当前位置:文档之家› 高三数学第三次月考模拟卷(十一)

高三数学第三次月考模拟卷(十一)

高三数学第三次月考模拟卷(十一)
高三数学第三次月考模拟卷(十一)

高三数学第三次月考模拟卷(十一)

高中数学

题号 一 二 三 总分 得分

一、选择题(本大题共12小题,每小题4分,共48分)

1.不等式组???<-<-0

3012

2x x x 的解集是( )

A .{x |-1<x <1}

B .{x |0<x <1}

C .{x |0<x <3}

D .{x |-1<x <3}

2.等差数列}{n a 共有12+n 项,其中奇数项之和为319,偶数项之和为290,则其中间项为( ).

A. 28

B. 29

C. 30

D.31

3.设

,则

A .

B .

C .

D .

4.已知集合{

}

R b a b ax x x A ∈=++=,,22

中有且只有3个元素,且这3个元素恰好为直角三角形的三边长,则b a +4的值等于( )

A. 2-

B. 0

C. 1

D. 2

5.某班班会,准备从甲、乙等7名学生中派4名学生发言,要求甲、乙两名同学至少有一人参加,当甲乙同

时参加时,他们两人的发言不能相邻,那么不同的发言顺序种数为( ) A .360 B .520 C .600 D .720 6.若奇函数

()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上 ( )

A.是减函数,有最小值0

B.是增函数,有最小值0

C.是减函数,有最大值0

D.是增函数,有最大值0

7.定义运算??????++=???????????

??df ce bf ae f e d c b a ,如??

?

???=????????

?????1514543021. 已知πβα=+,2π

βα=-,则=??

???????????ββααααsin cos sin cos cos sin ( )

(A )00??

????(B )01??????(C )10??????(D )11??????

8.双曲线22

149

x y -=的渐近线方程是 ( )

(A) 23y x =±(B) 49y x =±(C ) 32y x =±(D) 9

4

y x =±

9.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方

形所组成,该八边形的面积为( )

A .2sin 2cos 2αα-+;

B .sin 3cos 3αα-+

C .3sin 3cos 1αα-+;

D .2sin cos 1αα-+

10.设集合

,则

( )

A .

B .

C .

D .

11.设}11|{<<-=x x A ,}0|{>-=a x x B ,若B A ?,则a 的取值范围是( )

A .)1(--∞,

B . ]1(--∞,

C .),1[+∞

D .)1(∞+,

12.在ABC △中,AB =

c ,AC =b .若点D 满足2BD DC =,则AD =( )

A .

2133+b c B .5233-c b

C .2133-b c

D .12

33+b c

二、填空题(本大题共10小题,每小题2分,共20分)

姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

13.如图,在圆的内接四边形ABCD 中,90ABC ∠=?,45CBD ∠=?,60CDB ∠=?,

2AB =,则CD = .

14.已知数列{an}的通项公式为

121

n n a -=+,则a1C0n +a2C1n +…+an +1Cn n = .

15.复数13i z =+,21i z =-,则复数

1

2

z z 在复平面内对应的点位于第_______象限. 16.符合条件},,{c b a P ?的集合P 的个数是 个

17.把圆的参数方程?

??+-=+=θθ

sin 23cos 21y x 化成普通方程是_______________

18.在递增等比数列{a n }中,

,则公比

= .

19.与椭圆4 x 2 + 9 y 2

= 36 有相同的焦点,且过点(-3,2)的椭圆方程为______________.

20.若两个向量b a 与的夹角为θ,则称向量“b a ?”为“向量积”,其长度||||||sin a b a b θ?=??. 若

||1,||5,4a b a b ==?=-,则||a b ?= .

21.已知棱长为a ,各面均为等边三角形的四面体S -ABC ,它的表面积 ________________.

22.若集合{,,lg()}{0,,||}x y xy y x -=, 则2

2

8log ()x y += ;

三、解答题(本大题共4小题,共32分)

23.如图所示,

是正三角形,

都垂直于平面

,且

的中点.

求证:(1)平面;

(2)

.

24.直线l 被两条直线034:1=++y x l 和0553:2=--y x l 截得的线段中点为P )2,1(-,求直线l 的方程.

25.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药

量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()(16

t a

y a -=为常数)

,如图所示。

(1)请写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室。

26.已知在n

x

x )3(33-

的展开式中,第6项为常数项。 (1)求n ;(2)求2x 的项的系数;(3)求展开式中所有的有理项。

高三数学第三次月考模拟卷(十一)答案解析

一、选择题 1.B

【解析】略 2.B

【解析】319)1(2121=+?++n a a n ,290222=?+n a a n ,∴10=n ,中间项为2

1

211-+=n n a a a =29, 故选B 项

3.A

【解析】

试题分析:由对数函数的性质<0,

>1,由指数函数的性质0<

<1,故a

A 。

考点:本题主要考查指数函数、对数函数的图象和性质。

点评:基础题,涉及指数函数、对数函数比较大小问题,常常引入“-1,0,1”作为媒介。

4.A

5.C

6.D

【解析】略 7.A

【解析】略 8.C

【解析】略 9.A

【解析】略

10.B

【解析】

试题分析:∵,,

∴即,故选B

考点:本题考查了集合的运算

点评:求解集合运算问题可应用数轴或韦恩图来描述“交”“并”“补”运算.,从而使抽象问题形象化,增加计算的准确性.

11.B

【解析】略 12.A

【解析】略

二、填空题 13.2

14.2n +3n.

【解析】略

15.第一象限 16.8

【解析】略

17.

4)3()1(2

2=++-y x 【解析】略

18.2

【解析】

试题分析:解:∵{a n }是递增等比数列,且a 2=2,则公比q >1,又∵a 4-a 3=a 2(q 2-q )=2(q 2-q )=4 即q 2-q-2=0,解得q=2,或q=-1(舍去),故此数列的公比q=2,故答案为:2 考点:等比数列的通项公式

点评:本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a 2=2,a 4-a 3=4,构造出一个关于公比q 的方程,是解答本题的关键.

