当前位置:文档之家› 正交试验习题与解答

正交试验习题与解答

正交试验习题与解答
正交试验习题与解答

1.正交试验设计法的基本思想

正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃

B:90-150分钟

C:5-7%

试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:

A:A l=80℃,A2=85℃,A3=90℃

B:B l=90分,B2=120分,B3=150分

C:C l=5%,C2=6%,C3=7%

当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:

(Ⅰ)取三因子所有水平之间的组合,即A l B l C1,A1B l C2,A1B2C1,……,A3B3C3,共有

33=27次

试验。用图表示就是图1 立方体的27个节点。这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比较清楚。但试验次数太多。特别是当因子数目多,每个因子的水平数目也多时。试验量大得惊人。如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。如果应用正交实验法,只做25次试验就行了。而且在某种意义上讲,这25次试验代表了15625次试验。

(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C 于B l、C l,使A变化之:

↗A1

B1C1→A2

↘A3 (好结果)

如得出结果A3最好,则固定A于A3,C还是C l,使B变化之:

↗B1

A3C1→B2 (好结果)

↘B3

得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:

↗C1

A3B2→C2 (好结果)

↘C3

试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。

这种方法一般也有一定的效果,但缺点很多。首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。

简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。

考虑兼顾这两种试验方法的优点,从全面试验的点中选择具有典型性、代表性的点,使试验点在试验范围内分布得很均匀,能反映全面情况。但我们又希望试验点尽量地少,为此还要具体考虑一些问题。

如上例,对应于A有A l、A2、A3三个平面,对应于B、C也各有三个平面,共九个平面。则这九个平面上的试验点都应当一样多,即对每个因子的每个水平都要同等看待。具体来说,每个平面上都有三行、三列,要求在每行、每列上的点一样多。这样,作出如图2所示的设计,试验点用⊙表示。我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行每列都有一个点,而且只有一个点,总共九个点。这样的试验方案,试验点的分布很均匀,试验次数也不多。

当因子数和水平数都不太大时,尚可通过作图的办法来选择分布很均匀的试验点。但是因子数和水平数多了,作图的方法就不行了。

试验工作者在长期的工作中总结出一套办法,创造出所谓的正交表。按照正交表来安排试验,既能使试验点分布得很均匀,又能减少试验次数,图2正交试验设计图例

而且计算分析简单,能够清晰地阐明试验条件与指标之间的关系。

用正交表来安排试验及分析试验结果,这种方法叫正交试验设计法。2.正交表

本书附录给出了常用的正交表。为了叙述方便,用L代表正交表,常用的有L8(27),L9(34),L16(45),L8(4×24),L12(211),等等。此符号各数字的意义如下:

L8(27)

7为此表列的数目(最多可安排的因子数)

2为因子的水平数

8为此表行的数目(试验次数)

L18(2×37)

有7列是3水平的

有1列是2水平的

L18(2×37)的数字告诉我们,用它来安排试验,做18个试验最多可以考察一个2水平因子和7个3水平因子。

在行数为mn型的正交表中(m,n是正整数),

试验次数(行数)=(每列水平数-1)×列数+1,如L8(27),

8=7×(2-1)+l

利用上述关系式可以从所要考察的因子水平数来决定最低的试验次数,

进而选择合适的正交表。比如要考察五个3水平因子及一个2水平因子,则起码的试验次数为

5×(3-1)+1×(2-1)+1=12(次)

这就是说,要在行数不小于12,既有2水平列又有3水平列的正交表中选择,L18(2×37)适合。

正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。(2)任何两列所构成的各有序数对出现的次数都一样多。所以称之谓正交表。例如在L9(34)中(见表1),各列中的l、2、3都各自出现3次;任何两列,例如第3、4列,所构成的有序数对从上向下共有九种,既没有重复也没有遗漏。其他任何两列所构成的有序数对也是这九种各出现一次。这反映了试验点分布的均匀性。

3.试验方案的设计

安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因子的水平。这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。

对于[例1],因子A、B、C都是三水平的,试验次数要不少于

3×(3-1)+1=7(次)

可考虑选用L9(34)。因子A、B、C可任意地对应于L9(34)的某三列,例如A、B、C分别放在l、2、3列,然后试验按行进行,顺序不限,每一行中各因素的水平组合就是每一次的试验条件,从上到下就是这个正交试验的方案,见表2。这个试验方案的几何解释正好是图2。

三个3水平的因子,做全面试验需要33=27次试验,现用L9(34)来设计试验方案,只要做9次,工作量减少了2/3,而在一定意义上代表了27次试验.。

再看一个用L9(34)安排四个3水平因子的例子。

[例2]某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、还原气体比例(D)、气体流速(C)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高超好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。

