当前位置:文档之家› 浅谈地震解释技术在石油勘探领域的应用

浅谈地震解释技术在石油勘探领域的应用

浅谈地震解释技术在石油勘探领域的应用
浅谈地震解释技术在石油勘探领域的应用

浅谈地震解释技术在石油勘探领域的应用

摘要:文章从当前地震解释技术在石油勘探领域的应用类型出发,对其应用环境、自身特性及未来发展趋势等方面进行了详尽阐述。研究指出,应用地震技术和资料信息明确地下岩石物理特性及油气水的分布,并应用相关技术发展至三维油藏属性建模,是我国未来石油勘探工作的重要方向。

关键词:地震解释;石油勘探;应用

1当前石油勘探领域中的地震解释技术

随着石油勘探技术的不断发展,勘探中的地震解释技术也得到了很大提高。当前,包括地震相干解释技术、波阻抗反演技术、地震相分析技术及三维可视化解释技术等在内的地震解释技术在我国石油勘探过程中得到了比较广泛的应用。笔者综合前人的研究,将这四种技术的基本介绍、技术应用等总结如表1所示。

2地震解释技术在石油勘探中的实际应用

①地震相干解释技术。地震相干解释技术在油气勘探中应用较为广泛,该技术可快速建立断裂系统、特殊岩性体的空间展布形态,并在地震资料解释过程中采用迭代方法不断完善和修改解释方案。在地震相干解释技术当中,可引入“相干相”概念对相干数据体进行解释,其可分为团块状高相干相、线状或条带状极低相干相、条带状的高相相及团块状低相干相四类。

②波阻抗反演技术。部分常用的地震波阻抗反演软件包括:加拿大Hampson-Russell公司研发的Strata反演软件、荷兰Jason公司研发的Jason反演软件、美国EPT公司研发的EPS拟声波反演软件。在油气勘探和开发过程中,该技术可用于了解储层的空间分布规律及求取储层的物性参数,并直接用于寻找油气藏及油田的油气储量计算;此外,波阻抗反演技术可以将地震数据、测井数据、地质解释结合起来,充分利用测井资料具有较高的纵向分辨率和地震剖面有较好的横向连续性的特点,将地震剖面“转换成”波阻抗剖面:并有效地对地震物性参数的变化进行研究。

③地震相分析技术。目前,地震相分析技术的代表是由法国CGG公司开发研制的Stratimagic地震地层解释软件。该软件运用人工智能网络分析、层位终断识别等先进的方法对地震的层属性进行地质分析解释,在岩性解释、地震异常现象解释和油藏描述中发挥了广泛的作用。该软件结合多种先进技术对礁体、河道等特殊地质现象进行识别,可识别提取沿层及层间15大类30多种地震属性,并建立起地震相分析与岩性模拟间的关系,从而将地震相分析的定性结果转换为岩性参数的定量结果。

④三维可视化解释技术。目前,在国内各油田及石油相关行业的三维可视化解释软件中,EarthCube与V oxelGeo三维可视化解释软件具有一定的代表性(Earth-Cube软件由美国兰德马克公司开发,V oxel-Geo软件由色列帕拉代姆公司

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震解释技术

随着锦州油田油气勘探开发的不断深入,先进的三维地震解释技术及相关的属性分析技术的使用凸显重要。利用最新采集处理的三维地震资料,采油厂加大了相关地震配套软件的使用,2011年锦州采油厂计划引进SeisWare地震解释系统及landmark地震解释工作站,使得利用各种地震属性研究储层的技术得到了加强。利用高精度三维地震叠前时间偏移数据体,可以在精细地层小层对比、整体解剖精细评价的基础上针对目标层段内的砂泥岩薄互层砂组进行多种地震属性的处理,引进landmark解释工作站的多体多属性地层追踪及快速高效的储层描述方法,能从整体上描述储层的空间展布及小断块内储层的分布特征, 计算机技术的飞速发展及相应的层位自动追踪技术、三维可视化技术等解释手段的发展极大地提高了解释工作的效率及准确度,同时最大限度地发挥了三维数据体的优势。利用最新采集处理的三维地震资料,经过地震资料品质分析后,优选具有较高的信噪比,偏移归位合理,目的层波组特征明显的资料,在合成记录标定的基础上,搭建格架剖面并进行人工解释,然后采用人机联合波形对比层位自动追踪技术进行全区层位解释,采用相干、倾角扫描以及层面光滑度分析技术进行断层平面组合分析,能精细落实研究区的构造特征和断层展布特征。

