当前位置:文档之家› 代数式的求值技巧

代数式的求值技巧

代数式的求值技巧
代数式的求值技巧

代数式的求值

技术1、利用分类讨论方法

例1 已知x =7,y =12,求代数式x +y 的值.

分析 先利用绝对值的意义,求出字母x 和y 的值,再分情况讨论求值. 解 因为x =7,y =12,所以x =±7,y =±12.

所以当x =7,y =12时,原式=19; 当x =-7,y =-12时,原式=-19; 当x =7,y =-12时,原式=-5; 当x =-7,y =12时,原式=5. 所以代数式x +y 的值±19、±5.

技术2、利用数形结合的思想方法

例1 有理数a ,b ,c 在数轴上的位置如图所示:试试代数式│a +b │-│b -1│-│a -c │-│1-c │的值.

分析 由于只知道有理数a ,b ,c 在数轴上的位置,要想直接分别求出有理数a ,b ,c 是不可能的,但是,我们可以利用数形结合的思想方法,从数轴上发现有理数a ,b ,c 的符号,还可以准确地判定a +b 、b -1、a -c 、1-c 的符号,这样就可以化去代数式中的绝对值的符号.

解 由图可知,a +b <0,b -1<0,a -c <0,1-c >0,

所以│a +b │-│b -1│-│a -c │-│1-c │=-a -b -1+b -c +a -1+c =-2. 技术3、利用非负数的性质

例1 已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值.

分析 在等式(a -3)2+│-b +5│+│c -2│=0中有三个字母,要想分别求其值,可以利用平方和绝对值的非负性求解.

解 因为(a -3)2+│-b +5│+│c -2│=0,又(a -3)2≥0,│-b +5│≥0,│c -2│≥0.

所以a -3=0,-b +5=0,c -2=0,即a =3,b =5,c =2, 所以当a =3,b =5,c =2时,原式=2×3+5+2=13.

例2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求b

a

a b +之值。

[解] ∵a 2b 2+a 2+b 2

-4ab+1

=(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2

则有(ab-1)2+(a-b)2=0

∴?

??==-.1,0ab b a

解得???==;1,1b a

?

??-=-=.1,

1b a 当a=1,b=1时,

b

a

a b +=1+1=2 b a c 1

当a=-1,b=-1时,

b

a

a b +=1+1=2 技术4、利用新定义

例1 用“★”定义新运算:对于任意实数a ,b ,都有a ★b =b 2+1.例如,7★4=42+1=17,那么5★3=___;当m 为实数时,m ★(m ★2)=___.

分析 由新定义的意义可知,运算的结果等于后一个数的平方加1,对于第二个小填空题,只要先做括号里即可.

解 因为a ★b =b 2+1,所以5★3=32+1=10;m ★(m ★2)=m ★(22+1)=m ★5=52+1=26.故应分别填上10、26.

技术5、利用整数的意义

例1 四个互不相等的整数a 、b 、c 、d ,如果abcd =9,那么a +b +c +d =( ) A.0 B.8 C.4 D.不能确定

分析 抓住a 、b 、c 、d 是四个互不相等的整数,且abcd =9,进行必要的推理,分别求出a 、b 、c 、d 的值,即可求解.

解 因为a 、b 、c 、d 是四个互不相等的整数,且abcd =9,所以a 、b 、c 、d 只可以是+1、-1、+3、-3中的一个数,

所以a +b +c +d =0.故应选A . 技术6、巧用变形降次

例1 已知x 2-x -1=0,试求代数式-x 3+2x +2008的值.

分析 考虑待求式有3次方,而已知则可变形为x 2=x +1,这样由乘法的分配律可将x 3写成x 2x =x (x +1)=x 2+x ,这样就可以将3次降为2降,再进一步变形即可求解.

解 因为x 2-x -1=0,所以x 2=x +1, 所以-x 3+2x +2008=-x 2x +2x +2008 =-x (x +1)+2x +2008 =-x 2-x +2x +2008 =-x 2+x +2008

=-(x 2-x -1)+2007 =2007.

技巧7. 整体代入法

当单个字母的取值未知的情况下,可借助“整体代入”求代数式的值。 【例1】(1)已知223257963x y x y -+=--,求的值. (2)已知

23(2)25(2)

3223(2)2m n m n m n m n m n m n m n m n

---+=--+++-,求的值. 解析:求代数式的值,一般直接将字母的具体值代入,但该题x y m n 、、、都无具体的值,一般采用整体代入法,观察已知与所求,进行对比分析,通过共同点

与不同点来寻找解题方法.

解:(1)223257322x y x y -+=∴-=∴ ,

,原式=3(232x y -)-3=3×2-3=3.

(2)

232m n m n -=+,2123m n m n +∴=∴-,原式=11519

333591.3333

?-?-?=--= 方法技巧:整式化的思想,在解题中,有时起到化难为易,化繁为简的作用.

