当前位置:文档之家› 加热炉温度控制

加热炉温度控制

加热炉温度控制
加热炉温度控制

组态王开发监控系统软件,是新型的工业自动控制系统,它以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统。它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画。通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。

本次课程设计以组态王组态软件为基础设计加热炉的温度控制系统。本文首先说明了自己对加热炉元器件的认识并对加热炉的控制系统做了简单的介绍,然后对系统做了介绍。其中重点阐述了各个模块的功能与作用。同时对组态软件做了详细的说明,介绍了如何绘制组态图和动画的连接,然后又对该系统做了仿真演练,用仿真来实现加热炉温度的检测功能,经过多次的实践和不断的改善从而完成了本次课程设计。

关键词:组态王,加热炉温度控制系统,模块,仿真

1、方案设计与构思 (1)

1.1设计目的与要求 (1)

1.2设计思路 (1)

2、加热炉温度控制系统设计 (2)

2.1建立新工程 (2)

2.2新画面的建立 (2)

2.3数据词典中变量的建立 (3)

2.4温度监测界面的绘制 (3)

2.5加热炉温度检测系统图 (4)

2.6实时曲线图和历史曲线图 (4)

2.7数据报表 (5)

2.8登陆界面 (6)

3、动画连接 (7)

3.1温度监控画面连接 (7)

3.2系统控制连接 (8)

3.3报警画面的连接 (9)

3.4阀门的连接 (9)

3.5加热炉温度显示的连接 (10)

3.6其他画面的连接 (10)

4.程序的调试与运行 (11)

4.1开始运行程序 (11)

4.2温度控制系统画面 (11)

4.3实时曲线画面 (12)

4.4历史曲线画面 (12)

4.5实时数据报表与历史数据报表 (13)

4.6实时报警与历史报警 (14)

4.7应用程序命令语言代码 (14)

5、心得体会与总结 (16)

6、参考文献 (17)

1、方案设计与构思

1.1设计目的与要求

通过本次课程设计掌握系统工程设计的基本理论、基本方法、基本技能,能够熟练地掌握计算机控制系统中数据采集系统,并掌握“组态王”组态软件的使用。缩短专业知识向实际工程设计的时间,提高学生实践能力和动手能力。

用组态王组态软件制作加热炉温度控制系统。要求:当“煤气调节阀门”和“空气阀门”开关都处于开的状态时,以较大的煤气量和固定的空气量进行加热,加热炉的温度匀速上升;当当前温度接近给定温度时,为避免产生超调,减小煤气量;当当前温度等于给定温度时,停止加热(即煤气量和空气量都为0)。运行中,界面设置给定温度和当前实际温度,并在界面中显示。在组态中,需设计组态画面内容包括登陆界面、温度控制系统界面、实时在线和历史曲线画面、报警画面、数据报表等。

1.2设计思路

经查找,煤气加热炉的温度在1000℃左右。在本次设计中,我设定加热炉的给定温度为998~1000℃,在初始阶段,煤气和空气都以较大的量进行供给,是加热炉的温度以20℃每100毫秒进行自加,也就是上升,再接近给定温度时,设定加热炉的温度以1℃每100毫秒上升,直到等于给定温度。在等于给定温度以后,加热炉的温度稳定在给定温度的附近。当出现特殊情况温度高于给定温度(即大于1000℃)时,系统会进行报警并记录在实时报警和历史报警界面。主界面中还有实时加热炉温度曲线和历史曲线进行记录加热炉温度。

