当前位置:文档之家› 基于软件流水线技术的内德勒曼-Wunsch算法并行化(IJEM-V1-N4-9)

基于软件流水线技术的内德勒曼-Wunsch算法并行化(IJEM-V1-N4-9)

基于软件流水线技术的内德勒曼-Wunsch算法并行化(IJEM-V1-N4-9)
基于软件流水线技术的内德勒曼-Wunsch算法并行化(IJEM-V1-N4-9)

软件开发管理办法

软件开发管理办法 1 软件开发 1.1软件开发流程 1.2项目策划 根据年度软件开发计划确定的项目或用户提出的需求变更项目,组织进行项目前期策划,确定项目实现目标、内容、质量要求、工期,下达《软件开发任务书》或对用户《需求变更申请》进行审核和任务安排,项目组接到任务后组织实施。项目组根据任务安排,编制《软件开发计划》。 1.3系统需求分析 项目组根据项目内容和目标,编制《需求调研计划》和《需求调查表》,组织用户参加的项目启动会,讨论通过《需求调研计划》,用户按《需求调查表》的内容准备调研材料。开发项目组和用户组成联合项目组,共同推进项目的实施。 调研阶段完成后形成《软件需求规格说明书》,重点明确以下内容:组织机构、岗位职责、业务流程、所需的业务功能,业务功能和岗位的对应关系,业务功能处理的数据项,业务功能的详细描述。 需求分析完成后,由内部组织进行阶段评审,填写《阶段评审记录》。

组织召开需求确认会,《软件需求规格说明书》由用户审查通过后,填写《用户需求确认单》。 依据《软件需求规格说明书》,编制《系统测试计划》初稿。1.4系统设计 依据《软件需求规格说明书》进行系统设计,形成《软件设计说明书》,主要内容包括软件功能设计说明、数据库设计说明、功能的数据处理说明(功能-数据关联矩阵)、程序模块设计说明(后期完善)等。 系统设计完成后,由内部组织进行阶段评审,填写《阶段评审记录》。 依据《软件设计说明书》,补充完善《软件测试计划》。 1.5编码 依据《软件设计说明书》,遵守有关技术规范,在开发平台上进行编码,实现软件功能。 编码完成后,编写《用户操作手册》,补充完善和修改《软件设计说明书》,把编程过程中数据设计、功能设计的变动进行文档修正,补充程序模块设计说明,编制《软件组件清单》、《数据对象清单》,修改完善《系统测试计划》。 1.6测试 项目组内部组织完成单元测试。 编码完成后,由内部组织进行阶段评审,填写《阶段评审记录》。

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

卡尔曼滤波算法与matlab实现

一个应用实例详解卡尔曼滤波及其算法实现 标签:算法filtermatlabalgorithm优化工作 2012-05-14 10:48 75511人阅读评论(25) 收藏举报分类: 数据结构及其算法(4) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。 我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。 可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