LandMark 一体化系统通过强有力的可视化技术提供给用户一个真三维的解释平台,可对海量的三维地震数据进行快速准确地构造解释,能快速搜索地质目标,精确雕刻;并提供了一个多学科协同和决策环境,可以实现构造解释、储层预测、叠前AVO分析、可视化处理以及井轨迹设计和钻井实时监控。其三维可视化手段可应用于地震资料处理、构造解释、全区目标搜索、精细目标解释、储层预测等三维连片解释的所有阶段。 LandMark 一体化系统特点: 储层自动追踪ezTracker 基于波形的层位自动追踪,可同时拾取多个种子点,可以保存种子点信息,灵活定义追踪的波形时窗,对追踪结果可进行多种灵活编辑,如遗传删除、门槛值调整和多边形删除 点集自动追踪Autopick 可根据种子点值的大小,或人工定义数据体值的范围,快速追踪地质体。也可利用多种属性(如在波阻抗体和相位体上)共同约束追踪地质体三维形态,如河道、扇体等,直接形成地质体顶底t0面。点集可自由转换为层位。 三维体雕刻Geobody 可用三维体追踪点集,层位,断面作为约束条件雕刻三维地质体,利用透明度和颜色来彰显地质异常体,突出空间展布。 异常体快速搜索GeoAnomaly 依据多数据体振幅值和数据连通性,快速搜索满足定义条件的异常体。 SeisWare软件的地震地质解释功能灵活方便,适于在勘探/开发阶段进行综合地震解释、随钻跟踪分析、油气层识别、储量计算以及新区预探、老区扩边、部署调整等研究工作。 其特点包括: 多工区,不同类型地震资料的连片解释; 断层追踪识别功能 可以直观方便的显示地震剖面上断层的平面要素,实时地观察断层面的空间走向及展布趋势。 欢西油田是一个地质条件和油藏来信十分复杂的断块油田,断距从十几米至几百米不等的不同级次断层纵横交错,断块分隔凌乱,油层埋藏差异大,储层沉积特征不一,发育不稳定,诸多因素都给地质研究带来困难。 面对复杂断块,Seisware地震解释系统的技术优势是,可以直观方便地显示地震剖面上断层的平面要素,实时地观察断层面空间走向及展布趋势,并使三维数据断层解释过程自动化。地震解释人员可以能够在较短时间内进行高精度的断层解释,即使在构造情况复杂地区或资料品质较差地区也能实现,其直观的编辑功

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

地震处理及解释软件发展现状

地震处理及解释软件发展现状 作者:发布时间:2010-04-08 10:51:27 地震资料处理技术的发展与计算机技术的发展息息相关。从模拟处理到数字处理;从简单的陆上二维资料处理到复杂的山地资料处理、全三维资料处理、高分辨率和深层资料处理等;从常规资料的处理到处理解释一体化的叠前深度偏移技术,每一次地球物理技术的进步都离不开计算机技术的进步和应用软件的发展。 以胜利油田的地震资料处理计算机装备为例,其发展过程已历经了数代的变化。从最早的IRIS60机、TIMAP—I、TIMAP4、VAX11/782、IBM3083,到并行计算SGI/Orgin2000和IBM—SP,以及目前正在迅猛发展的PC—CLUSTER,运算速度已从最初的每秒40万次提高到现在的每秒万亿次。 随着地震资料处理硬件装备的发展,处理软件也在不断地更新,处理技术日趋完善。勘探软件是现代地震勘探和油藏描述的基本必备工具,自上世纪70年代,国外的一些软件公司就已着手开发地震处理及解释软件系统,并初步形成了商业化软件,开始在全世界范围内推广和应用。进入上世纪90年代,比较成熟的处理软件有西方地球物理公司的Omega处理软件、法国CGG公司的GEOVECTEUR PLUS处理软件、LandMark公司的Promax处理软件、帕拉代姆公司的GeoDepth软件、Focus软件。国内较早从事勘探软件研究和开发的单位,主要是以东方地球物理公司(原石油物探局)为主,它的处理软件为Grisys处理软件。这些软件的处理技术水平各具特色。另外,随着油藏地球物理技术的发展,各种相关的特殊处理软件逐步发展与完善。 地震数据处理软件的发展 批处理阶段上世纪70~80年代末,由于计算机技术落后,限制了地震处理软件和处理技术的发展,地震处理软件一直处于批处理阶段,代表性的软件有:法国CGG公司的GEO—MASTER软件、美国GSI公司的TIPEX软件、美国WGC公司的IQ处理软件、美国CSD 公司DISCO软件等。 交互处理阶段上世纪90年代初,随着计算机技术的飞速发展,地震处理软件和处理技术发展很快。开始发展交互地震处理软件。代表性的软件有:法国CGG公司的