首先根据专业知以确定各因子的水平:

时间:A1=3(小时),A2=4(小时),A3=5(小时)

温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)

流速:C l=600(毫升/分),C2=400(毫升/分),C3=800(毫升/分) CO:H2:D1=1:2,D2=2:1,D3=1:1

这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需34=81次试验,而用L9(34)来做只要9次。具体安排如表3。

同全面试验比较,工作量少了8/9。由于缩短了试验周期,可以提高试验精度,时间越长误差于扰越大。并且对于多指标问题,采用简单对比法,往往顾此失彼,最适工艺条

件很难找;而应用正交表来设计试验时可对各指标通盘考虑,结论明确可靠。

4.试验数据的直观分析

正交表的另一个好处是简化了试验数据的计算分折。还是以[例1]为例来说明。按照表2的试验方案进行试验,测得9个转化率数据,见表4。

通过9次试验,我们可以得两类收获。第一类收获是拿到手的结果。第9号试验的转化率为64,在所做过的试验中最好,可取用之。因为通过L9(34)已经把试验条件均衡地打散到不同的部位,代表性是好的。假如没有漏掉另外的重要因素,选用的水平变化范围也合适的话,那么,这9次试验中最好的结果在全体可能的结果中也应该是相当好的了,所以不要轻易放过。

第二类收获是认识和展望。9次试验在全体可能的条件中(远不止33=27个组合,在试验范围内还可以取更多的水平组合)只是一小部分,所以还可能扩大。精益求精。寻求更好的条件。利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。

其中I、Ⅱ、Ⅲ分别为各对应列(因子)上1、2、3水平效应的估计值,其计算式是:

Ⅰi(Ⅱi,Ⅲi)=第i列上对应水平1(2,3)的数据和

K1 为1水平数据的综合平均=Ⅰ/水平1的重复次数

Si为变动平方和=

[例1]的转化率试验数据与计算分析见表4。

先考虑温度对转比率的影响。但单个拿出不同温度的数据是不能比较的,因为造成数据差异的原因除温度外还有其他因素。但从整体上看,80℃时三种反应时间和三种用碱量全遇到了,86℃时、90℃时也是如此。这样,对于每种温度下的三个数据的综合数来说,反应时间与加碱量处于完全平等状态,这时温度就具有可比性。所以算得三个温度下三次试

验的转化率之和:

80℃:ⅠA=xl+x2+x3=31+54+38=123;

85℃:ⅡA=x4+x5+x6=53+49+42=144;

90℃:ⅢA=x7+x8+x9=57+62+64=183。

分别填在A列下的Ⅰ、Ⅱ、Ⅲ三行。再分别除以3,表示80℃、85℃、90℃时综合平均意义下的转化率,填入下三行Kl、K2、K3。R行称为极差,表明因子对结果的影响幅度。

同样地,为了比较反应时间;用碱量对转化率的影响,也先算出同一水平下的数据和IB、ⅡB、ⅢB,Ic、Ⅱc、Ⅲc,再计算其平均值和极差。都填入表4中;

由此分别得出结论:温度越高转化率越好,以90℃为最好,但可以进一步探索温度更好的情况。反应时间以120分转化率最高。用碱量以6%转化率最高。

所以最适水平是A3B2C2。

5.正交试验的方差分析

(一)假设检验

在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。其判断步骤如下:

(1)设假设H。正确,可导出一个理论结论,设此结论为R。;

(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;

(3)比较R。与Rl,若R。与Rl没有大的差异,则没有理由怀疑H。,

从而判定为:"不舍弃H。"(采用H。);若R。与R1有较大差异,则可以怀疑H。,此时判定为:"舍弃H。"。

但是,R1/R。比l大多少才能舍弃H。呢?为确定这个量的界限,需要利用数理统计中关于F分布的理论。

若yl服从自由度为φ1的χ2分布,y2服从自由度为φ2的χ2分布,并且yl、y2相互独立,则(y1/φ1)/(y2/φ2)服从自由度为(φ1,φ2)的F分布。F分布是连续分布,分布模数是两个自由度(φ1,φ2)。称φ1为分子自由度,称φ2为分母自由度。在自由度为(φ1,φ2)的F分布中,某点右侧面积为p,也就是F比此值大的概率为p,把这个值写为(p)。若检验的显著性水平(或危险率)给定为α时,则可以把(α)作为临界值来检验假设。