19.

110152

2=+y x 【解析】略 20.3

21.23a

【解析】略 22.

13

三、解答题

23.(1)根据题意,取AB 中点N ,连接FN 、NC ;又F 为BE 的中点 ∴FN 为

的中位线,那么FN ∥AE ,进

而得到平行性,AE ∥CD ,得到结论。

(2)对于已知中,由于AE="AB" F 是BE 的中点 在

中N 是AB 的中点 ∴AF ⊥BE CN ⊥AB ,那么根据

线面垂直的性质定理来的得到结论。 【解析】

试题分析:证明:(1)取AB 中点N ,连接FN 、NC ;又F 为BE 的中点 ∴FN 为的中位线,

∴FN ∥AE FN=

AE 又AE 、CD 都垂直与面ABC ,2CD=AE ∴AE ∥CD ∴ CD ∥FN 且CD=FN

∴四边形CDFN 为平行四边形 ∴DF ∥CN 又CN 面ABC ∴ DF ∥面ABC

(2)∵AE="AB" F 是BE 的中点 在中N 是AB 的中点 ∴AF ⊥BE CN ⊥AB

∵AE ⊥面ABC AE

面ABE ∴面ABE ⊥面ABC 又CN ⊥AB ∴CN ⊥面ABE

∴ DF ⊥面ABE ∴ DB 在平面ABE 的射影为BF ∴ AF ⊥BD 考点:平行和垂直的证明

点评:主要是考查了熟练的运用中位线来证明平行和线面垂直的性质定理的运用,属于基础题。

24.013=++y x ; 25.(1)依题意,当1

010

t ≤≤

,可设y 与t 的函数关系式为y =kt , 易求得k =10,∴ y =10t ,

0.10.11111

,()(0.1,1),1(),0.1,()10161616

t a a t t y a y ---≥

=∴=∴=∴=当时过点 ∴ 含药量y 与时间t 的函数关系式为0.1110,0,10

11(),.16

10t t t y t -?

≤≤??=??>??

(2)由图像可知y 与t 的关系是先增后减的,在1

010

t ≤≤时,y 从0增加到1; 然后1

10

t >

时,y 从1开始递减。 ∴0.11()0.2516t y -==,解得t =0.6,

∴至少经过0.6小时,学生才能回到教室 【解析】略

26.解:(1)10(2)405(3)2

2295245

,

61236,405x

x -

【解析】略

云南省曲靖市高三上学期月考数学试卷(理科)(三)

云南省曲靖市高三上学期月考数学试卷(理科)(三) 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分)已知全集 ,设函数的定义域为集合A,函数的值域为集合B,则() A . [1,2) B . [1,2] C . (1,2) D . (1,2] 2. (2分) (2018高二下·抚顺期末) 复数的共轭复数是() A . B . C . D . 3. (2分)在等比数列{an}中,a1<0,若对正整数n都有an1 B . 0

B . C . D . 5. (2分) (2016高二上·翔安期中) 命题“若a>﹣3,则a>0”以及它的逆命题、否命题、逆否命题中,真命题的个数为() A . 1 B . 2 C . 3 D . 4 6. (2分) (2016高二上·山东开学考) 如图,该程序运行后输出的结果为() A . 1 B . 2 C . 4

7. (2分)某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的体积为() A . B . C . D . 8. (2分) (2016高一下·河南期末) 已知空间四边形ABCD中,M、G分别为BC、CD的中点,则 + () 等于() A . B . C . D . 9. (2分)在正三棱锥中,、分别是、的中点,且,若侧棱,则正三棱锥外接球的表面积是()

B . C . D . 10. (2分)已知函数f(x)= ,若关于x的不等式f(x2﹣2x+2)<f(1﹣a2x2)的解集中有且仅有三个整数,则实数a的取值范围是() A . [﹣,﹣)∪(, ] B . (, ] C . [﹣,﹣)∪(, ] D . [﹣,﹣)∪(, ] 11. (2分)(2018·凯里模拟) 已知抛物线的焦点是椭圆()的一个焦点,且该抛物线的准线与椭圆相交于、两点,若是正三角形,则椭圆的离心率为() A . B . C . D . 12. (2分) (2015高二下·九江期中) 已知直线y=﹣x+m是曲线y=x2﹣3lnx的一条切线,则m的值为() A . 0 B . 2

高三数学第一次月考试题(文科)

高三数学第一次月考试题(文科) 一、选择题(四个选项中只选一项,每小题5分,共60分) 1. 设集合V={1,2,3,4,5},A={1,2,3},B={2,5},则A ?(CuB )= ( ) A. {2} B. {2,3} C. {3} D.{1,3} 2. 已知P 是r 的充分不必要条件,S 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 3. 与曲线11 -=x y 关于位点对称的曲线为 ( ) A.x y +=11 B. x y +-=11 C. x y -=11 D. x y --=11 4. 若x x x f 1 )(-=则方程x x f =)4(的根是 ( ) A. 21 B. 2 1- C. 2 D. 2- 5. 等差数列{n a }中,24321-=++a a a ,78201918=++a a a ,则此数列前20项和等于 ( ) A. 160 B. 180 C. 200 D. 220 6. 若不等式2+ax <6的解集为(-1,2),则实数a 等于 ( ) A. 8 B. 2 C. -4 D.-8 7. 函数y=sin ))(6 ( )3 (R X x COS x ∈++-π π 的最小值等于 ( ) A. 5- B. 3- C. 2- D. 1- 8. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( ) A. 1 B. 2 C. 3 D. 4 9. 5本不同的书,全部分给4名学生,每名学生至少1本不同分法的种数为 ( ) A. 480 B. 240 C. 120 D. 96 10. 椭圆14 22 =+y x 的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P 则||2PF = ( ) A. 2 3 B.3 C. 2 7 D.4 11. 已知点A(1,2)、B (3,1)则线段AB 的垂直平分线的方程是 ( ) A. 524=+y x B. 524=-y x C. 52=+y x D. 52=-y x 12. 四面体ABCD 四个面的重心分别为E 、F 、G 、H ,则四面体EFGH 的表面积与四面体ABCD 的表面积的比值是 ( ) A. 27 1 B. 16 1 C. 9 1 D. 8 1 二、填空题(每小题4分,共16分) 13. )1()2(210-+x x 的展开式中x 的系数为__________。(用数字作答) 14. 设x 、y 满足约束条件,?????≥≤≤+o y x y y x 1则y x z +=2的最大值是__________。 15. 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样