地震解释的现状及发展趋势

地震波地质信息综合解释 摘要:地震解释质量决定了一个区块勘探开发的方向和进程,地震解释的发展对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。本文主要从现今已经在应用的解释技术和方法以及近年来涌现出来的一些新思路、新方法展开论述。分别包括三维可视化技术、构造解释、构造解释和利用振幅属性预测含烃概率、利用波峰瞬时频率计算薄层厚度、多子波地震道分解和重构等。 关键字:地震解释、构造解释、振幅属性、波峰瞬时频率 引言:地震资料解释是勘探和开发地震的最后环节,其功能是将地震信息翻译成地质语言或符号;其目的是直接服务于勘探和开发。因此解释质量决定了一个区块勘探开发的方向和进程。地震勘探开发技术发展的目标都是为了提供更好的易于解释的具更高可信度的地震资料。地震解释现在更多地强调综合性和在地质规律控制下的地震解释。这对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。地震解释从来就不是从事物探方法研究人员单纯可以从事的工作。地震解释已经开始从注重地震解释方法向注重多学科综合性的转变,现在更为明显!地震解释的另一个明显的趋势是强调在地质规律认识下的地震解释,即地震和地质的紧密结合。 一、地震综合解释的现今技术及方法 在地震综合解释方面,主要是以地震反演技术、多种属性分析技术及三维解释为主体的地震综合储层预测技术,通过与层序地层学、测井和地质等其他测量解释成果的结合给出地震资料综合解释的应用实例。例如AmoutColpaert应用神经网络将地震解释数据和井中岩石物理特性分析联合实现多属性分析,从而进行岩相预测。靶区的目标地层是岩溶发育的斜坡形向陆架坡过渡的碳酸盐岩地层,探区内井资料很少或几乎没有,作者综合应用了基于井资料的层序地层分析、岩石物理分析和多属性地震分析,对无井控制区的岩相进行了预测。其基本流程见图1。

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震勘探在海洋石油勘探中的基本原理

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___ 地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。

论地震勘探资料解释

论地震勘探资料解释 论文提要 地震勘探资料解释是地震勘探工程的最终环节。它包括了地层、构造、沉积以及盆地分析和油气勘探等多方面内容,成为油气勘探以及盆地基础地质研究中不可缺少的重要方法。它也是要把地震勘探所取得的地震资料转化成我们对勘探区地下地质情况的认识。应用数字处理后提供的大量水平叠加剖面、偏移剖面或者一块三维数据体等地震资料,再结合地质、钻井、测井等资料,应用解释工作站等现代科技手段,对这些资料进行综合分析、模拟计算、反复对比,最后给出比较符合地下实际情况的认识,并将这些认识绘制成图幅和图表。 地震勘探资料解释在正式工作中是非常重要的,没有这一步那就不会得出最后的结果。在野外把数据采集回来,要经过最后的资料解释才能够把数据转换成图表,为后续的工作打好基础。 正文 一、地震资料解释 包括地震构造解释、地震地层解释及地震烃类解释或地震地质解释。 地震构造解释以水平叠加时间剖面和偏移时间剖面为主要资料,分析剖面上各种波的特征,确定反射标准层层位和对比追踪,解释时间剖面所反映的各种地质构造现象,构制反射地震标准层构造图。 地震地层解释以时间剖面为主要资料,或是进行区域性地层研究,或是进行局部构造的岩性岩相变化分析。划分地震层序是地震地层解释的基础,据此进行地震层序之沉积特征及地质时代的研究,然后进行地震相分析,将地震相转换为沉积相,绘制地震相平面图,划分出含油气的有利相带。 地震烃类解释利用反射振幅、速度及频率等信息,对含油气有利地区进行烃类指标分析。通常需综合运用钻井资料与测井资料进行标定分析与模拟解释,对地震异常作定性与定量分析,进一步识别烃类指示的性质,进行储集层描述,估算油气层厚度及分布范围等。 二、地震剖面特点 地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工采集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就象从地面向下切了一刀,在二维空间(长度和深度方向)上显示了地下的地质构造情况。 垂直地震剖面是相对于前面讲的地震勘探而言。那么什么叫垂直地震剖面(简称VSP)呢? 20世纪70年代提出的、70年代后期和80年代很流行的垂直地震剖面技术和以往提到的地震勘探不同,它是将接收器放在已打好的深井中,接收线沿井孔布置,并借助推靠器将接收器紧紧贴在井壁上。也就是说,前面讲的地震勘探的接收器是放在地面上,而垂直地震剖面的接收器是垂直地面放在井下,故而得名。工作时首先将一组接收器下