这里,Se/σ2服从自由度为φe,的χ2分布;当H。成立,σ2=0时,SA/σ2也服从自由度为φA的χ2分布;又SA与Se相互成立,所以(SA/(φAσ2)/ Se/(φeσ2))=VA/Ve服从自由度为(φA,φe)的F分布。这就是假定H。正确时的理论结论R。。而试验结论Rl要与理论结论R。相比较。由给定的显著性水平,通常是α=0.05;分子自由度φ1=φA =a-l,分母自由度φ2=φe=a(n-1);查F分布表得出(α)。所以H。:αl=α2=……=αa=0(σA2=0)的检验是:(显著性水平α)

FA=VA/Ve> (α) → 舍弃H。

FA=VA/Ve≤ (α) → 不舍弃H。

通常,(α)一般性地表示成Fα(φA,φB)。

假设因子A对试验结果的影响不显著,那么A的两个水平的效应该表

现为相等或相近,即假设H。:α1=α2=0。如果因子A显著,则舍弃假设。

为了判断因子A是否显著,首先要计算比值

显然,这个比值越大,因子A对指标的影响越显著;反之,因子A就不显著。在给定置信度α后,如α=0.05,查F分布表,自由度φA是因子A的,自由度φe是误差的,其临界值Fα(φA,φe),如果

FA>Fα(φA,φe)

就舍弃假设,可以认为因子A是显著的;如果

FA≤Fα(φA,φe)

就没有理由否定假设,而只能认为因子A是不显著的。因为按照F分布表的物理念义,F值小于Fα(φA,φe)的概率是95%,即有95%的机会出现小于Fα(φA,φe)的F值,既然出现了这种情况,就有了95%的把握,所以就没有理由否定假设,只能接受假设,认为因子A不显著。另一方面,F值大于Fα(φA,φe)的概率是5%,也就是只有5%的机会出现大于Fα(φA,φe)的F值,这是小概率事件,如果小概率事件居然发生了,则可认为情况异常,假设不可信,必须否定假设,因子A是显著的。对其他因子的显著性检验完全类似。

(二)方差分析表

由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就量误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,

误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。

自由度:φT=试验次数一1

φA,B…=水平数一1

φA×B=φA×φB

φe=φT-φA-φB-……-φD

正交试验设计论文Word版

燕山大学 正交试验设计课程设计 题目:正交试验设计在牌照识别中的应用 学院(系):理学院 年级专业: 11经济统计 学号: 110108020005 学生姓名:吕凯旋 指导教师:孟宪云 教师职称:教授 完成时间:2014年11月4日 燕山大学课程设计(论文)任务书

院(系):理学院基层教学单位:燕山大学 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年11月1日燕山大学课程设计评审意见表

摘要 摘要:车辆牌照识别技术是智能交通系统中采集交通数据的重要技术手段。本文将正交试验设计方法应用于车辆牌照识别技术影响因素分析。在归纳了影响牌照识别准确度的主要因素的基础上,以上海市虹桥路测试数据为实例,运用正交试验设计方法进行分析,得出了光线为车辆牌照识别技术主要影响因素的结论,进而给出了提高车辆牌照识别正确度的建议。 关键词牌照识别;正交试验设计;影响因素;智能交通系统

Abstract Abstract:The license plate recognition(LPR)is an important technology of traffic data collecting intelligent traffic system.This paper presents orthogonal experimental design(OED) method to the analysis of factors impacting LPR.Then,main factors’influence on the LPR are sorted.Based on the real sample of Hongqiao Road in Shanghai,the OED method is found feasible.Also,it concludes that light is the key factor affecting LPR.And correspondent conclusion and advices of LPR were put forward. Key words license plate recognition;orthogonal experimental design;influencing factors;intelligent traffic system

结构力学习题集9-结构动力计算

第九章 结构的动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2(a)(b) 6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? &&&&()

二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps in my EI =-77683θ t &&/; B .()()my EI y l Ps in &&/+=19273θ t ; C .()()my EI y l Ps in &&/+=38473θ t ; D .()()()y l Ps in my EI =-7963θ t &&/ 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A . () 76873EI ml k m //+; B .()76873EI ml k m //-; C . ()76873 EI ml k m //-; D .()76873 EI ml k m //+ 。