高三数学一模考试归纳3篇.doc

高三数学一模考试总结3篇 高三数学一模考试总结篇一: 一、试卷分析 作为高三开学后的第一次一模考试,本试卷整体结构及难度分布合理,贴近全国卷试题,着重考查基础知识、基本技能、基本方法(包括基本运算)和数学基本思想,对重点知识作了重点考查,主要检测学生对基本知识的掌握以及解题的一些通性通法。试题力求创新。理科和文科试题中有不少新题。这些题目,虽然素材大都源于教材,但并不是对教材的原题照搬,而是通过提炼、综合、改编新创为另一个全新的题目出现,使考生感到似曾相似但又必须经过自己的独立分析思考才能解答。 二、答卷分析 通过本次阅卷的探讨和本人对试卷的分析,学生在答卷中存在的主要问题有一下几点: 1、客观题本次考试在考查基础知识的同时,注重考查能力,着重加强对分析分问题和解决问题能力的考查,送分题几乎没有,加大了对知识综合能力与理性思维能力的考察,对于我们这类学生答题比较吃力,客观题得分较低,导致总分低。 2. 基础知识不扎实,基本技能和方法掌握不熟练. 3. 审题不到位,运算能力差,书写不规范. 审题不到位在的第18题表现的较为明显。这是一道概率题,由于审题不到位致使将概率模型搞错、在(Ⅰ)问中学生出现结果重复与遗漏的现象严重导致后面全错,还有不会应用数学语言,表达五花八门。在考生的试卷中,因审题不到位、运算能力差等原因导致的书写不规范问题到处可见. 4. 综合能力不够,运用能力欠佳. 第21题为例,这道题是导数问题(Ⅰ)求单调区间,(Ⅱ)求

恒成立问题(Ⅲ)最值问题由于学生综合运用能力较弱,致使考生不知如何分类讨论,或考虑问题不全面,导致解题思路受阻。绝大部分学生几乎白卷。 5. 心态不好,应变能力较弱. 考试本身的巨大压力,考生信心不足,造成考生情绪紧张,缺乏冷静,不能灵活应变,会而不对、对而不全,甚至会而不得分的情形常可见到 三、教学建议 后阶段的复习,特别是第二轮复习具有承上启下,知识系统化、条理化的作用,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,如何才能在最后阶段充分利用有限的时间,取得满意的效果?从这次的检测结果来看: 1、研读考纲和说明,明确复习方向 认真研读考试大纲和考试说明,关注考试的最新动向,不做无用功,弄清了不考什么后,还要弄清考什么,做到有备无患。 2、把所学知识和方法系统化、网络化 (1)注重基础知识,整合主干内容,建构知识网络体系。专题训练和综合训练相结合,课本例习题和模拟试题都重视,继续查漏补缺,归纳总结,巩固和深化一轮复习成果。 (2)多思考感悟,养成良好的做题习惯。分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。做到审题三读:一读明结构,二读抓关键,三读查缺漏;答题三思:一思找通法,二思找巧法,三思最优解;题后三变:一变同类题,二变出拓展,三变出规律。以此总结通性通法,形成思维模块,提高模式识别的能力,领悟数学思想方法,从而提高解题能力 3、合理定位,量体裁衣

2016-2017年高三文科数学第三次月考试卷及答案

A . {1,4} B . {2, 3,4 } C . {2,3} D . {4} ⒉ 已知函数 f ( x ) = ??log x A . 9 B . C . 3 D . 1 3 A . B . 5 C . 6 D . 7 ⒎ 把函数 y = A s in(ωx + φ)(ω > 0,| φ |< ) 的图象向左平移 个单位得到 y = f (x ) 的图象 6 B . C . - D . ⒏ Direchlet 函数定义为: D(t ) = ? 0 t ∈ e Q ? ... ⒐ 函数 f (x)=lg x - cos ? x ? 的零点个数是( ) 池 州 一 中 2016-2017 学年度高三月考 数 学 试 卷 ( 文科 ) 第Ⅰ卷 (选择题 共 50 分) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,选出 符合题目要求的一项. ⒈ 已知 U = {2,3,4} ,集合 A = {x | ( x - 1)(x - 4) < 0, x ∈ Z } ,则 e A = ( ) U ? 3x 4 x > 0 x ≤ 0 ,则 f [ f ( 1 )] = ( ) 16 1 9 3 ⒊ 设 [ x ] 为表示不超过 x 的最大整数,则函数 y = lg[x] 的定义域为 ( ) A . (0, +∞) B . [1,+∞) C . (1,+∞) D . (1,2) ⒋ 设 a = 30.5 , b = log 2, c = cos 2π ,则( ) 3 A . c < b < a B . a < b < c C . c < a < b D . b < c < a ⒌ 已知函数 y = a x 2( a ≠ 0, n ∈ N * )的图象在 x = 1 处的切线斜率为 2a n n n -1 + 1( n ≥ 2, n ∈ N * ) , 且当 n = 1 时,其图象经过 (2,8 ) ,则 a = ( ) 7 1 2 ⒍ 命题“函数 y = f ( x )(x ∈ M ) 是奇函数”的否定是( ) A . ?x ∈ M , f (- x ) ≠ - f ( x ) B . ?x ∈ M , f (- x ) ≠ - f ( x ) C . ?x ∈ M , f (- x ) = - f ( x ) D . ?x ∈ M , f (- x ) = - f ( x ) π π 2 3 (如图),则 2 A - ω + ? = ( ) A . - π π π π 6 3 3 ?1 t ∈ Q R ,关于函数 D(t ) 的 性质叙述不正确的是( ) A . D(t ) 的值域为 {0,1} B . D(t ) 为偶函数 C . D(t ) 不是单调函数 D . D(t ) 不是周期函数 π ? ? 2 ?