2、加热炉温度控制系统设计

2.1建立新工程

新建工程,做路径,名称的设置,构建系统。

图2.1新工程的建立

2.2新画面的建立

按照要求建立画面,温度监控画面,登陆界面,温度历史曲线界面,历史报表画面。

图2.2新画面的建立

2.3数据词典中变量的建立

根据设计的要求,确定所需要用到的变量:流体状态,移动,煤气阀门,空气,启动,报警,加热炉温度,给定温度等变量。

图2.3变量的建立

2.4温度监测界面的绘制

在工具箱和图库中选择工具构建设计的画面。

图2.4部件构建

2.5加热炉温度检测系统图

图2.5主画面的建立2.6实时曲线图和历史曲线图

图2.6温度实时曲线

图2.7历史曲线图

2.7数据报表

图2.8实时报表与历史报表

2.8登陆界面

图2.9登陆界面

3、动画连接

3.1温度监控画面连接

通过设置的变量,在命令语言中进行设计,控制器链接,最终实现动画连接。

图3.1主页面显示连接

图3.2系统控制连接

图3.3报警画面的连接3.4阀门的连接

图3.4煤气和空气阀门的连接

3.5加热炉温度显示的连接

图3.5加热炉温度显示的连接3.6其他画面的连接

图3.6其他画面的连接

各个按钮连接时写入的命令语言:

管理登陆:LogOn();

退出登录:LogOff();

实时曲线:ShowPicture(“实时曲线”);

历史曲线:ShowPicture(“温度历史曲线”);

历史报表:ShowPicture(“历史报表”);

返回主画面:ShowPicture("监控")。

4.程序的调试与运行4.1开始运行程序

图4.1登陆界面

4.2温度控制系统画面

图4.2温度控制系统画面

4.3实时曲线画面

图4.3实时曲线4.4历史曲线画面

图4.4历史曲线

4.5实时数据报表与历史数据报表

图4.5数据报表

4.6实时报警与历史报警

图4.6实时报警与历史报警4.7应用程序命令语言代码

图4.7程序代码

经过不断地调试与运行,该系统在自己的能力范围内基本上达到了最完善的程度,但系统还是有一定的问题存在,例如设定值无法在界面上进行直接修改,温度上升的程序有一定的瑕疵等等。在现有的条件及能力下,还无法使其进一步完善,如果有充足的时间,经过老师的讲解,上述问题很有可能得到解决。

5、心得体会与总结

组态软件以其可靠性高、抗干扰能力强、界面简单、功能强大、性价比高、体积小、能耗低等显著特点广泛应用于现代工业的自动控制之中。本次设计主要采用组态王Version6.5,简单介绍了组态软件的的基本功能和主要的使用用途,其中详细阐述了组态王Version6.5的创建工程、设计画面流程、动画连接。

在组态王的基础上,设计出了加热炉温度控制系统,该系统达到了快、准、稳的效果,也达到了预期目标,但是由于自身能力有限该系统还有一些不足的地方例如“设定值无法在界面上进行直接修改,温度上升的程序有一定的瑕疵等等”需要不断地改进,如果将系统和实物连接起来,再有充足时间的话,在老师的帮助下进行不断的实践,做一些改进系统才会更加完美。整个系统操作简单、控制方便,大大提高了系统的自动化程度和实用性。

通过本次的设计,我对组态王这个软件有了很大程度的了解,从零基础到完成本次的课程设计,对组太软件的开发工程的模式有了新的认识。以前的了解的单片机和虚拟仪器与组态王的设计方式完全不同。先创建变量,设计主画面,动态连接,运行和调试,再到设计的完成这一系列的过程后,对组态王软件的使用有了更深的了解。本次课程设计从学习组态王的操作手册,再到在网上看视频学习如何操作,学到了很多新知识,但没有同学的帮助下,自己一个人很难完成这次的设计的。特别是动态连接那块,怎么连接以及函数的使用给了我很大的帮助。衷心的感谢他们对我的帮助!本次的课程设计对我的动手能力有了很大的锻炼,让我明白到理论与实际相结合的重要性。仅仅有理论是远远不够的,从实践中来提高自己的动手能力。