地震勘探在石油行业的应用

地震勘探在石油行业的应用 黄土塬山地网状三维勘探的基本思路和基础黄土塬网状三维地震勘探出发点就是利用黄土塬区沟系发育的特点 ,在不同的沟中激发和接收 ,充分利用目前地震勘探仪器具有多道接收能力的优点 ,进行宽方位的地震接收 ,得到黄土覆盖区目的层反射信息。模型计算结果证实 ,利用不同形状闭合回路激发和接收均可获得回路中心一定面积的反射信息。但山地冲沟一般为树枝状分布 ,很难形成理想的闭合回路 ,因此在实际中需在塬上布设少量的接收点和激发点作为补充。 1. 2 野外采集方案设计和实施工区位于中国中部甘肃省庆阳县 ,地表海拔高程范围 1 140~1 560 m ,沟塬高差最大可达 300 m , 单测线沟塬高差也在百米以上。沟距一般大于 2 km(图 2a) 。目标层为中生界侏罗系延安组和三叠系延长组 ,埋深 1 000~1 500 m。考虑到激发点和接收点的不均匀布设以及地形、沟距的限制 ,设计时覆盖次数以不低于二维地震覆盖次数为主 ,面元大小以尽量不出现地下空白反射区为原则。最小偏移距无定值 ,最大偏移距应近似于目标层位埋藏深度 ,避开干扰 ,满足速度精度和仪器性能限制[ 1 ] 。施工采集排列范围设计和实施以刘八沟水系为主 ,南北局部跨相邻水系。布设 8 个排列小区 (图 2b) ,大部分激发、接收点选在沟中老地层出露处 , 小部分为联络跨塬支沟而摆放在黄土塬上。沟中采用单井或双井激发 ,塬上采用多井组合激发 ,接收道数大于 1 000 道。 网状三维原始资料特点 (1) 大信息量排列线的重复和多次观测使最大覆盖次数达 430 次。 (2) 不规则性施工排列为近似环形树枝形网状线束 ,形成极不规则的单炮记录(图 3) 。 (3) 不均匀性炮检距分布、覆盖次数平面分布、方位角分布及原始记录频率成分构成均呈现不均匀状态。 (4) 静校正难度大炮、检点间高程变化剧烈以及巨厚黄土塬低降速层造成的静态延迟使静校正问题复杂化。 (5) 低信噪比复杂的地表、近地表条件造成面波、浅层折射波、多次波发育 ,复杂的炮检关系又使普通规则干扰在原始记录中的规律性变差。

