,应对其额定电流作相应调整:当热继电器使用的环境温度高于被保护电动机的环境温度15℃以上时,应选择大一号额定电流等级的热继电器;当热继电器使用的环境温度低于被保护电动机的环境温度15℃以上时,应选择小一号额定电流等级的热继电器。 2)热元件的额定电流,选择时一般应略大于电动机的额定电流,取1.1~1.25倍,对于反复短时工作、操作频率高的电动机取上限。如果是过载能力弱的小功率电机,由于其绕组的线径小,过热能力差,应选择其额定电流等于或略小于电动机的额定电流。如果热继电器与电动机的环境温度不一致(如两者不在同一室内),热元件的额定电流同样要作调整,调整的情况与上述热继电器额定电流的调整情况基本相同。 4.热继电器质量的检查 在确定了热继电器的类型与电流等级之后,购买热继电器时要对其质量进行检查。我们对热继电器进行了过流试验,发现有些热继电器的热元件动作不符合所要求的安秒特性;有些构件的配合间隙过大,当双金属片过热弯曲时不能推动导板使动断触头打开;还有些制造工艺较差,构件上存在着毛刺或凹凸不平的现象,使得动断时运动受阻。因此购买热继电器时不仅只作外观检查,还要看其内部的构件配合是否合理,动作是否灵活,电流调节旋钮是否起作用,连接片是否焊牢等;然后进行校验,即按技术要求给热继电器的热元件通以L 2、1.5或2倍的额定电流,看其动作是否符合技术性能的要求,校验的具体方法按相关资料或产品说明书进行。

电线电缆选的一般原则

电线电缆选用的一般原则 作者:佚名 阅读:6062次 上传时间:2006-03-15 推荐人:lgzhi7 (已传论文1套) 简介:在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 关键字:电线电缆选型 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选 择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格 的选用参见下表: 电线电缆规格选用参考表

说明: 1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起 动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 5 以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。 二、电线电缆的使用特性 产品使用特性详见具体产品目录。 三、电线电缆的运输和保管 ⒈运输中严禁从高处扔下电缆或装有电缆的电缆盘,特别是在较低温度时(一般为5℃左右及以下), 扔、摔电缆将有可能导致绝缘、护套开裂。 ⒉尽可能避免在露天以裸露方式存放电缆,电缆盘不允许平放。 ⒊吊装包装件时,严禁几盘同时吊装。在车辆、船舶等运输工具上,电缆盘要用合适方法加以固定, 防止互相碰撞或翻倒,以防止机械损伤电缆。