高三上册数学理科第一次月考试题(含答案)

2019高三上册数学理科第一次月考试题(含 答案) 2019高三上册数学理科第一次月考试题(含答案) 注:请将答案填在答题卷相应的位置上 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的. 1. 已知全集,集合,则 A. B. C. D. 2. 如果函数上单调递减,则实数满足的条件是 A. B. C. D. 3. 下列函数中,满足的是 A. B. C. D. 4. 已知函数,下面结论错误的是 A.函数的最小正周期为 B.函数是偶函数 C.函数的图象关于直线对称 D.函数在区间上是增函数 5. 给出如下四个命题: ①若且为假命题,则、均为假命题; ②命题若且,则的否命题为若且,则 ③在中,是的充要条件。 ④命题是真命题. 其中正确的命题的个数是 A. 3 B. 2 C. 1 D. 0 6. 定义行列式运算a1 a2a3 a4=a1a4-a2a3;将函数f(x)=3 sin

x1cos x的图象向左平移n(n0)个单位,所得图象对应的函数为偶函数,则n的最小值为() A. B. C.5 D.23 7. 函数的一段图象是 8. 设函数其中表示不超过的最大整数,如=-2,=1,=1,若直线y= 与函数y= 的图象恰有三个不同的交点,则的取值范围是 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,满分30分. 9. 已知函数,则. 10. 已知,则_____________. 11. 曲线所围成的封闭图形的面积为. 12. 已知函数若命题为真,则m的取值范围是___. 13. 设,且,则_________. 14. 若关于的方程有四个不同的实数解,则实数k的取值范围是. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分) 已知函数 (I)求函数的最小正周期; (II)确定函数在上的单调性并求在此区间上的最小值.

高三数学第一次月考试卷

高三数学第一次月考试卷(集合、函数) 班级: 学号: 姓名: . 一、选择题(本大题共12小题,每小题5分,共60分) 1、如果C 、R 和I 分别表示复数集、实数集和纯虚数集,其中C 是全集。则有( ) A. C=R ∪I B. R ∩I={0} C. R ∩I=φ D. CcR=C ∩I 2、已知{1,3,5,7,9}I A B == ,{3,7}A B = ,{9}A B = ,则A B = ( ) A 、{1,3,7} B 、{1,5} C 、{3,7,9} D 、{3,7} 3、满足{a ,b }UM={a ,b ,c ,d }的所有集合M 的个数是( ) A. 7 B. 6 C. 5 D. 4 4、若命题P :x ∈A B ,则 P 是( ) A. x ?A B B. x ?A 或x ?B C. x ?A 且x ?B D. x ∈A B 5、用反证法证明:“若m ∈Z 且m 为奇数,则()1122 m m --± 均为奇数”,其假设正确的( ) A. 都是偶数 B. 都不是奇数 C. 不都是奇数 D. 都不是偶数 6、命题P:若 a.b ∈R ,则a b +>1是a b +>1的充分而不必要条件:命题q: 函数 y = (][),13,-∞-+∞ .则 ( ) A.“ p 或q ”为假 B. “p 且q ”为真 C. p 真q 假 D. p 假q 真 7、 已知01a <<,则方程|| |log |x a a x =的实根个数是( ) A 、1个 B 、2个 C 、3个 D 、1个或2个或3个 8、已知0log 2log 2a b <<,则a ,b 的关系是 ( ) 9、 已知函数()f x 是定义在R 上的奇函数,当0x <时,1()()3 x f x =,那么1 (9)f --的 值为( ) A 、2 B 、-2 C 、3 D 、-3 10、设0.3log 4a =,4log 3b =,2 0.3c -=,则a ,b ,c 的大小关系是( )

高三数学一模质量分析

高三数学一模质量分析 淄博十七中高三数学组 一、试卷分析 1、试卷质量高 这次一模试卷质量很高,试题设计相对平稳,没有十分难的试题,整卷区分度较好。选择题有新颖、填空题有创新,解答题入口宽,方法多,在解题流程中设置关卡,试卷保持了和2008年山东高考数学试题的相对一致。 2、试题知识点分布 试卷涵盖高中数学五本书的所有章节的主干知识,符合山东卷的特点,不仅考查了学生的基础知识和运用知识解决问题的能力,而且对培养学生综合运用所学知识分析问题、解决问题的能力有一定的指导和促进作用。 二、得分分析 我校实际参加考试人数理科107人,文科420,其中最高分105分,平均分33.8分,及格人数为7人。 高三数学一卷(满分60)均分25.8 , 得分率0.43 二卷填空题(满分16) 均分4分,得分率0.25, 解答题17是三角题(满分12分), 18题是概率题(满分12分),19题(满分12分)是立体几何题均分4分, 得分率只有0.11,后面20、21、22题得分很低,得分率约0.02。 三、存在问题 1、备课组层面 从目前的教学情况看,“学案导学”教学模式虽然有了很好的推广,但艺术学生(十七中大部分是艺术生)大部分都专注于艺术课,用于数学学习的时间太少,致使他们没有及时完成课后练习及课前预习;学生的情绪不稳定,很多人的心思还在艺术上;学生自主学习的能力没有得到进一步的提高;高三复习时间紧张,教学内容较多,相对化在课本上的时间较少,本来他们的基础就比较薄弱,因此,一定要高度重视教材,针对教学大纲所要求的内容和方法,把主要精力放在教材的落实上。 2、教师层面 教学中应关注每一位学生,尤其是中下游学生,对中下游学生的关注度不够;对艺术生的关注和了解还不够;课堂教学中应落实双基,以基础为主;课堂教学和课后反思不到位;教师之间的相互听评课还有代于进一步提高。在高三数学复习中,对概念、公式、定理等基础知识落实不够,对推理、运算、画图等基本技能的训练落实不够,对数学思想方法的总结、归纳、形成“模块”不够,考生在考试中反映出的问题,不少是与基本训练不足与解题后的反思不够有关。在高三数学复习中,大部分复习工作是由教师完成的,复习中,在学生的解题思路还末真正形成的情况下,教师匆匆讲解,留给学生独立思考的时间和动手、动脑的空间太少.数学高考中,学生的思维跟不上,解题速度跟不上,与我们在平时的复习中,不够注意发挥学生的主体作用,留给学生思考的空间,自已动脑、动手的时间太少有较大的关系。 3、学生方面 1、基础知识不扎实,对公式、定理、概念、方法的记忆、理解模糊。 2、计算能力薄弱,知识的迁移能力差,综合运用知识的能力差。 3、审题不清,答题不全面、不完整、不规范。