利用SPSS 进行方差分析以及正交试验设计

实验设计与分析课程论文 题目利用SPSS 软件进行方差分析和正交试验设计 学院 专业 年级 学号 姓名 2012年6月29日

一、SPSS 简介 SPSS 是世界上最早的统计分析软件,1984年SPSS 总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS 微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS 的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。 SPSS 的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS 统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic 回归、Probit 回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS 也有专门的绘图系统,可以根据数据绘制各种图形。SPSS 的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL 及DBF 数据文件,现已推广到多种各种操作系统的计算机上,它和SAS 、BMDP 并称为国际上最有影响的三大统计软件。 SPSS 输出结果虽然漂亮,但不能为WORD 等常用文字处理软件直接打开,只能采用拷贝、粘贴的方式加以交互。这可以说是SPSS 软件的缺陷。 二、方差分析 例如 某高原研究组将籍贯相同、年龄相同、身高体重接近的30名新战士随机分为三组,甲组为对照组,按常规训练,乙组为锻炼组,每天除常规训练外,接受中速长跑与健身操锻炼,丙组为药物组,除常规训练外,服用抗疲劳药物,一月后测定第一秒用力肺活量(L),结果见表。试比较三组第一秒用力肺活量有无差别。对照组为组一,锻炼组为组二,药物组为组三。 第一步:打开 SPSS 软件 表1 三组战士的第一秒用力肺活量(L) 对照组 锻炼组 药物组 合计 3.25 3.66 3.44 3.32 3.64 3.62 3.29 3.48 3.48 3.34 3.64 3.36 3.16 3.48 3.52 3.64 3.20 3.60 3.60 3.62 3.32 3.28 3.56 3.44 3.52 3.44 3.16 3.26 3.82 3.28

第九章矩阵位移法习题集

第九章 矩阵位移法 【练习题】 9-1 是非题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 9-2 选择题: 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。

正交试验设计方法在试验设计中的应用_郝行舟

正交试验设计方法在试验设计中的应用  来稿日期:1999-10-06 郝行舟 李春生 (南阳市公路交通规划勘察设计院) 摘要 本文以三因素三水平的正交试验设计为例,说明正交表的使用方法及正交试验设计方法在试验设计中的应用。并通过一个具体实例向大家介绍正交试验设计的原理、优点及试验结果处理的方法。 关键词 正交试验设计 应用 正交表 优选法 Orthogonal Test Method ′s Applications on Testing Designs Hao X ingzhou (N anya ng H ighw ay Pla n&Reconnaissance Institute ) Abstract This paper ,using 3factor s a nd 3dim ensio ns o r tho go nal test a s a n ex ample ,sho w ho w to use the o rt-hog o nal test table and o rthog o na l test me tho d ′s applica tions on testing desig ns .It a lso g iv e an exa mple to sho w the de -tails o f principle ,adv antag es ,dealing with testing results o f or thog onal test desig ns . Key words  O r tho g onal test desig ns Applica tion O r tho go na l test table O ptimum seeking metho d 1 引言 如何科学地设计试验,以获得高可靠性的试验数 据,这是我们工程技术人员在试验设计中最需要解决的问题。试验安排得好,试验次数少且能获得满意的结果,多快好省,事半功倍,反之则事倍功半。 举例来说:若影响质量指标的因素有A 、B 、C 3种因素,每个因素各取3个水平,分别为A 1、A 2、A 3、B1、B2、B3、C1、C2、C3.(所谓因素的水平即该因素在其试验范围内取具有代表性的“值”,三水平就是有代表性的3个“值”,水平有时不限于数值,它可以是原料的种类或操作方式等等)。按传统的方法采用单因素轮换法安排试验:譬如因素B 固定在B1水平上,因素C 固定在C 1水平上,试验安排为B 1C 1A1 A2A3 ,如果试验结果发现在A3水平较好,则安排试验A3C1 B1B2B3 ,这时发现B 2较好,以后就安排A 3B 2 C1 C2C3 ,如果发现C 3较好,那么A3B2C3为最佳条件,这种试验安排的缺点是:①考察的因素水平仅局限于局部区域,不能全面地反映因素的全面情况,找不出影响质量的主要因素,无 法再在三水平外继续找更好的配比组合(水平)。②如果不进行重复试验,试验误差就估计不出来,因此无法确定最佳分析条件的精度。当然,我们可以用全面试验法按它们所有可能组合的情况做试验,则需做33=27次试验,对各因素进行全面考虑,从中选出最优化条件,但这种作法很不经济,有时是不可能实现的。例如安排5个因素的3水平的全面试验需做35=243次,这在人力、物力、时间上是几乎不可能执行的。因此,我们很自然地会提出下列问题:如何从大量的试验点中挑选适量的具有代表性、典型性的点呢?特别是怎样选择试验次数尽量少而又有代表性的试验呢?利用根据数学原理制作好的规格化表——正交表来设计试验不失为一种上策,这种设计方法被称为正交最优化,即正交试验设计方法。事实上,正交最优化方法的优点不仅表现在试验的设计上,更表现在对试验结果的处理上。 2 正交试验设计方法简介 还以前面提到过的三因素三水平的项目为例,是否同样做9次试验,可以完全克服单因素轮换法安排试验的诸多缺点,且能选出影响质量的最主要因素,便于进一步试验呢?回答是肯定的,这便是利用正交表,进行正交试验设计。表1为三水平正交表中的一种,可以在本例中应用。 26 第19卷 第6期河南交通科技 V ol.19 N o.61999年12月SCIEN CE AN D T ECHN O LO G Y O F HEN AN CO M M UN ICA T IO N Dec.1999