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

地震数据处理解释技术发展研究

地震数据处理解释技术发展研究 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。…… 一、地震数据处理解释是地震勘探的主要组成部分 地震勘探就是通过人工地震反射波“给地球做CT”,让油气勘探者能够“看见”地层的地质构造和油藏情况,为石油公司“找油”做出含油气评价、提出钻井位置、模拟油藏未来的生产动态以便为后续油气藏开采和开发提供技术资料。 地震勘探包括地震采集、处理和解释三大部分:地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造解释、地层解释,岩性和烃类检测解释及综合解释,目的是利用地震反射波的地质特征和意义确定井位寻找石油。地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度和找油的成功率。 图1 地震勘探产业链构成 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。其原因有四:1、石油勘探地震数据处理解释与井位部署成功率、油田发现、油田采收率、油田增储上产等经济效益直接相关,是寻找油气资源的关键技术; 2、石油勘探技术发展的基础主要体现在地震数据处理环节中地震成像技术的发展;3、地震数据处理解释下游钻井业务等油气开采技术均十分成熟;4、上游地震数据采集依赖于先进的仪器设备,理论简单。综合而言,地震数据处理的质量和地震成像的准确度与清晰度直接决定油气资源的发现的成败和勘探成功率,是影响后期油田生产建设最重要的环节。 BP公司北海油田日产量与地震数据处理解释新技术的关系表明,新技术尤其是地震成像技术的发展和应用对于油田产量的增加影响极大。 图2 石油勘探地震数据处理解释技术对北海油田的产量的影响由此可见,地震数据处理解释是地震勘探的主要组成部分,其发展和技术进步对于解决人类能源供应问题具有十分重要的意义。 二、地震数据处理解释技术发展历程 地震数据处理解释技术中最核心的就是地震成像技术,因此地震数据处理解释技术的发展历程主要依据地震成像技术的发展水平进行划分。 地震数据处理解释最早出现于20世纪20年代初期。随后的40年间由于是对光点记录(1920—1950)和模拟记录(1950—1965)进行处理,在这一阶段地震处理解释技术发展缓慢,也没有可实用的地震成像技术出现。

解释及分析地震数据体一般步骤

解释及分析地震数据体一般步骤: 1、合成人工记录和层位标定 2、追层位,注意闭合 3、解释断层 3、平面成图 在解释过程中可能用到的五种技术方法: 1.层位标定技术 2.三维体构造精细解释技术 3.相干数据体分析技术 4.低序级断层识别技术 5.断点组合技术 其中各项技术的具体用法自己去查资料 若遇到潜山和特殊岩性体时,在成图前增加1项,速度场分析即第6项技术变速成图技术;若有储层描述部分,还需增加反演处理。 1、反演工区建立 2、地震子波提取 3、井地标定 4、初始模型建立 5、反演参数选取 6、反演处理 7、砂体追踪描述 8、成图 在三维地震构造解释的基础上,对有井斜资料的井,分层段进行了井深校正,将测井井深校正为垂直井深。通过钻井资料的校正,利用校正数据表的数据,对断层的断点位置和断距进行归一化处理,对三维地震所做的构造图与钻井数据相矛盾的地方进行反复推敲,分析油藏油水关系,对一些四、五级断层进行组合、修正,反复修改构造,最后编制研究区构造图。静校正statics:地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。广义的静校正还包括相位校正及对仪器因素影响的校正。随着数字处理技术的发展,已有多种自动静校正的方法和程序。 [深度剖面]depth record section;据磁带地震记录的时间剖面或普通光点记录,用一般方法所作出的地震剖面只是表示界面的法线深度,而不是真正的铅垂深度。经过偏移校正和深度校正之后,得到界面的铅垂深度剖面才叫做深度剖面,它是地质解释的重要资料。用数字电子计算机处理磁带地震记录,能自动得出深度剖面 [同相轴]lineups;地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。 [速度界面]velocity interface;是指对地震波传播速度不同的、相邻的两层介质的公共接触面。信噪比signal-to-noise ratio:信噪比有多种定义。通常将地震仪器的输出端上,有效信号的功率与噪声(干扰)的功率之比称为信噪比。信噪比既与输入信号本身有关,更决定于仪器的特性,它也被用来衡量资料处理的效果。因此,提高信噪比是提高地震工作质量的关键问题之一。信噪比愈大愈好,可以通过改进仪器性能或选择工作方法提高信噪比。 子波wavelet:从震源发出的原始地震脉冲在介质中传播时,由于介质对地震脉冲有滤波作用,并且地层界面使波产生反射和折射,因此,自距震源一定距离起,脉冲波形便发生变化而与原始波形不同,但在一定传播范围内其形状甚本保持不变,这时的地震脉冲便称为子波。子波的形状决定于震源和介质的滤波性质,其频率随传播距离的增大而有所降低,振幅也逐渐减小。不同的界面各自的子波不同,每一道的地震记录可以认为是由一系列的子波构成的。子波不仅用于制作理论地震记录,而且在断层对比和反褶积处理等方面都需要它。 [有效速度] effective velocity; 把覆盖层看作均匀介质而从实际观测所得的反射波或从折射波时距曲线求得的波速,统称为有效速度。由于在层状地层中存在层理,介质并不真正是均匀的,再加上界面的弯曲,使有效速度不同于平均速度,往往是比平均速度大的一种近似速度,但在各层速度的差别不很大和界面弯曲不大时,两者的差别很小。 [有效波]effective wave; 指能用来解决某些地质问题的人工激发的地震波。有效波是个相对的