6、参考文献

[1] 于海生.《微型计算机控制技术》. 清华大学出版社

[2] 组态王Version6.5用户手册

[3] PCI1710系列用户手册

[4] 组态王Version6.5命令语言函数速查手册.北京亚控科技发展有限公司

[5]吴作明. 工控组态软件与PLC应用技术. 北京航空航天大学出版社, 2006

[6]覃贵礼. 组态软件控制技术. 北京理工大学出版社, 2007

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

电阻加热炉温度控制

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

电阻加热炉温度控制

电阻加热炉温度控制精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:07001139

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

管式加热炉温度控制系统设计

过程控制系统课程设计报告书管式加热炉温度控制系统设计 学院:自动化 班级:15级自动化4班 指导老师:陈刚 组员: 重庆大学自动化学院 2019年1月

任务分配 过程控制系统课程设计——管式加热炉温度控制系统的设计

目录 任务分配 (2) 过程控制系统课程设计——管式加热炉温度控制系统的设计 (2) 1摘要 (4) 2模型简介 (4) 2.1背景 (4) 2.2模型假设 (4) 2.3系统扰动因素 (5) 3控制方案 (5) 3.1传统PID控制方法 (5) 3.2串级控制系统 (6) 3.3 方案选择 (7) 4串级控制器的设计 (7) 4.1主副控制器设计 (7) 4.1.1主、副回路的设计原则 (7) 4.1.2主、副调节器的选型 (7) 4.1.3主、副调节器调节规律的选择作用 (8) 4.2串级控制器的参数整定 (8) 5系统的仿真和改进 (9) 5.1串级控制系统仿真 (9) 5.2基于Smith预估计补偿器的串级控制系统 (11) 六.总结 (14) 七.参考文献 (15)

1摘要 当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。 本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。 关键词:管式加热炉系统、串级控制、MATLAB仿真 2模型简介 2.1背景 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 2.2模型假设 管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为: 1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。 2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。 3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。 4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立 1.系统分析 图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 T1出口 支路1 炉膛 支路2 燃料 被加热物料 图1.1加热炉出口温度系统 由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 2.串级控制系统的设计 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图 1.2 加热炉出口温度串级控制系统结构图 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设 定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的 过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如 图 1.3 所示。 图 1.3 加热炉出口温度串级控制系统结构方框图 (1) 主被控参数的选择 应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量 的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系 统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料 温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失 败。 (2) 副被控制参数的选择 从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但 是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被 控参数。 (3) 控制器的选择 主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的 度 副控制器 调节阀 主控制器 主检测、变送仪表 副检测、变送仪表 炉膛 出口温度

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

电加热炉温度控制

基于单片机的电加热炉温度控制系统设计 王丽华1郑树展2 (1、天津职业大学,天津300402;2、天津航空机电有限公司,天津300123) 摘要:温度控制是工业对象中主要的控制参数之一,其控制系统本身的动态特性属于一阶纯滞后环节。以8051单片机为核心,采用温度变送器桥路和固态继电器控温电路,实现对电炉温度的自动控制。该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。 关键词:电加热炉控温固态继电器飞升曲线 0引言 传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1电加热炉温度控制系统的硬件设计 电加热炉温度控制系统的硬件由图1所示各部件组成,它以8051单片机为核心,外扩键盘输入和LED显示温度。电加热炉炉内的实际温度由热电偶测量并转换成毫伏级的电压信号,通过温度变送器桥路实现零点迁移和冷端补偿,经运算放大器7650放大到0~5V,再经过有源低通滤波器滤波后,由A/D转换成数字量。此数字量经数字滤波、标度转换后,一方面通过LED将炉温显示出来;另一方面,将该温度值与被控温度值进行比较,根据其偏差值的大小,采用PID控制,通过PWM脉冲调宽功率放大器控制SSR固态继电器来控制电加热炉炉丝的导通时间,就可以控制电炉丝的加热功率大小,从而控制电炉的温度及升温速度,使其逐渐趋于给定值且达到平衡。 1.1 热电偶的选取 热电偶是温度测量传感器,对它的选择将直接影响检测误差的大小。目前多选K型或S 型(镍铬-镍硅)热电偶。两者相比,K型有较好的温度—热电势的线性度,但它不适宜于长时间在高温区适用;S型有高的精度,但温度—热电势的线性度较差。 A/D转换器 图1中A/D转换芯片采用ADC0809,其转换精度是1/256。若电加热炉工作温度是256℃,这样在(0~256)℃范围A/D的转换精度为256℃/256=1℃/bit,即一个数字量表示1℃,这显然不能满足控制精度为±0.5℃要求。为了提高控制精度,可以选用更高位的A/D转换器,如10位、12位、16位A/D转换器,其控值精度均能满足要求。然而根据实际需要温度控制情况,也可以通过具有零点迁移和冷端补偿功能的温度变送桥路,缩小测温的范围,如