正交试验设计的理论分析方法及应用_(好)

第12卷第6期安徽建筑工业学院学报(自然科学版)Vol.12No.6 2004Journal of Anhui Institute of Architecture&Industry2004 正交试验设计的理论分析方法及应用 董如何,肖必华,方永水 (安徽建筑工业学院材料科学与工程系,合肥 230022) 摘 要:以四因素三水平正交试验设计为例,详细讲述了正交试验表的具体使用方法以及本方法在设计中的应用,并通过四因素三水平向大家介绍了该试验的原理、优点及数据处理方法。 关键词:因素;水平;正交试验设计表;最佳掺量 中图分类号:T U375 文献标识码:A 文章编号:1006-4540(2004)06-103-04 20世纪60年代初,正交试验设计方法从日本传入我国。20年后,该方法经田口玄一3次优化设计传到中国并得到广泛的运用。除一些已经成熟的标准外,正交最优化设计无疑是我们的最佳选择。 合理地、科学地进行正交试验设计,不仅可以获得高质量、高可靠性的试验数据及试验产品,而且在试验数据分析中,我们更有利于掌握试验对象之间的内在联系、最佳掺量及工艺。试验安排妥当,试验次数少且能获得满意的结果,事半功倍、多快好省,这样不仅节省了大量的人力、物力、财力,同时还获得良好的技术经济效益。 正交试验法是目前最流行,效果相当好的方法,统计学家将正交设计通过一系列的表格来实现,这些表叫正交表。 1 正交试验介绍 1.1 正交试验表示方法 对于L16(43×26),“L”表示正交表;“16”表示总共要做16次试验;幂指数简单相加,即:“3+6=9”表示该试验正交表有9列,最多可以安排9个因素;“4”表示9个因素中,其中有3个因素每个因素有4个水平;“2”表示另外6个因素每个因素有2个水平。 1.2 常见的多水平正交表 二水平正交试验表有L4(23),L8(27),L16(215),L32(231)等;三水平正交试验表有L9(34)等;四水平正交试验表有L16(45)等;混合水平正交试验表有L8(4×24),L12(23×31),L16(43×26),L16(44×23), L16(4×212),L16(81×28),L18(2×37)等。 1.3 正交试验表的设计 (1)确定正交试验因素。以砼为例,这里砼考察的指标为抗压强度,影响砼的强度主要因素有:每立方米砼水泥用量(C0)、水灰比(w0/c0)、砂率(ρS)、外加剂掺量(ζ)。确定每一个因素的水平,C0有C1, C2,C3共3试验个水平;w0/c0有w/c1,w/c2,w/c3共3试验个水平;ρS有ρ1,ρ2,ρ3共3试验个水平;ζ有ζ1,ζ2,ζ3共3个试验水平。 (2)选用正交表。根据上面提供的因素和水平进行正交表的选择,选择的方法为试验的水平作为正 收稿日期:2004-04-02 作者简介:董如何(1955-),男,讲师,主要研究方向为建筑材料。