软件开发方法与过程

(1)软件开发过程是什么? 软件开发过程是按照软件工业化的标准定义的心之所向,所向披靡 ?在软件开发中必须具有的一系列过程规范; ?软件开发过程是定义在软件中的软件需求、软件设计、软件编码、软件测试、软件部署的实现目标和规范化的管理方法论; ?软件开发过程是保证软件工业化生产的法典;?软件开发过程做的是:定义标准和为了达到标准的路; ?软件开发过程要改善的是:软件开发的效率和质量; ?软件开发过程的实现最重要的是:人。 (2)大多数软件项目失败的原因: a)不完整、不现实的项目需求 b)对需求的变更束手无策 c)脆弱的架构 d)采用不成熟的技术 e)测试的不充分性 f)拙劣的进度计划和评估 g)缺乏资源 h)不具备项目管理方法 i)缺少管理层的支持 (3)软件工程的三个要素:方法、工具和过程(4)A software project failed if It is delivered late It is runs over the budget It does not satisfy the customer’s need It is of poor quality Classical software development methods have not solved software crisis.传统的软件开发方法没有能够解决软件危机。 (5)A software engineer’s job: a)Make a working plan.制定工作计划 b)Carry out it.(Do their work according to this plan)按照此计划工作 c)Try his/her best to produce high-quality products.尽最大努力生产 出高质量产品 (6)3 Key aspects a)Quality products 高质量产品 b)Expected costs c)On agreed schedule (7)Summary of PSP PSP is a framework designed to teach software engineers to do better work Estimate and plan →track →improve quality Quality methods take time to learn and practice,but it will help you in you engineering career Establish goals →measure quality → understand the process → change and reure process → measure & analyze the results → recycle improving Identify the tasks you do (8)敏捷软件开发宣言 个体和交互胜过过程和工具 可以做到工具的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 敏捷开发的原则: 1、我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 尽早交付具有部分功能的系统和质量系统之间具有很强的相关性 2、即使到了开发的后期,也欢迎改变需求。敏捷过程利用变化来为客户创造竞争优势。 关于态度的声明,敏捷过程的参与者不惧怕变化,努力保持软件结构的灵活性。 3、经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间越短越好。 关注的目标是交付满足客户需要的东西。它们是敏捷实践区别其他过程的特征所在。 4、在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 有意义的、频繁的交互,必须对软件项目进行持续不断地引导。 5、围绕被激励起来的个人来构建项目。给他们提供所需要的环境和支持,并且信任他们能够完成工作。 人被认为是项目取得成功的最重要的因素。 6、在团队内部,最具有效果并且富有效率的传递信息的方法就是面对面的交谈。首要的、默认的沟通方式。 7、工作的软件是首要的进度度量标准。 敏捷项目通过度量当前软件满足客户需求的数量来度量开发速度。 8、敏捷过程提倡可持续的开发速度。责任人、开发者和用户应该能够保持一个长期、恒定的开发速度。不是 50米短跑,而是马拉松。以快速但是可持续的速度行进。 9、不断关注优秀的技能和好的设计会增强敏捷能力。

(整理)11种滤波方法+范例代码.

软件滤波算法(转载) 这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下 需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点:

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM

卡尔曼滤波算法总结

卡尔曼滤波算法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)() X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)')Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1))X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_0 1_0 Angle dt Angle dt Q bias Q bia o s Gyr -= + 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)() X k k AX k k Bu k -=--+ (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/6d343563.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

软件开发报价的计算方法(完整版)

软件开发报价的计算方法(完整版) 1.软件开发价格估算方法 软件开发价格与工作量、商务成本、国家税收和企业利润等项有关。为了便于计算,给出一个计算公式: 软件开发价格=开发工作量×开发费用/人·月 1.1开发工作量 软件开发工作量与估算工作量经验值、风险系数和复用系数等项有关:软件开发工作量=估算工作量经验值×风险系数×复用系数 1.1.1估算工作量经验值(以A来表示) 软什开发工作量的计算,曾有人提出以源代码行或功能点来计算,这些方法实施起来均有不少难度。目前国际上仍旧按以往经验的方式加以计算,国内各软件企业也是采用经验的方式加以估算工作量。 为了更好地规范估算方法,建议可按照国家标准“GB/T 8566-2001软件生存周期过程”所规定的软件开发过程的各项活动来计算工作量。 工作量的计算是按一个开发工作人员在一个月内(日历中的月,即包括国家规定的节假日)能完成的工作量为单位,也就是通常所讲的“人·月”。 特别要提醒的是软件开发过程中既包括了通常所讲的软件开发,也应包括各类软件测试的活动。 1.1.2风险系数(以σ来表示) 估算工作量经验值亦会存在较大风险,造成软件危机的因素很多,这也是一个方面的因素。特别当软件企业对该信息工程项目的业务领域不熟悉或不太熟悉,而且用户又无法或不能完整明白地表达他们的真实的需求,从而造成软件企业需要不断地完善需求获取,修改设计等各项工作。因此: l ≤风险系数≤ 1.5 根据我们对软件企业的了解,超过估算工作量经验值的一半,已是不可接受,所以我们确定“1.5”为极限值。当然这既要看企业的能力,也要看用户能接受的程度。1.1.3复用系数(以τ来表示)