热继电器型号表

热继电器型号表 型号 机型 额定 TK-E02A-C热过载继电器0.1-0.15ATK-E02B-C热过载继电器0.13-0.2ATK-E02C-C热过载继电器0.15-0.24ATK-E02D-C热过载继电器0.2-0.3ATK-E02E-C热过载继电器0.24-0.36ATK-E02F-C热过载继电器0.3-0.45ATK-E02G-C热过载继电器0.36-0.54ATK-E02H-C热过载继电器0.48-0.72ATK-E02J-C热过载继电器0.64-0.96ATK-E02K-C热过载继电器 0.8-1.2ATK-E02L-C热过载继电器0.95-1.45ATK-E02M-C热过载继电器 1.4- 2.2ATK-E02N-C热过载继电器 1.7-2.6ATK-E02P-C热过载继电器 2.2- 3.4ATK-E02R-C热过载继电器 2.8- 4.2ATK-E02S-C热过载继电器4-6ATK-E02T-C热过载继电器5-8ATK-E02U-C热过载继电器6-9ATK-E02V-C 热过载继电器7-11ATK-E02W-C热过载继电器9-13ATK-E02X-C热过载继电器12-18ATK-E02Q-C热过载继电器16-22ATK-E02Y-C热过载继电器20-25ATK-E2S-C热过载继电器4-6ATK-E2U-C热过载继电器5-8ATK-E2V-C热过载继电器6-9ATK-E2W-C热过载继电器7-11ATK-E2X-C热过载继电器9-13ATK-E2B-C热过载继电器12-18ATK-E2E-C热过载继电器24-36ATK-E2I-C 热过载继电器32-42ATK-E2H-C热过载继电器40-50ATK-E3V-C热过载继电器7-11ATK-E3W-C热过载继电器9-13ATK-E3X-C热过载继电器12-18ATK-E3B-C 热过载继电器18-26ATK-E3E-C热过载继电器24-36ATK-E3F-C热过载继电器28-40ATK-E3G-C热过载继电器34-50ATK-E3J-C热过载继电器45-65ATK-E3O-C热过载继电器48-68ATK-E3R-C热过载继电器64-80ATK-E3M-C热过载继电器65-95ATK-E3I-C热过载继电器85-105ATK-E5B-C热过载继电器18-26ATK-E5E-C热过载继电器24-36ATK-E5F-C热过载继电器28-40ATK-E5G-C热过载继电器34-50ATK-E5J-C热过载继电器45-65ATK-E5M-C热过载继电器65-95ATK-E5I-C热过载继电器85-105ATK-E6J-C热过载继电器45-65ATK-E6L-C热过载继电器53-80ATK-E6M-C热过载继电器65-95ATK-E6N-C热过载继电器85-125ATK-E6P-C热过载继电器110-160ATK-E6HJ-C热过载继电器45-65ATK-E6HL-C热过载继电器53-80ATK-E6HM-C热过载继电器65-95ATK-E6HN-C热过载继电器85-125ATK-E6HP-C热过载继电器110-160ATK-N8M-C热过载继电器65-95ATK-N8N-C热过载继电器85-125ATK-N8P-C热过载继电器110-160ATK-N8R-C热过载继电器125-185ATK-N10N-C热过载继电器85-125ATK-N10P-C热过载继电器110-160ATK-N10R-C热过载继电器125-185ATK-N10S-C热过载继电器160-240ATK-N10HN-C热过载继电器85-125ATK-N10HP-C热过载继电器110-160ATK-N10HR-C热过载继电器125-185ATK-N10HS-C热过载继电器160-240ATK-N12P-C热过载继电器110-160ATK-N12R-C热过载继电器125-185ATK-N12S-C热过载继电器160-240ATK-N12T-C热过载继电器200-300ATK-N12U-C热过载继电器240-360ATK-N12V-C热过载继电器300-450ATK-N12HP-C热过载继电器110-160ATK-N12HR-C热过载继电器125-185ATK-N12HS-C热过载继电器160-240ATK-N12HT-C热过载继电器200-300ATK-N12HU-C热过载继电器

电线电缆选用基本原则

电线电缆选用基本原则 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算

其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表: 电线电缆规格选用参考表

说明:1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。

接触器与热继电器选型表--实用.docx

施耐德电动机接触器与热继电器选型表 序 直接启动星三角启动备注功率断路器 号 接触器热继电器整定值接触器 *2接触器热继电器整定值 10.15C65N 3P D16A LC1-D09M7C LRD04C 0.56A 0.63~1A 20.37C65N 3P D16A LC1-D09M7C LRD06C 1~1.6A 1.1A 30.55C65N 3P D16A LC1-D09M7C LRD07C 1.5A 1.6~ 2.5A 40.75C65N 3P D16A LC1-D09M7C LRD07C 2A 1.6~2.5A 5 1.1C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 2.8A 6 1.5C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 3.7A 7 2.2C65N 3P D16A LC1-D18M7C LRD10C 4~6 5.3A 83C65N 3P D16A LC1-D18M7C LRD12C 5.5~87A 9 3.7C65N 3P D16A LC1-D18M7C LRD14C 7~108A