单片(加热炉温度控制器)机

本科生课程设计(论文)辽宁工业大学 单片机原理及接口技术课程设计(论文)题目:加热炉温度控制器设计 院(系):电气工程学院 专业班级:电气092 学号: 090303040 学生姓名: 指导教师:(签字) 起止时间:2012.06.24-2012.07.06

课程设计(论文)任务及评语 院(系):电气工程学院 教研室: 电气工程及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 电气092 课程设计(论文)题目 加热炉温度控制器设计 课程设计(论文)任务 高温加热炉利用煤气加热,通过传感器测量温度,四相5V 、1A 步进电机调节阀门来调节进气量。温度控制范围0~1800℃。 设计任务: 1. CPU 最小系统设计(包括CPU 选择,晶振电路,复位电路) 2. 温度传感器及接口电路设计 3. 步进电机驱动电路设计 4. 程序流程图设计及程序清单编写 技术参数: 1.温度控制范围:0-1800℃ 2.工作电源220V 设计要求: 1、分析系统功能,尽可能降低成本,选择合适的单片机、AD 转换器、输出电路等; 2、应用专业绘图软件绘制硬件电路图和软件流程图; 3、按规定格式,撰写、打印设计说明书一份,其中程序开发要有详细的软件设计说明,详细阐述系统的工作过程,字数应在4000字以上。 进度计划 第1天 查阅收集资料 第2天 总体设计方案的确定 第3-4天 CPU 最小系统设计 第5天 温度传感器及接口电路设计 第6天 步进电机驱动电路设计 第7天 程序流程图设计 第8天 软件编写与调试 第9天 设计说明书完成 第10天 答辩 指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日

最新加热炉温度控制系统_毕业

摘要 温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。加热炉温度控制在许多领域中得到广泛的应用。这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 然而PLC 在这方面却是公认的最佳选择。 加热炉温度是一个大惯性系统,一般采用PID调节进行控制。随着PLC 功能的扩充在许多PLC 控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。本设计是利用西门子S7-200PLC控制加热炉温度的控制系统。首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-200PLC和系统硬件及软件的具体设计过程。 关键词:温度控制;PID;温度传感器;可控硅电压调整器 仅供学习与交流,如有侵权请联系网站删除谢谢

Abstract Temperature control system has been widely used in the industry controlled field,as the temperature control system of boilers and welding machines in steel works、chemical plant、heat-engine plant etc. Heating-stove temperature control has also been applied widely in all kinds of fields .The application of this aspect is based on SCM which is making the PID control, yet the hardware and software design of DDC system controlled by SCM is somewhat complicated , it’s not an advantage especially related to logic control, however it is accepted as the best choice when mentioned to PLC. The furnace temperature of heating-stove is a large inertia system,so generally using PID adjusting to control. With the expanding of PLC function, the control function in many PLC controllers has been expanded. Therefore it is more reasonable to apply PLC controlling in the applicable fields where logical control and PID control blend together. The design has utilized the control system with which Siemens S7-200 PLC control the temperature heating-stove. In the first place this paper presents the working principles of the temperature control system and the elements of this system. Then it introduces Siemens S7-200 PLC and the specific design procedures of the hardware and the software. Keywords Temperature control PID temperature pickup SCR V oltage Converter 仅供学习与交流,如有侵权请联系网站删除谢谢I