重磅正交试验设计典型案例

正交实验设计案例分析 45120611戴杰 摘要:正交实验设计法在工业生产中具有广阔的应用领域,但由 于推广不够,在实践少有应用,除了观念上的影响外,对操作方 法的疑惑和不熟悉,也是重要因素。我们小组选取了两个典型案 例,对正交实验设计法的操作方法和步骤进行了介绍。 正交实验设计法在工业生产中具有广阔的应用领域。作为一种科学的实验方法,它以投资少、易操作见效快的特点而为人们所关注,在已经试点过的单位都不同程度地取得了明显效果,受到企业的普遍欢迎。正交实验设计法虽然已经取得了骄人的业绩,但它的推广并不普遍。原因主要是许多企业科学意识差,对正交法缺乏正确认识,不懂操作程序,甚至怕麻烦。鉴于此,我们选择了两个典型案例,对正交法的应用程序和方法做出了说明。 一、双氰胺生产工艺的优化研究 1.1 立项背景 山西省双氰胺厂。1989年引进技术,设计能力为年产双氰胺500t,1990年投产,1991年全年生产双氰胺300t。虽然当时双氰胺出厂价为15000元/t,市场供不应求,但由于该企业产量达不到设计能力,成本很高,年亏损30多万元,企业处于非常困难的境地。 1.2 经诊断发现的问题 (1)双氰胺的主要原材料质量差,有效含氮量低。调查结果:石灰氮最好是一级品占一半,其余为二级品以下。石灰氮产品的行业标准(有效含氮量)是:优级品>=20%,一级品>18%,二级品>17%,次品<17%。经过对比,该厂石灰氮有效含氮量低,是双氰胺消耗高、成本高、产量低的主要原因。 (2)石灰窑CO2气体浓度太低且很不稳定,是制约双氰胺生产的关键因素。经调查发现,CO2气体浓度一般在17%以下,有时12%左右,致使双氰胺车间第一道工序(即水解工序)脱钙速度慢、时间长,是制约双氰胺产量的关键。 (3)双氰胺的生产工艺影响因素多,优化潜力大。经分析认为:水解投料量、水解pH 值、聚合工序的聚合温度、聚合pH值、结晶温度等因素,均对产品质量和消耗有影响。多因素影响正好适用正交法。 1.3 正交法在各生产车间的应用及效果 (1)提高白灰窑CO2气体浓度的正交实验。经调查,投入的煤和石头的比例是由人工估计的,并不计量,每天加料总量和分配的层次随意性很大。由于没有固定的工艺标准,CO2气体浓度既不可能稳定,生产效果也不可能提高。故采取了以下措施:一是安装地磅,投入的煤和石头要求过磅计量;二是实施正交优化。 经计算,石灰窑优化方案的因素水平及实验结果(选用L9(3^4)正交表安排实验)分别如表1、表2所示。 表1 因素水平表

第9章 矩阵位移法 例题

第9章 矩阵位移法 习 题 9-1:请给图示结构编号(同时用先处理法和后处理法)及建立坐标。 题9-1图 9-2:求图示连续梁的整体刚度矩阵。 题9-2图 9-3:求图示刚架的整体刚度矩阵。 (c ) (e )

题9-3图 9-4:求图示组合结构的整体刚度矩阵。 题9-4图 9-5:求图示桁架结构的整体刚度矩阵,所有杆件的EA 均相同。 题9-5图 9-6:求图示排架结构的整体刚度矩阵。 题9-6图 9-7:求图示结构的等效结点荷载,请利用结构的对称性。 1kN/m

题9-7图 9-8:求图示结构的等效结点荷载,请利用结构的对称性。 题9-8图 9-9:求图示结构的等效结点荷载。 题9-9图 9-10:求出图示结构的荷载列阵。 题9-10图 9-11:求出图示结构的荷载列阵,请分别用先处理法和后处理法进行编号。 q q

题9-11图 9-12:求图示结构的荷载列阵,考虑轴向变形。 题9-12图 9-13:求图示结构的荷载列阵。 题9-13图 9-14:图示连续梁中间支座发生了下向的移动a ,请求出其整体刚度方程。 题9-14图 10kN/m q

9-15:请求出图示连续梁的整体刚度方程。 题9-15图 9-16:求图示连续梁的整体刚度矩阵。 题9-16图 9-17:图示结构温度发生了变化,请求出整体刚度方程。杆件的EI 、EA 相同。 题9-17图 9-18:图示结构温度发生了变化,请求出整体刚度方程。 题9-18图 9-19:图示结构发生了支座移动,请画出结构的内力图。 00

结构力学习题集矩阵位移法习题及答案老八校

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。 ,cos α=C ,sin α=S ,C C A ?= S S D S C B ?=?=,,各杆EA 相同。

3平面桁架例题

桁架结构的命令流及GUI操作 如图所示的平面桁架,其水平杆的截面积为0.01㎡,竖直杆和中间两斜杆的截面面积为0.005㎡,两边斜杆的截面面积为0.0125㎡,材料的弹性模量为210GPa,结构尺寸和所受载荷如图所示。(手绘草图,看懂即可哈哈) 命令流: /title,hjjs.hx.2015.7.12 /prep7 k,1, ! 建立关键点 k,2,6 k,3,12 k,4,18 k,5,24 k,6,6,8 k,7,12,8 k,8,18,8 lstr,1,2 !生成直线 lstr,2,3 lstr,3,4 lstr,4,5 lstr,1,6 lstr,2,6 lstr,3,6 lstr,3,7 lstr,3,8 lstr,4,8 lstr,5,8