地震勘探原理知识点总结材料

第三章地震资料采集方法与技术 一.野外工作概述 1.陆地石工基本情况介绍 试验工作容:①干扰波调查,了解工区干扰波类型与特性。 ②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在 与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。 ③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。 ④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和 仪器因素的选择等。 生产工作过程:地震队的组成 (1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置 (2)地震波的激发 陆上地震勘探的震源类型:炸药震源和可控震源。激发方式:炸药震源 的井中激发、土坑等。激发井深:潜水面以下1-3m,(6-7m)。 (3)地震波的接收 实现方式:检波器、排列和地震仪器 2.调查干扰波的方法 (1)小排列(最常用) 3-5m道距、连续观测 目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。 从地震记录中可以得到干扰波的视周期和视速度等基本特征参数 (2)直角排列 适用于不知道干扰波传播方向的情况 Δt1和Δt2的合矢量的方向近似于干扰波的传播方向 (3)三分量检波器观测法 (4)环境噪声调查 信噪比:有效波的振幅/干扰波的振幅(规则) 信号的能量/噪声的能量 3.各种干扰波的类型和特点 (1)规则干扰 指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。 面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。(能量较强) 声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。 浅层折射波:当表层存在高速层或第四系下面的老地层埋藏浅,可能观测到同相轴为直线的浅层折射波。 工业电干扰:当地震测线通过高压输电线路时产生,整记录或部分记录道上出现50Hz 的正弦干扰波。 侧面波:在地表条件比较复杂的地区进行地震勘探时,常出现侧面波干扰。

石油地震勘探资料处理

石油地震勘探资料处理 1.地震资料数字处理是怎么回事? 既然野外地震已经采集到了反映地下地质情况的地震记录,为什么还要进行地震资料数字处理呢?这是因为野外采集的地震记录仅仅是把来自地下地层的各种信息以数码形式记录在磁带上或光盘上,还不能直接反映出地下地层的埋藏深度及起伏变化情况,还需要将地震记录拿到室内输入到运算速度非常快、存贮量非常大、专业功能非常强的计算机系统中,在专家的指令下进行反复计算和分析,才能获得直接反映地下地层真实情况的数据和图像,专业上把这一过程叫做地震资料数字处理。这个过程有点像我们生活中使用的数码照相机(或数码摄像机)的显像过程,将数码照相机拍摄到的图像输入到室内的电脑上,根据需要,对显示在屏幕上的影像进行修改、调整、增加、删减,满意后可通过屏幕拷贝、彩色打印输出图片来,也可以录制到光盘上存贮以供调用,这个过程叫做编辑,也叫处理。不过地震资料的数字处理所用的硬、软件则要复杂得多。因为数码相机拍摄到的图像仅是几米到几十米远的景物,而地震资料数字处理要对从地面开始到地下五六千米甚至上万米深范围内的地震数据进行处理,不仅将上面第一套地层,还要将下面很多套地层逐层搞清楚。这些地层在不同地区形态都不一样,有的很平,有的像喜马拉雅山似的高山,有的像雅鲁藏布江似的河谷。可见地震数字处理要把地下数千米深的看不见、摸不着,又极其复杂的地层情况搞清楚,这是多么难的一门学科。 不过,近些年来由于将迅速发展起来的计算机技术、信息技术等许多高新科学技术引用到地震资料数字处理中,为搞清地下地层情况,寻找深埋地下的油气田提供了条件,提供了可能,而且提高了油气勘探的成功率。 经过数字处理后的成果有好几十种。专业上把反映地层的埋藏深度、厚度以及形态的图件叫做水平叠加剖面(简称叠加剖面)、偏移剖面。把反映地层岩石(砂岩、泥岩等)组成及其物理性质(速度高低、孔隙大小等)等的成果叫地震属性资料。将经过数字处理的这些剖面和属性资料录制到数字磁带或光盘上,可提供给下道工序(解释)使用。