高三数学上学期第三次月考试题 文

宁夏育才中学2016~2017学年第一学期高三年级第三次月考文科数学试卷 (试卷满分150 分,考试时间为120 分钟) 第Ⅰ卷(共60分) ?选择题(本题共12小题,每小题5分,共60分,在每小题给出的选项中,只有一项是符合题目要求的) 1、已知集合,,则() A、B、C、D、 2、已知函数,若,则() A、B、C、D、 3、在中,“”是“”的() A、充分而不必要条件 B、必要而不充分条件 C、充分必要条件 D、既不充分也不必要条件 4、已知向量,,,若为实数,,则() A、B、C、1 D、2 5、若曲线在点处的切线与平行,则() A、-1 B、0 C、1 D、2 6、在中,角的对边分别是,已知,则,则的面积为() A、B、C、D、

7、在数列中,,则() A、-3 B、 C、 D、2 8、已知函数,则要得到其导函数的图象,只需将函数的图象() A、向右平移个单位 B、左平移个单位 C、向右平移个单位 D、向左平移个单位 9、设的三内角A、B、C成等差数列,、、成等比数列,则这个三角形的形状是() A、直角三角形 B、钝角三角形 C、等边三角形 D、等腰直角三角形 10、若一个圆柱的侧面积展开图是一个正方形,则这个圆柱的全面积与侧面积的比为() A、B、C、D、 11、平面截球的球面所得圆的半径为,球心到平面的距离为,则此球的体积为() A、B、C、D、 12、能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”, 下列函数不是圆的“和谐函数”的是() A、B、C、D、 第Ⅱ卷(共90分)

?填空题(共4小题,每小题5分,共20分,把答案填写在答题卡中横线上.) 13、在复平面内,复数对应的点的坐标为 14、一个空间几何体的三视图(单位:) 如图所示,则该几何体的表面积为. 15)正项等比数列满足:, 若存在,使得, 则的最小值为______ 16、设变量满足约束条件,则目标函数的最大值为; 三、解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.) 17、(12分)在中,角,,的对边分别为,,,且满足向量 . (1)求角的大小; (2)若,求面积的最大值. 18、(12分)设数列满足当时,. (1)求证:数列为等差数列; (2)试问是否是数列中的项?如果是,是第几项;如果不是,说明理由. 19、(12分)设数列是公差大于0的等差数列,为数列的前项和.已知,且, ,构成等比数列. (1)求数列的通项公式;

高三2月月考理科数学试卷

甘肃省天祝县第一中学高三数学试卷(理) 第I 卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。本题满分60分。 1、已知z =i (1+i )(i 为虚数单位),则复数z 在复平面内所对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、若集合{}|(21)0A x x x =->,{})1(log 3x y x B -==,则A B =( ) A 、φ B.1,12?? ??? C 、()1,0,12?? -∞ ??? D 、1,12?? ??? 3、函数()34x f x x =+的零点所在的区间是 ( ) A 、(一2,一1) B 、(一1,0) C 、(0,1) D 、(1,2) 4、对于数列{a n },“),2,1(1 =>+n a a n n ”是“{a n }为递增数列”的( ) A 、必要不充分条件 B 、充分不必要条件 C 、充要条件 D 、既不充分也不必要条件 5、设O 为坐标原点,点M 坐标为()2,1,若(,)N x y 满足不等式组:430 21201x y x y x -+≤??+-≤??≥?, 则OM ON 的最大值为 ( ) A 、12 B 、8 C 、6 D 、4 6、如果过曲线x x y -=4上点P 处的切线平行于直线23+=x y 那么点P 的坐标为 ( ) A 、()1,0 B 、()0,1- C 、()0,1 D 、()1,0- 7、若9 21ax x ? ?- ??? 的展开式中常数项为84,其展开式中各项系数之和为( ). A 、1- B 、0 C 、1 D 、29 8、从如图所示的长方形区域内任取一个点( )y x M ,, 则点M 取自阴影部分的概率为( ) A 、12 B 、 13 C 、33 D 、 3 2 9、为得到函数cos(2)3 y x =+ π 的图像,只需将函数sin 2y x =的图像 ( ) A 、 向右平移 56π个长度单位 B 、 向左平移56π 个长度单位 C 、 向右平移512π个长度单位 D 、 向左平移512π 个长度单位 10、某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相 同的牌照号码共有( ) A 、24 2610A A 个 B 、242610A 个 C 、()2 142610C 个 D 、()2 142610 C A 个 11、在ABC ?中,内角,,A B C 的对边分别是,,a b c .若223a b bc -=,sin 23sin C B =,则A =( ) A 、30o B 、60o C 、120o D 、150o 12、已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为 ( ) A 、 22136x y -= B 、22145x y -= C 、22163x y -= D 、22 154 x y -= 第Ⅱ卷(非选择题,共90分) 本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答。 二、填空题:本大题共4小题,每小题5分。本题满分20分。 13、已知程序框图如右,则输出的i = . 14、如图是一个正三棱柱的三视图,若三棱柱的体积是3 8则=a __ . 15. 若直线220ax by +-=(,(0,))a b ∈+∞平分圆224260x y x y +---=,则 12 a b +的最小值是 . 16.函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数.例如,函数)(12)(R x x x f ∈+=是单函数.下列命题: ① 函数)()(2R x x x f ∈=是单函数; 侧视图 a 23 俯视图正视图开始 1S =结束 3 i =100? S ≥i 输出2 i i =+*S S i =是 否 x y O 1 3 2 3x y =