几种滤波算法

一.十一种通用滤波算法(转) 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14

时间序列分析方法之卡尔曼滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设表示时刻观测到的n 维随机向量,一类非常丰富的描述动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量表示,因此表示动态性的状态空间表示(state-space representation)由下列方程系统给出: 状态方程(state model) (13.1) 量测方程(observation model) (13.2) 这里,和分别是阶数为,和的参数矩阵,是的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),维向量和维向量都是向量白噪声,满足: (13.3) (13.4) 这里和是和阶矩阵。假设扰动项和对于所有阶滞后都是不相关的,即对所有和,有: (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y t t 内的信息以外,t x 没有为s t ξ和s t w ( ,2,1,0 s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与 ξ和 w (任意 )不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关:

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

软件开发方法

软件开发方法 软件开发方法是指使用预先定义的技术集合与符号来表达软件生产过程,包括系统分析方法、系统设计方法与程序编制方法。使用合适的软件开发方法,可以在规定的投资费用和时间内开发出符合用户需求、高质量的软件。 常用的5种软件开发方法包括: 1. 结构化方法 结构化方法是由 E.Yourdon 和 L.L.Constantine 提出的,是为面向功能的软件开发方法或面向数据流的软件开发方法,也称为SASD方法。结构化方法是20世纪80年代使用最广泛的软件开发方法。使用结构化方法开发软件的基本过程是:①使用结构化分析方法(Structure Analysis,SA)对软件进行需求分析。②使用结构化设计方法(Structure Design,SD)进行总体设计。③进行结构化编程(Structure Programming,SP)。结构化方法给出了变换型和事务型2类典型的软件结构,使软件开发的成功率得到大大地提高。 2. 面向对象方法 面向对象方法是一种自底向上和自顶向下相结合的软件开发方法。面向对象方法以对象建模为基础,不仅考虑了输入和输出的数据结构,而且还包含了所有对象的数据结构。面向对象技术在需求分析这个软件开发的关键环节以及软件可维护性、可靠性等质量指标上均有实质性的突破,基本解决在这些方面存在的严重问题。 3. 面向数据结构方法 面向数据结构方法是以数据结构作为程序设计基础的软件开发方法,Jackson方法是一种典型的面向数据结构方法。Jackson方法把问题分解为可由3种基本结构形式表示的层次结构。这3种基本的结构形式就是顺序、选择和循环结构,将3种数据结构进行组合就可以形成复杂的结构体系。Jackson方法从目标系统的输入、输出数据结构入手,导出程序框架结构,然后补充其它细节,最后给出完整的程序结构图。面向数据结构方法对于具有清晰输入、输出数据结构的中小型系统特别有效,如商业应用中的文件表格处理。面

几种常见软件开发方法的研究与比较

几种常见软件开发方法的研究与比较 摘要:本文介绍四种常见软件开发方法的过程、特点、优缺点及如何对软件开发方法进行评价与选择。 关键词:软件软件开发 1 引言 在软件开发的过程中,软件开发方法是关系到软件开发成败的重要因素。软件开发方法就是软件开发所遵循的办法和步骤,以保证所得到的运行系统和支持的文档满足质量要求。在软件开发实践中,有很多方法可供软件开发人员选择。 2 常见的软件开发方法 2.1 结构化开发方法 结构指系统内各组成要素之间的相互联系、相互作用的框架。结构化开发方法强调系统结构的合理性以及所开发的软件的结构的合理性,主要是面向数据流的,因此也被称为面向功能的软件开发方法或面向数据流的软件开发方法。结构化技术包括结构化分析、结构化设计和结构化程序设计三方面内容。 2.1.1 结构化分析的步骤 结构化分析是一种模型的确立活动,就是使用独有的符号,来确立描绘信息(数据和控制)流和内容的模型,划分系统的功能和行为,以及其他为确立模型不可缺少的描述。其基本步骤是:(1)构造数据流模型:根据用户当前需求,在创建实体—关系图的基础上,依据数据流图构造数据流模型。(2)构建控制流模型:一些应用系统除了要求用数据流建模外,通过构造控制流图(CFD),构建控制流模型。(3)生成数据字典:对所有数据元素的输入、输出、存储结构,甚至是中间计算结果进行有组织的列表。目前一般采用CASE的“结构化分析和设计工具”来完成。(4)生成可选方案,建立需求规约:确定各种方案的成本和风险等级,据此对各种方案进行分析,然后从中选择一种方案,建立完整的需求规约。 2.1.2 结构化设计步骤 结构化设计是采用最佳的可能方法设计系统的各个组成部分以及各成分之间的内部联系的技术,目的在于提出满足系统需求的最佳软件的结构,完成软件层次图或软件结构图。其基本步骤如下:

4.2软件开发管理办法

软件开发管理办法 修订记录 版本编号修订日期主要修订摘要 审核记录 审核人员属于部门审核日期 第一章总则 第一条为规范公司的开发管理流程,使各开发项目的管理进行标准化管理,特制定本管理办法。 第二条本管理办法详细规定软件开发程的各个阶段及每一阶段的任务、要求、交付文件,使整个软件开发过程阶段清晰、要求明确、任务具体,实现软件开发过程的标准化。 第三条本管理办法适用于计算机的自主软件开发项目。适用对象:软件开发管理人员,软件开发人员,软件维护人员,系统管理人员。 第二章组织机构与职责 第四条软件开发管理人员职责: 第五条软件开发人员职责: 第六条软件维护人员职责: 第七条系统管理人员职责: 第三章软件开发环境管理 第八条软件建设环境根据项目不同的时期,需要搭建生产运行环境、系统测试环境、系统开发环境三种不同的软硬件网络环境,便于生产、开发、测试等工作的安全、顺畅的进行。 第九条生产环境为系统维护管理人间管理的范畴,是系统正式运行,提交给各业务科室的正式环境,包括系统运行的硬件、网络等设备和进行集群处理的软件系统。 第十条测试环境为测试人员提供功能测试、性能测试的运行环境,包括运行环境模拟、测试工具服务器、测试工具客户端。 第十一条开发环境为系统开发人员提供系统开发需要的软件硬件环境,包括数据库服务器、应用服务器、开发工具客户端。 第十二条生产环境、测试环境、开发环境都存在自己独立的数据库服务器、应用服务器、客户端。在开发环境完成内部测试后,提交发布版本到测试环境中,由专门的测试人

员进行集成测试和功能测试。并进行一定的压力性能测试。在测试环境通过的版本在发布到生产环境。 第十三条生产环境与测试环境、开发环境需要物理隔离,保障生产环境的安全。 第四章开发过程管理 第十四条项目开发流程根据软件工程的流程,分为可行性研究与计划、需求分析、总计设计、详细设计、代码开发、系统测试五个阶段。 第十五条可行性研究与计划 1实施要求 1.软件开发部分析人员进行市场调查与分析,确认软件的市场需求 2.在调查研究的基础上进行可行性研究,写出可行性报告 3.评审和审批,决定项目取消或继续 4.若项目可行,制订初步的软件开发计划,建立项目日志 5.根据市场环境、公司软硬件情况预测十大风险因素 2交付文档 1.可行性研究报告* 2.初步的软件开发计划 3.十大风险列表* 4.软件项目日志* 第十六条需求分析 1实施要求 1.调查被开发软件的环境 2.软件开发提出的需求进行分析并给出详细的功能定义 3.做出简单的用户原型,与用户共同研究,直到用户满意 4.对可利用的资源(计算机硬件、软件、人力等)进行估计,制定项目进度计划(可 有相应的缓冲时间) 5.制定详细的软件开发计划 6.测试人员制订质量控制计划和测试计划 7.编写初步的用户手册 8.进行需求方案评审 2交付文档 1.软件需求说明书 2.更新后的软件开发计划 3.项目进度计划 4.计划

相关主题
文本预览
相关文档 最新文档