地震资料综合解释

Landmark系统在地震资料解释中的应用摘要:随着计算机技术的高速发展和地震勘探资料解释技术的不断提高,应用解释工作站进行资料解释和综合研究越来越普遍。应用LandMark系统进行地震勘探解释成图与以往成图方法相比,具有省时、高效、成图质量高等优点,尤其对于工区面积大、断块复杂、地震勘探数据量大的项目,运用LandMark解释成图系统将会极大地提高工作效率。 一. Landmark软件简介 Landmark软件是美国哈里伯顿(Halliburton)公司开发的钻井工程专用软件,是一套知识集成系统,主要功能是利用所集成的软件模块协助用户进行专业分析并做出决策。Landmark软件包括六个功能模块,即数据、信息管理及分析软件IMI、地震资料目标处理软件Processing、地震地质综合研究应用软件GGT、油藏开发应用软件RM、钻井和完井服务应用软件Drilling和Windows平台应用软件Discovery,各个模块都具有自己的特殊功能。 Landmark软件主要由OpenWorks软件平台和各个应用程序两部分组成。应用程序都是OpenWorks软件平台的插件,均运行于OpenWorks的环境下,受它的管理,遵循其设置的规则和标准。例如,所有应用程序的数据测量系统,投影和坐标系统等都与OpenWorks软件平台的设置一致,这样有利于数据的交换。所有应用程序产生的各类数据包括地质、地震、测井、人文四大类数据,均存储于OpenWorks数据库中,形成了一个统一的数据体,即所谓的数据一体化,总体说来,主要有下列三个特点: (1)方便的数据交换:各个应用程序之间都可以很方便地进行数据交换,SeisWorks 和StratWorks中的断层多边形、层面网格线、等值线等可以方便地相互交换,MapView的图像也可以转成ZMAP+格式,输出高质量的图像。 (2)数据共享:OpenWorks是一个多用户系统,允许多个用户在一个工区内工作,你可以指定用哪些用户的数据,并可指定应用的次序,达到数据全面的共享。 (3)便利的数据通讯:通讯就是实时的数据交换。Landmark软件各个应用程序之间以及每个应用程序内部都存在广泛的通讯。 另外,Landmark软件还具有多平台系统的特点,软件可以运行在SUN、SGI、IBM三种工作站上。应用PetroWorks的软件开发工具包(ModelBuilder),用户可以开发自己的应用程序,增强软件的功能。OpenWorks有浮动许可的功能,因此网上的任意一台工作站都可通过许可证浮动的方式运行软件。OpenWorks软件平台所挂接的应用程序很多,其中包括单井处理软件(PetroWorks)和多井处理软件(StratWorks)。 Landmark软件服务对象包括任何国家的石油公司、国际石油公司、独立石油公司,以及石油服务公司和咨询公司,全世界超过90%的勘探与生产公司使用Landmark软件,为全球排名前20名的石油生产商中的18家提供技术服务,是业界最大的软件和服务供应商。目前有超过150个软件应用,发行了120000套软件许可证,覆盖勘探、开发、钻井、生产和信息管理等多方面。集成解决方案应用于地质和地球物理、油藏管理、钻完井、生产优化、信息管理等多个领域。下面以Processing模块为例,主要介绍一下Landmark软件的应用情况。 二.软件功能简介 1.SynTool(合成地震记录制作) SynTool是一体化的层位标定工具,用以将地质分层、岩性与地震数据精确地联结起来,它提供了建立精确的合成地震记录所需的特征参数,并提供了强大的曲线编辑处理功能来帮

地震勘探基础知识

地震勘探基础知识(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: 地震勘探(利用岩石的弹性差异) 重力勘探(利用岩石的密度差异) 磁法勘探(利用岩石的磁性差异) 电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录

相关主题
文本预览
相关文档 最新文档