高三数学第一次月考(文科、理)2010.8.30

南丰二中2010~2011学年上学期高三第一次月考 数 学 试 卷 一、选择题 1、设全集∪={a ,b ,c ,d},集合M={ a ,c ,d },N={b ,d} 则N )M (C U ?等于( ) A 、{b} B 、{d} C 、{a, c} D 、{b, d} 2、设集合M={x| 0<x ≤3},N={ x| 0<x ≤2},则“a ∈M ”是“a ∈N ”的( )条件 A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 3、设A={x| 1<x <2},B={x| x <a},若A B ,则实数a 的取值范围是( ) A 、a ≥2 B 、a ≤2 C 、a >2 D 、a <2 4、(文)满足条件 {0,1}?A {0,1,2,3}的所有集合A 的个数是( ) A 、1 B 、2 C 、3 D 、4 (理科)已知集合M ={ } 4|2 -= x y y ,N ={} 43log |2 2 --=x x y x ,则M∩N =( ) A 、(-∞,-1)∪(4,+∞) B 、(4,+∞) C 、[,4 +∞) D 、[,2- -1) 5、(文)不等式 x x 1-≥2的解集是( ) A 、(]1,-∞- B 、)01[,- C 、)[∞+-,1 D 、(()∞+?-∞-,,0]1 (理科)已知f(x 2+1)的定义域为x ∈(-1,2),则f(2x -3)的定义域为( ) A 、(—5,1) B 、( 2 5,4) C 、(2,4) D 、[,2 4) 6、设a ∈(0,1),则函数y=) 1x (log 1a -的定义域为( ) A 、(1,]2 B 、(1,+∞) C 、(2,+∞) D 、(1,2) 7、若f(x)为偶函数,且在(-∞,0)单调递增,则下列关系式中成立的是( ) A 、)2(f )1(f )23 (f <-<- B 、)2(f )2 3 (f )1(f <<- C 、)23 ()1()2(- <-

高三数学模拟质量分析

一、理科数学试卷分析: (1)从试卷的内容分布来看:理科试卷主要考查集合与简易逻辑,函数,导数,数列,三角这5部分内容,这些都是我们复习过的内容,但这只是我们复习过内容的三分之二,近期复习的内容没有考。(2)从试卷的难度方面来看,理科试卷总体难度适中,但有四道题难度较大,其中有两道题难度很大。其中这四道题均为陈题,陈题中的数字,字母,符号,文字一点都没有改。这四道题的出错率很高,. (3)从试卷分值情况来看,分值分布比较合理, 均分分,分值偏底,高分不多,没有满分,最高分为155 分。没有满分,是一个缺憾。主要原因是上面列出来的第8题和第19 题太困难。这两道题让我们教师做,也不容易做出来。难倒了我们许多数学高手。而这样的题目就出现在38 套试卷中的第一份试卷中。(4)总体来说,试卷考查着主干知识,各块知识在试卷中分布合理。试卷总体难度适中,只是个别题目偏怪,影响了平均分。试卷有很好的区分度,各个不同类别的班级的均分存在着合理的差距。因为我们的学生没有做过陈题,这样的试卷对我们的学生还具有考查能力的目的。二、一轮复习以来的教学情况回顾:(1)做得好的地方:我们早已制定了高三数学一轮复习计划,计划详实,具体,周密。计划内分工明确合理操作性强,大家现在就是按照计划在一步一步地做着我们的事情。备课组成员能团结协作,能步调一致地开展工作.大家工作积极性都比较高,工作都比较认真,分配的工作大家都能按时或提前完成。具体地说:每个成员能按照我们计划中分工的任务能及早地把教案备出来,在集体备课时我们能按照学校的要求积极研究教案和讨论与教学相关的事情,绝不是流于形式,编写的教案、各种周练、各种练习都经过多人审核修改,可以说质量较高,出错率很低。备课组正常开展听课活动,我在每次听课活动时,都点名,缺席人员都被记载下来。课堂教学方面:重视学生先做教师后讲,教师要讲学生不会的东西而不是会的东西,教师上复习课的模式是从问题出发,引出基本知识和基本方法,而不是要花很长时间先去梳理知识。我们重视课堂练习与课后练习:每周二的周练,周四的双课中的一节单课练,周六的一份综合性的滚动练习。在“五严”的背景下与“数学学科的重要性”的前提下,我们要求老师对学生要求采取“适度从严”和对学生作业“适度从多”原则。我们能及时发现教学中薄弱环节,能做到及时的弥补,如数列,导数内容在一轮复习时不到位,附加题在高二教得不到位,这些内容在我们平时的滚动练习中就经常出现,以强化这些重要内容。到目前为止,我们所有的学生讲义,练习都是自编的。都是在研习考试说明的前提下编制的。本学期以来,我们自认为我们的一切工作已是比较实在,特别是近期工作。 高三四月数学调研考试质量分析(武汉卷)一、试题评价调考数学试卷,总的说来,试卷遵循“两纲”,立足教材,强调基础,注重思维,突出能力,特色鲜明,在传承中折射创新,在平和中不乏亮点,有坡度,有难度,有较好的区分度,具有很好的选拔功能,充分表现出武汉市当好湖北省文化教育、教学研究和高考备考的领头羊的特点。 1 .深化能力立意思想、展现创新意识空间试卷在讲究整体谋篇布局的同时,立意创新和推陈出新,尤其是选择题、填空题,标高与高考题相当。试题既考察学生的基础知识,同时着眼于学生能力的思维品质,在传统内容上创