lstr,6,7 lstr,7,8 et,1,link180 !定义单元 r,1,0.01 !定义截面常数 r,2,0.005 r,3,0.0125 mp,ex,1,2.1e11 !定义材料属性 mp,prxy,1,0.3 lsel,s,,,1,4,1 !给不同的杆分配截面属性lsel,a,,,12,13,1 latt,1,1,1 lsel,s,,,6,10,1 latt,1,2,1 lsel,s,,,5 lsel,a,,,11 latt,1,3,1 alls lesize,all,,,0.5 !划分网格 lmesh,all fini /sol antype,0 dk,1,all !施加约束 dk,5,uy fk,6,fy,-2e5 !施加载荷 fk,8,fy,-2e5 fk,2,fy,-4e5 fk,3,fy,-4e5 fk,4,fy,-4e5 alls solve !求解 fini 下面是后处理过程为GUI操作。

正交试验设计方法在试验设计中的应用

化学计量学课程论文

正交试验设计方法在试验设计中的应用 应用化学2012级学号2012XXXX XXX 任课老师 XXX 教授 摘要:以三因素三水平的正交试验设计为例,说明正交表的使用方法及正交试验设计方法在试验设计中的应用。并通过一个具体实例向大家介绍正交试验设计的原理、优点及试验结果处理的方法。 关键词:正交试验设计,应用,正交表 如何科学地设计试验,以获得高可靠性的试验数据,这是工程技术人员在试验设计中最需要解决的问题。试验安排得好,试验次数少且能获得满意的结果,多快好省,事半功倍,反之则事倍功半。举例来说:若影响质量指标的因素有A、B、C3种因素,每个因素各取3个水平,分别为A1、A2、A3、B1、B2、B3、C1、C2、C3。(所谓因素的水平即该因素在其试验范围内取具有代表性的“值”三水平就是有代表性的3 个“值”,水平有时不限于数值,它可以是原料的种类或操作方式等等)。按传统的方法采用单因素轮 水平上,因素C固定在C1水平上,试验安排为B1C1A1、换法安排试验:譬如因素B固定在B 1 B1C1A2、B1C1A3,如果试验结果发现在A3水平较好,则安排试验A3C1B1、A3C1B2、A3C1B3,这时发现B2较好,以后就安排A3B2C1、A3B2C2、A3B2C3,如果发现C3较好,那么A3B2C3为最佳条件,这种试验安排的缺点是:(1)考察的因素水平仅局限于局部区域,不能全面地反映因素的全面情况,找不出影响质量的主要因素,无法再在三水平外继续找更好的配比组合(水平)。(2)如果不进行重复试验,试验误差就估计不出来,因此无法确定最佳分析条件的精度。当然,可以用全面试验法按它们所有可能组合的情况做试验,则需做33=27次试验,对各因素进行全面考虑,从中选出最优化条件,但这种做法很不经济,有时是不可能实现的。例如安排5个因素的3水平的全面试验需做35=243次:这在人力、物力、时间上是几乎不可能执行的。因此,会提出下列问题:如何从大量的试验点中挑选适量的具有代表性、典型性的点呢?特别是怎样选择试验次数尽量少而又有代表性的试验呢?利用根据数学原理制作好的规格化表——正交表来设计试验,这种设计方法被称为正交最优化,即正交试验设计方法。事实上,正交最优化方法的优点不仅表现在试验的设计上,更表现在对试验结果的处理上。 1 正交试验设计方法简介 还以前面提到过的三因素三水平的项目为例,是否同样做9次试验,可以完全克服单

正交实验设计与应用

正交实验设计与应用 2019-2019学年第一学期 统计质量管理课程论文 题目:正交试验设计与应用姓名:宁仁聪学号: 110314113 专业:统计学授课教师:王巍完成时间: 2019年12月31 日 摘要 正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法,是一种高效率、快速的方法。 关键字:正交试验设计单指标直观分析正交表 1 引言 如今,科学的快速进步带来各种各样革命性的产品,这些产品不是凭空而生,是人类科学家经过多次成功与失败的试验总结完善而成。试验设计融会于各种学科领域,并非只存于工学;它是一个理论到实践应用实施的过程,包括明确试验目的、制定可行方案、结合专业和统计学的知识,做出周密完整、科学严谨的整个试验过程。但试验往往需消耗大量人力、物力和财力,所以实际试验过程中我们应该仔细分析导致各种试验结果的影响因素,挑选最合适的的主干部分,用最优的方案去得到我们需要的试验结果。而正交试验设计可以满足上述特点,试验次数少、效率高、低成本。本文主要论述单指标正交试验设计及其结果的直观分析。 2 普通试验方法 某几个试验因素各自不同的因素水平数相乘便得到独立重复试验的总次数,如对a因素b水平试验来说,其试验总次数为次。这种试验盲目性大,没有明确的最优试验方案,耗时耗力,特别是对于某些杂,多的因素水平而言,毫操作性。 3 正交表 3.1 等水平正交表 正交表是一整套规则的设计表格,是正交试验设计用来安排试验因素和水平数并分析试验结果的基本工具,符号表示举例如下 :