电阻加热炉温度控制

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。

二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合 金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V 交流电源供电,采用双向可控硅进行控制。 系统模型: 2、工艺要求 按照规定的曲线进行升温和降温,温度控制范围为50—350℃,升温和降温阶段的温度控制精度为+5℃,保温阶段温度控制精度为+2℃。

3、要求实现的系统基本功能 微机自动调节:正常工况下,系统投入自动。 模拟手动操作:当系统发生异常,投入手动控制。 微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。 4、对象分析 在本设计中,要求电阻炉炉内的温度,按照上图所示的规律变化,从室温开始到50℃为自由升温阶段,当温度一旦到达50℃,就进入系统调节,当温度到达350℃时进入保温段,要始终在系统控制下,一保证所需的炉内温度的精度。加工结束,要进行降温控制。保温段的时间为600—1800s。过渡过程时间:即从开始控制到进入保温阶段的时间要小于600s。在保温段当温度高于352℃或低于348℃时要报警,在升温和降温阶段也要进行控制,使炉内温度按照曲线的斜率升或降。 采用MCS—51单片机作为控制器,ADC0809模数转换芯片为模拟量输入,DAC0832数模转换芯片为模拟量输出,铂电阻为温度检测元件,运算放大器和可控硅作为功率放大,电阻炉为被控对象,组成电阻炉炉温控制系统,另外,系统还配有数字显示,以便显示和记录生产过程中的温度和输出值。 5、系统功能设计 计算机定时对炉温进行测量和控制一次,炉内温度是由一铂电阻温度计来进行测量,其信号经放大送到模数转换芯片,换算成相应的数字量后,再送入计算机中进行判别和运算,得到应有的电功率数,经过数模转换芯片转换成模拟量信号,供给可控硅功率调节器进行调节,使其达到炉温变化曲线的要求。

管式加热炉温度控制与分析

管式加热炉温度-温度串级控制系统 1设计意义及要求 1.1设计意义 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 1.2设计要求 1)本课程设计题目为加热炉温度-温度串级控制系统设计,课程设计时间为2周;学生对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。 2)课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括: ① 目录; ② 摘要; ③ 生产工艺和控制原理介绍; ④ 控制参数和被控参数选择; ⑤ 控制仪表及技术参数; ⑥ 控制流程图及控制系统方框图; ⑦ 总结与展望;(设计过程的总结,还有没有改进和完善的地方); ⑧ 课程设计的心得体会(至少500字); ⑨ 参考文献(不少于5篇); ⑩ 其它必要内容等。 2方案论证 2.1方案选择 管式加热炉加热炉的工作原理如图1所示。要加热的冷物料从左端的管口流入管式加热炉,而燃料从右端的管口流入管式加热炉的燃烧部分,以供热。经加热的物料从右上端的管口流出,物料出口温度1()t θ为被控参数。 图1 管式加热炉工作原理图 分析管式加热炉的工作过程可知,物料出口温度1()t θ受进入管式加热炉的物料初始温度,物料进入的流量(即物料入口的压强),进入管式加热炉的燃料的流量(也即燃料入口压强),燃料的燃烧值等因素的影响。其中物料进入的流量(即物料入口的压强)和进入管式加热炉的燃料的流量(也即燃料入口压强)是影响物料出口温度1()t θ的主要因素。如果采用单回路控制系统,根据操作量的选取原则,我们可以在物料入口处装上一个调节阀,以控制物料进入的流量;对于进入管式加热炉的燃料的流量,可以使它保持某一恒定值。或在燃料的入口处安装一个调节阀,以控制进入管式加热炉的燃料的流量;对于进入管式加热炉的物料的流量,则可以使它保持某一恒定值。而调节阀的开度大小由安装在物料出口处的温度传感器输出的大小间接控制。它虽然结构简单,实现方便;但不符合生产工艺的要求。因为如果将物料的进入流量进行限定后,则日生产总量也被限定。这显然不符合实际的工业生产情况。在此基础上进行一点改进——不对另一个量进行限制。基于对燃料进入量进行控制的管式加热炉单回路温度控制系统原理图如图2 所示。 图2 管式加热炉单回路温度控制系统原理图 如图2所示的单回路温度控制系统初看起来是可行的。而且它的结构简单,所需的器材少,投入小。也符合工业设 物料出口温度1 ()t θ 1T C 物料入口 燃料 物料出口温度1()t θ