高三上学期第三次月考数学(理)试题含答案

集宁一中2015-2016学年第一学期第三次月考 高三年级理科数学试题 本试卷满分为150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,满共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{ } {} 2 220,(1)1P x x x Q x log x =--≤=-≤,则P Q =( ) A. (-1,3) B. [)1,3- C. (]1,2 D. [1,2] 2. 设复数121,3z i z i =-=+,其中i 为虚数单位,则 1 2 z z 的虚部为( ) A. 134i + B. 13 4 + C. 31 4i - D. 31 4 - 3.《中华人民共和国道路交通安全法》规定:车辆 驾驶员血液酒精浓度在20一80 mg/l00mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/l00mL(含80)以上时,属醉酒驾车.据有关调查,在一周内,某地区查处酒后驾车和醉酒驾车共300人.如图是对这300人血液中酒精含量进行检测所得结果的频率分布 直方图,则属于醉酒驾车的人数约为( ) A. 50 B. 45 C .25 D. 15 4.若直线)0,(022>=-+b a by ax 始终平分圆08242 2 =---+y x y x 的周长,则 b a 1 21+的最小值为( ) A . 2 1 B . 2 5 C .23 D . 2 2 23+ 5.已知命题p:”12 a ?- ”是“函数3()()1f x log x a =-+的图象经过第二象限”的充分不必要条件,命题q:a,b 是任意实数,若a>b ,则1111 a b ?++.则( ) A.“p 且q ”为真 B.“p 或q ”为真 C.p 假q 真 D.p ,q 均为假命题 6.已知M={(x ,y)|x 2+2y 2=3},N={(x ,y)|y=mx+b}.若对于所有的m ∈R ,均有 M ∩N

高三月考理科数学试卷

黄州区一中高三理科数学综合测试题(十二) 命题:杨安胜 审题:高三数学组 考试时间:-11-20 第I 卷(选择题 共50分) 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设,且, ,,设,则( ) A. B. C. D. 以上均不对 2.已知函数()f x 是奇函数,当0,()(01)x x f x a a a >=>≠时且,且12 (log 4)3,f =- 则a 的值为( ) A .3 B .3 C .9 D . 3 2 3.如右图,在ABC ?中,||||BA BC =,延长CB 到D ,使 ,AC AD AD AB AC λμ⊥=+若,则λμ-的值是( ) A .1 B .3 C .-1 D .2 4.若0a 2≠=b ,,且,则向量与的夹角为( ) A 30° B 60° C 120° D 150° 5.等差数列{}n a 中,386,16,n a a S ==是数列{}n a 的前n 项和,若12 11 1n n T S S S = +++ ,则952 T 最接近的整数是 ( ) A .5 B .4 C .2 D .1 6.已知函数3 2 2 ()23f x x ax ax a =+-+,且在()f x 图象上点(1,(1))f 处的切线在y 轴上的截距小于0,则a 的取值范围是 ( ) A .(-1,1) B .2 (,1)3 C .2(,1)3 - D .2(1,)3 - 7.将函数2()1cos 22sin ()6 f x x x π =+--的图象向左平移(0)m m >个单位后所得的图象 关于y 轴对称,则m 的最小值为 ( ) A . 6 π B . 12π C . 3 π D . 2 π 8.已知定义域为R 的函数满足,且的导函数,则的解集为( ) {}{}{} Z n n x x P Z n n x x N Z n n x x M ∈-==∈+==∈==,13,,13,,3M a ∈N b ∈P c ∈c b a d +-=M d ∈N d ∈P d ∈b a c +=a c ⊥a b )(x f 1)1(=f )(x f ()2 1 < 'x f 2 1 2)(+< x x f

高三第一次月考数学试卷

湖南省长沙市宁乡二中届高三第一次月考 数学试卷 时量:120分钟 总分150分 一 选择题(每小题只有一个正确答案,选对计5分) 1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则(U A )∩B= ( ) A .{0} B .{-2,-1} C .{1,2} D .{0,1,2} 2. 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.下列函数中,在定义域内既是奇函数又是减函数的是 ( ) A .3 x y -= B .x y sin = C .x y = D .x y )2 1 (= 4 . 条 件 甲 : “ 1>a ”是条件乙:“a a >”的 ( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件 D .必要不充分条件 5. 不 等 式 21 ≥-x x 的解集为 ( ) A.)0,1[- B.),1[∞+- C.]1,(--∞ D.),0(]1,(∞+--∞ 6. 图 中 的 图 象 所 表 示 的 函 数 的 解 析 式 为 ( ) (A)|1|2 3 -= x y (0≤x ≤2) (B) |1|23 23--=x y (0≤x ≤2) (C) |1|2 3 --=x y (0≤x ≤2) (D) |1|1--=x y (0≤x ≤2)

7.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( ) A .2 B .1 C .0 D .-1 8. 设,a b R ∈,集合{1,,}{0, ,}b a b a b a +=,则 b a -= ( ) A .1 B .1- C .2 D .2- 9. 已知3 2 ()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为 ( ) A .12a -<< B .36a -<< C .1a <-或2a > D .3a <-或6a > 10. 已知3 2 2 ()3(1)1f x kx k x k =+--+在区间(0,4)上是减函数,则k 的范围是( ) A .1 3 k < B .103k <≤ C .1 03 k ≤< D .1 3 k ≤ 二 填空题(每小题5分) 11. 曲线x y ln =在点(,1)M e 处的切线的方程为______________. 12. 函数552 3--+=x x x y 的单调递增区间是__________________. 13.若函数)1(+x f 的定义域为[0,1],则函数)13(-x f 的定义域为____________. 14. 已知2 (2)443f x x x +=++(x ∈R ),则函数)(x f 的最小值为____________. 15. 给出下列四个命题: ①函数x y a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同; ②函数3 y x =与3x y =的值域相同;③函数11 221 x y =+-与2(12)2x x y x +=?都是奇函数;④ 函数2 (1)y x =-与1 2x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是 _____________。(把你认为正确的命题序号都填上) 三 解答题(本大题共6小题,共75分) 16 (本小题满分12分 )设全集U=R, 集合A={x | x 2 - x -6<0}, B={x || x |= y +2, y ∈A }, 求C U B ; (C U A)∩(C U B)