midas桁架分析实例

2. 桁架分析 概述 通过下面的例题,比较内部1次超静定桁架和内、外部1次超静定桁架两种结构在制作误 差产生的荷载和集中力作用时结构的效应。 内部1次超静 制作误差5mm 内、外部1次超静定 制作误差5mm 图 2.1 分析模型

材料 钢材类型 : Grade3 截面 数据 : 箱形截面 300×300×12 mm 荷载 1. 节点集中荷载 : 50 tonf 2. 制作误差 : 5 mm →预张力荷载(141.75 tonf) P = Kδ = EA/L x δ = 2.1 x 107 x 0.0135 / 10 x 0.005 = 141.75 to nf 设定基本环境 打开新文件以‘桁架分析.mgb’为名存档。设定长度单位为‘m’, 力单位为‘tonf’。 文件/ 新文件 文件/ 保存( 桁架分析 ) 工具 / 单位体系 长度 > m ; 力> tonf? 图 2.2 设定单位体系

设定结构类型为 X-Z 平面。 模型/ 结构类型 结构类型 > X-Z 平面? 定义材料以及截面 构成桁架结构的材料选择Grade3(中国标准),截面以用户定义的方式输入。 模型 / 特性/ 材料 设计类型 > 钢材 规范 > GB(S) ; 数据库 > Grade3? 模型 / 特性 / 截面 数据库/用户 截面号( 1 ) ; 形状 > 箱形截面 ; 名称(300x300x12 ) ; 用户(如图2.4输入数据)? 图2.3 定义材料图 2.4 定义截面

建立节点和单元 首先建立形成下弦构件的节点。 正面捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元(开) 自动对齐(开) 模型 / 节点/ 建立节点 坐标系 (x , y, z ) ( 0, 0, 0 ) 图 2.5 建立节点

正交实验设计在化学研究中的应用

正交实验设计在化学研究中的应用 摘要:正交实验设计法能使化学分析尽可能减少试验的次数,设定好分析的因素和水平并制作成正交表,正交表是合理安排实验次数和数据分析的工具,从而确定因素和水平的关系并获得最优分析方法、生产条件和工艺。 关键词:正交试验,化学研究,应用 正交设计法(orthogonal design)是一种研究与处理多因素试验的重要数理统计方法,按照一系列规格化的正交表来安排试验,可用尽可能少的试验次数,来获得最满意的试验结果。正交表是合理安排试验和数据分析的主要工具,具有正交性、均衡分散性、齐同可比性和可用于分析交互作用的特点。正交试验的成功与否,很大程度取决于正交表的选择,最佳正交表一般应考虑因素、水平、试验次数、重复性及统计分析方法。化学研究涉及研究物质的组成、含量、结构和形态等化学信息,在化学化工中的应用性很广,因而正交试验设计的方法也广泛应用于这些研究中。本文就优化生产条件、工艺水平、复配技术、提取与测定等方面阐述正交试验设计法在分析化学中的应用。 1最优配方选择 在制备粉体复合材料的研究中,好的配方法能抑制粉体分解、促进粉体烧结、赋予粉体导电性,使微分弥散强化,因此优良配方的选取是研究粉体复合材料的重要环节。闫军等[1]采用了L (34)正交表设计实验进行化学镀铜法包覆铝及氧 9 化铜团聚粉体工艺研究,探讨了不同硫酸铜用量、柠檬酸三钠用量、次磷酸钠用 10~15g/L;量和不同pH对粉体材料镀覆稳定性的影响,优选出的最佳配方:CuSO 4 次磷酸钠4.5~5.5g/L;柠檬酸三钠65~75g/L;表面活性剂10mg/L;pH 4~5;温度55~60℃,加载量10~20g/L,时间30~40min。按配方投料,镀成的材料,其镀覆效果好,在pH=4~5范围内对Al及CuO团聚粉体无明显破坏。张艳等[2]对化工生产的某助剂配方进行了优化,选三因素、三水平进行试验,选正交表L (34) 9 考察了不同温度、加碱量、催化剂种类对助剂的影响。最终确定温度为90℃;

相关主题
文本预览
相关文档 最新文档