基于PID电加热炉温度控制系统设计

基于PID 电加热炉温度控制系统设计 1概述 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、 机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地 位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的 控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法 很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在 工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温 控制,可以提高控制质量和自动化水平。 在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可 控硅进行控制。本设计针对一个温度区进行温度控制,要求控制温度范围 50~350C ,保温阶段温度控制精度为正负1度。选择合适的传感器,计算机输出 信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。其对象问温控数 学模型为: 1 )(+=-s T e K s G d s d τ 其中:时间常数Td=350秒 放大系数Kd=50 滞后时间τ=10秒 控制算法选用改PID 控制

2系统硬件的设计 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、 热电偶传感器、温度变送器以及被控对象组成。 系统硬件结构框图如下: 图2-1 系统硬件结构框图 看门狗 报警提醒 通信接口 LED 显示 键盘 微 型 控 制 机 AT89S52 温度检测PT100 驱动执行机构 8路D/A 转换器DAC0832 测量变送 8路A/D 转换器ADC0809 加热电阻 温度

加热炉出口温度控制系统的设计

二○一六~二○一七学年第一学期 信息科学与工程学院课程设计报告书 课程名称: 班级: 学号: 姓名: 指导教师: 二○一六年十月

1. 设计题目 加热炉出口温度控制系统的设计 2. 设计任务 图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 被加热物料 图1 加热炉出口温度系统 但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 3. 设计要求 1)绘制加热炉出口温度单回路反馈控制系统结构框图。 2)以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。 3)假设主对象的传递函数为) 2)(1(1)(01++=s s s G ,副对象的传递函数为) 1(1)(02+=s s G ,主、副控制器的传递函数分别为s K s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。 4)利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出响应曲线。

一.单回路反馈控制系统的设计 单回路反馈控制系统结构框图 原料出口温度T受进入管式加热炉原料的初始温度和进入流量和燃烧值的影响。在原料流量一定的情况下,在燃料入口处安装一个调节阀,控制进入管式加热炉的燃料流量,调节阀的开度大小由原料出口温度值控制,构成管式加热炉的燃料流量,调节阀的开度大小由原料出口温度值控制,构成管式加热炉出口温度单回路反馈控制系统。 二.串级控制系统的设计 单回路控制系统的控制效果较差,很难达到满意的效果。采用串级控制系统,以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统。 串级控制系统回路的结构框图

电加热炉温度控制系统讲解

设计说明书 设计题目电加热炉温度控制系统 完成日期2013 年7 月12 日 专业班级自动化12本 设计者 指导教师

课程设计成绩评定

目录 前言 (1) 第一章设计方案概述 (2) 1.1设计内容 (2) 1.2设计方案 (2) 第二章硬件部分设计 (2) 2.1温度检测电路 (2) 2.2单片机连接电路 (3) 2.3 LCD显示部分 (4) 2.4按键与报警电路 (5) 2.5加热控制电路部分 (5) 第三章软件部分设计 (6) 3.1周期采样程序 (6) 3.2数字滤波程序 (6) 3.3 PID程序 (7) 3.4总程序 (9) 心得与体会 (10) 参考文献 (11)