2019届高三数学一模考试质量分析

2019届高三数学一模考试质量分析 一、试题总体评价:注重基础、突出能力、难度稍大 本试题紧扣教材、《考试大纲》和《考试说明》,在注重基础的同时更加突出了对考生(运算、迁移、应变等)能力的考查,符合当前高考命题基本原则与发展趋势。试题比较全面地考查了学生通过一轮复习后对基础知识与基本能力的掌握情况,充分体现了既注重基础又突出能力的特点。试题在全面覆盖了高中数学绝大多数高考考点的同时,对高中数学主干知识进行了重点考查,但由于我校一轮复习没有结束,而本试题有37分的试题学生没有复习到,对他们来说难度就大,且大部分题目来源于各省高考试题,难度较大。 二、学生答题情况分析:基础不牢,能力不强, 缺乏策略 1、学生基础知识不牢,解题能力较差:如试卷的第1题、第5题、第6题、第8题、第13题、第17题都是一些常规题,解题思路存在一定问题。 2、运算能力不强:具体表现在试卷第15、20题的运算,尤其是解题思路和方法对的学生由于计算复杂而没有结果,很让人遗憾。 3、审题不清:如试卷第1题、第12题均存在审题不清的问题。 4、推理归纳能力和数形结合解决问题能力差:如试卷第11、12、13、16、19、22题等题尤为明显。 5、解答策略缺乏,抓分意识不强:根据学生考卷,考后教师与部分学生交谈,了解到部分学生心理素质较差,情绪不够稳定,考试

过程中有些心慌意乱,碰到某些棘手题乱了阵脚,在一些选择题,填空题上花费了较长时间,致使后面某些有能力做出的解答题因无时间而白白丢掉。 三、下阶段的教学措施 1、要认真回顾和反思“一轮”复习中各个环节的得失,认真分析和总结“一模”测试中学生存在的不足,科学规划和严密组织后阶段的各项备考工作。 ⑴高三第一轮复习将于3月底结束,这轮复习主要是:梳理知识、构建网络、训练技能和兼顾能力。根据学生实际与教学要求精心设计练习引领学生主动参与知识构建和技能训练,并把课前、课堂和课后进行有机整合,使学生对数学的基本知识、基本技能和重要的数学思想方法能经历恢复记忆、加深理解到巩固熟练的过程。通过“一模”测试,我们要研究以前的各项工作和措施哪些是有效的,哪些还存在着不足,还应采取何种策略加以改进和弥补等等,都要有思考、有措施、有策略,努力使我们的复习教学工作有较强的科学性和针对性,进一步提高实效性。 ⑵高三第二轮复习于4月份开始,这轮复习是:强化基础、完善网络、熟练技能和培养能力。我们采取的措施是以知识块为载体,组织专题复习,要求做到:使学生能理清块内的知识、方法和相关的数学思想方法,熟悉解决问题的方法与途径,了解相关知识与其它数学知识的区别与联系等。即根据高考要求,把高中数学的主干知识和重要内容予以重点关注,并穿插数学思想方法。从“一模”测试情况看,

高三数学上期第三次月考试题

南阳一中2016年秋高三第三次月考 数学试题 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中.只 有一项是符合题目要求的. 1.函数22 ln x x y x --+= 的定义域为 A .(一2,1) B .[一2,1] C .(0,1) D .(0,1] 2.已知复数z= 133i i ++(i 为虚数单位),则复数z 的共扼复数为 A . 3122i - B .3122i + C.3i - D.3i + 3. 已知0a >,函数2 ()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选 项的命题中为假命题的是 A .0,()() x R f x f x ?∈≤ B .0,()()x R f x f x ?∈≥ C .0,()()x R f x f x ?∈≤ D .0,()()x R f x f x ?∈≥ 4.设25a b m ==,且 11 2a b +=,则m = A .10 B .10 C .20 D .100 5.已知点A (4 3,1),将OA 绕坐标原点O 逆时针旋转 6 π 至OB ,设C (1,0),∠COB=α,则tan α= A . 312 B .33 C .103 11 D . 5311 6. 平面向量a ,b 共线的充要条件是 A .a ,b 方向相同 B .a ,b 两向量中至少有一个为零向量 C .,R ∈?λ使a b λ= D .存在不全为零的实数2,1λλ,使021=+b a λλ

7. 已知关于x 的不等式 21 <++a x x 的解集为P ,若P ?1,则实数a 的取值范围为 A .),0[]1,(+∞--∞ B .]0,1[- C .),0()1,(+∞--∞ D .]0,1(- 8.已知数列}{n a 是等差数列,其前n 项和为n S ,若,15321=a a a 且 5 35153155331=++S S S S S S ,则=2a .A 2 . B 21 .C 3 . D 3 1 9.设x ,y 满足约束条件0204x y x y x -≥?? +-≥??≤? ,当且仅当x =y =4时,z =ax 一y 取得最小值, 则实数a 的取值范围是 A .[1,1]- B .(,1)-∞ C .(0,1) D .(,1) (1,)-∞-+∞ 10.已知函数f (x )=cos (sin 3)(x x x ωωωω+>0),如果存在实数x 0,使得对任 意的实数x ,都有f (x 0)≤f(x )≤f(x 0+2016π)成立,则ω的最小值为 A . 1 2016π B . 1 4032π C . 1 2016 D . 1 4032 11.若函数f (x )=3 log (2)(0a x x a ->且1a ≠2,一1)内恒有f (x ) >0,则f (x )的单调递减区间为 A .6(,-∞,6 )+∞ B .(2-6 ,2,+∞) C .6(2,)-,6 )+∞ D .66 12.已知函数f (x )=|| x e x ,关于x 的方程2 ()(1)()40f x m f x m ++++=(m ∈R )有四 个相异的实数根,则m 的取值范围是 A .4(4,)1e e --- + B .(4,3)-- C .4(,3)1e e ---+ D .4(,)1e e ---∞+ 第Ⅱ卷

相关主题
文本预览
相关文档 最新文档