10 5.5C65N 3P D20A LC1-D18M7C LRD16C 9~1312A 117.5C65N 3P D25A LC1-D18M7C LRD21C 12~1815A LC1-D12M7C LC1-D09M7C LRD14C 7~107A 129C65N 3P D25A LC1-D25M7C LRD22C 17~2418A LC1-D18M7C LC1-D09M7C LRD16C 9~139A 1311C65N 3P D32A LC1-D32M7C LRD22C 17~2423A LC1-D18M7C LC1-D09M7C LRD16C 9~1311A 1415NSE100N3P 50A MA LC1-D40M7C LRD33 53C 30A LC1-D25M7C LC1-D12M7C LRD21C 12~1814A 23~32 15 18.5NSE100N3P 50A MA LC1-D25M7C LC1-D12M7C LRD22 17~2518A 1622NSE100N3P 50A MA LC1-D32M7C LC1-D18M7C LRD-32 23~3221A 1730NSE100N3P 50A MA LC1-D38M7C LC1-D18M7C LRD-35 30~3829A 1837NSE100N 3P 100A LC1-D50M7C LC1-D25M7C LRD-33 57 40A MA30~40 1945NSE100N 3P 100A LC1-D65M7C LC1-D38M7C LRD-33 59 47A MA48~65 2055NSE160N 3P 150A LC1-D65M7C LC1-D38M7C LRD-33 59 58A MA48~65 2175NSE160N 3P 150A LC1-D95M7C LC1-D50M7C LRD-33 63 78A MA63~80 2290 NSE250N 3P 220A LC1-D115M7C LC1-D65M7C LRD-43 65 99A

选用电线电缆的基本原则

选用电线电缆的基本原则 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面, 然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表: 电线电缆规格选用参考表 铜芯聚氯乙烯绝缘电缆环境温度 25℃架空敷设227 IEC 01(BV)铜芯聚氯乙烯绝缘电力电缆 环境温度 25℃直埋敷设 VV22-0.6/1 (3+1) 钢芯铝绞线 环境温度 30℃架空敷设 LGJ 导体截面 mm 2 允许载流量 A容量 kW允许载流量 A容量 kW允许载流量 A容量 kW 1.01710 1.52112 2.52816 437213821 648274727 1065366536 16915984479754

25120671106112469 35147821307515084 5018710515589195109 70230129195109242135 95282158230125295165 120324181260143335187 150371208300161393220 185423237335187450252 240390220540302 300435243630352 说明: 1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 5 以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。 二、电线电缆的使用特性 产品使用特性详见具体产品目录。 三、电线电缆的运输和保管 ⒈运输中严禁从高处扔下电缆或装有电缆的电缆盘,特别是在较低温度时(一般为5℃左右及以下),扔、摔电缆将有可能导致绝缘、护套开裂。 ⒉尽可能避免在露天以裸露方式存放电缆,电缆盘不允许平放。 ⒊吊装包装件时,严禁几盘同时吊装。在车辆、船舶等运输工具上,电缆盘要用合适方法加以固定,防止互相碰撞或翻倒,以防止机械损伤电缆。 ⒋电缆严禁与酸、碱及矿物油类接触,要与这些有腐蚀性的物质隔离存放.贮存电缆的库房内不得有破坏绝缘及腐蚀金属的有害气体存在。 ⒌电缆在保管期间,应定期滚动(夏季3个月一次,其他季节可酌情延期)。滚动时,将向下存放盘边滚翻朝上,以免底面受潮腐烂。存放时要经常注意电缆封头是否完好无损。

热继电器选型及整定原则

https://www.doczj.com/doc/6c15420750.html,/viewDiary.html?ownerid=18161&id=113641 热继电器选型及整定原则 热继电器是电流通过发热元件产生热量,使检测元件受热弯曲而推动机构动作的一种继电器。由于热继电器中发热元件的发热惯性,在电路中不能做瞬时过载保护和短路保护。它主要用于电动机的过载保护、断相保护和三相电流不平衡运行的保护及其它电气设备状态的控制。 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。 当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲

相关主题
文本预览
相关文档 最新文档