前言 温度是工业对象中一种重要的参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。由于炉子的种类不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油和电等。但是就其控制系统本身的动态特性来说,基本上属于一阶纯滞后环节,因而在控制算法上亦基本相同。 本次设计是电加热炉温度自动控制系统。该系统利用单片机可以方便地实现对PID参数的选择与设定;实现工业过程中PID控制。它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,送入计算机中,与设定值比较出偏差。对偏差按PID规律进行调整,得出对应的控制量来控制固态续电器、调节电炉的加热功率,从而实现对炉温的控制。利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制。在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法及时消除,使调节品质下降。

电加热炉温度控制系统设计

电加热炉温度控制系统设计

电加热炉温度控制系统设计 1.设计的意义: 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。 2.方案的设计: 要求利用所学过的知识设计一个温度控制系统,加热炉温度检测,到设定温度后,进行保温控制. 要想达到技术要求的内容,用到的器件有:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断电停止加热。原理图如下图1: 图1 电加热炉温度控制系统原理图

2.1硬件选择: 1.单片机 这里选用AT89C52单片机作为控制系统的处理器。AT89C52是一种带4K字节闪存可编程可擦除只读存储器的低电压、高性能CMOS 8位微处理器。 2.温度传感器 温度传感器有很多种型号,这里我选用DS18B20温度传感器。数字温度传感器DS18B20具有独特的单总线接口方式,支持多节点,使分布式温度传感器设计大为简化。测温时无需任何外围原件,可以通过数据线直接供电,具有超低功耗工作方式。测温范围为-55到+125摄氏度,可直接将温度转换值以16位二进制数字码的方式串行输出,因此特别适合单线多点温度测量系统。由于传输的是串行数据,可以不需要放大器和A/D转换器,因而这种测温方式大大提高了各种温度测控系统的可靠性,降低了成本,缩小了体积。 3.开关器件 由于单片机与电动机之间需要用开关器件连接,并且前者用弱电控制,后者由强电控制,这就尤其需要注意安全问题。于是我想到了在课本中学过的高性能安全开关器件光电耦合器。光电耦合器是由一个发光器件和和一个光电转换器件组成,这里所用的光电耦合器OPTOCOUPLER-NPN是由一个发光二极管和一个光敏晶体管所组成。当发光二极管发光,就会使得光敏晶体管导通,继电器通电动作,将开关吸合,电动机回路断开。 2.2 电路设计方法: 1.显示部分电路 显示电路截图如下图所示: 图2 显示部分电路图

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计 摘要:随着科学技术的飞速发展,消费者对民用生产和工业生产对产品的性能有了更新的要求,其中,对产品的温度控制的要求也越来越高,所以研究设计管式加热炉的温度控制器具有很大的现实意义和使用价值。本文是基于PID 控制算法的管式加热炉智能温度控制器为研究对象,首先阐述本文的研究背景和温度自动控制器的需求,然后对分析了传统控制方法的弊端,对模糊控制方法进行了介绍。随后利用模糊PID计算方法计算对系统功能的实现情况,并从硬件和软件两个方面进行系统运行调试,得出较好的结果。 关键词:温度控制器;SSR 固态继电器;STM32 单片机

ABSTRACT:With the rapid development of science and technology, consumer and industrial production to civilian production requirements for product update performance, which, on product temperature control requirements have become more sophisticated, so designing resistance furnace temperature controller is of great practical significance and usefulness. This article is a resistance furnace temperature controller based on PID control algorithm for the study, first of all explains the background of this study and temperature control needs, then design the overall system-wide programme, including in particular the hardware system design, system design and software design of the control circuit of temperature. Then take advantage of fuzzy PID calculation system of implementation, and run from the two systems in terms of hardware and software debugging, produce better results and conclusion full text. KEY WORDS:Temperature controller; SSR-solid state relays; STM32 microcontroller

相关主题
文本预览
相关文档 最新文档