【例2】当abc=1时,求111

a b c

ab a bc b ac c ++

++++++的值. 解析:当abc=1时,原式

方法技巧:分析代数式的特点,寻找解题问题的突破口.

【例3】已知a+b+c=0,求代数式3b c a c a b

a b c

++++++的值.

解析:因为a+b+c=0,而代数式中没有a+b+c.想办法凑出这个式子是解题的关键;

也可以变形为b+c= -a.从而1b c

a

+=-

解法1:当a+b+c=0时,原式

解法2:当a+b+c=0时,原式

解法3:当a+b+c=0时,则有a+b= -c ,b+c= -a ,a+c= -b. 所以 原式

例4已知114a b -=,则2227a ab b

a b ab

---+的值等于( ).

A .6

B .-6

C .215

D .2

7

-

解:由114a b -=得,4b a

ab

-=,即4a b ab -=-.

()()2242662272787a b ab a ab b

ab ab ab a b ab a b ab ab ab ab

-------====-+-+-+-.故选A.

11111111.

a b bc

ab a abc bc b abc bc b

b b

c b bc bc b bc b

b b

c b bc

=++++++++=++++++++++=++=31113

1113

0.b c a a a c b b a b c c

a b c

a b c a b c a b c

a b c

++-++-++-=

+++++++++=-+-+-+=---+=1110000.b c a c a b

a b c

b c a a c b a b c

a b c a b c +++=+++++++++++=++

=++=311130.

a b c

a b c

---=+++=---+=

例5若1233215,7x y z x y z ++=++=,则111

x y z

++= .

解:把1235x y z ++=与3217x y z ++=两式相加得,444

12x y z ++=,

即111412x y z ??++= ???

,化简得,111

3x y z ++=.故填3.

方法技巧:数学思想是数学的灵魂,整体化的思想,在初中数学中起着十分重要的作用,在以后的学习中,时刻留神,你会得到意想不到的效果. 技巧8. 参数代入

当题目所给的字母较多时,可以利用它们的关系,选定一个字母作为已知字母,其他字母都用含这个字母的的代数式来表示,再代入求值.

例1已知234a b c ==,求523a b c

a b c

+--+的值.

解析:题目中没有明确给出a 、b 、c 的具体数值,只有它们之间的比值关系,不

妨引入参数k ,设234

a b c

===k ,则a=2k ,b=3k ,c=4k ,然如代入求值.

解:设234

a b c

===k ,则a=2k ,b=3k ,c=4k.

则 原式

方法技巧:本题也可视a(或b 或c)为已知字母,则3

22

b a

c a ==,,再代入求值,

不妨请你动笔试一试.

技术9:比值求值法

比值求值法是指已知条件中等式的个数少于所含字母的个数时,通过方程(组)将已知条件中所含字母的比值求出,从而求出代数式的值。

例1 设a+2b-5c=0,2a-3b+4c=0(c ≠0),求2

222

22456323c b a c b a +-++的值。

[解] 把已知等式看作关于a ,b 的方程组

c b c a c b a c b a 2,0

4320

52==??

?=+-=-+解得 ∵c ≠0 ∴a :b :c=1:2:1

2534223341313.k k k

k k k

k

k +?-=

?-?+=

-=-

设a=k, 则b=2k , c=k.

∴2

22222456323c b a c b a +-++=-57

例2已知a=2b ,c=5a(a 0≠),求代数式

624a b c

a b c

+--+的值.

给出的条件中无具体值,但给出了a 、b 、c 之间的关系,我们可以用同一个字母来表示其它各个字母,然后约分.

解法1:

解法2:

方法技巧:这种代换的方法是一种常用的数学解题技巧,应熟练掌握. 技术10、倒数法

倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法.

例1:若22237y y ++的值为1

4

,则21461y y +-的值为( ).

A .1

B .-1

C .-17

D .1

5

解:由221

2374

y y =++,取倒数得,

223742y y ++=,即2231y y +=. 所以()2246122312111y y y y +-=+-=?-=,即

21

1461

y y =+-.故选A.

例2 已知2311222--=-x x ,求)1

()1111(2x x x

x x +-÷+--的值。

[解] 由已知,得2312

2

2--=-x x 255(2)10.210626221041

.4241082

a b c a c b b a b c b a b c b b b b a b c b b b b ==∴=?===+-?+-====-+-+ ,,把,代入原代数式,得原式22

562562212.

4422452a

a b c a a a a

a b c a a a b c a a =∴=+?-+-∴====-+-?+ ,b=,又,

原式

所以,2312

12

--=-

x 则232

2--=-x

)1

()1111(2x x x x x +-÷+-- =232

1122322--=-=-?-x

x x x x 技术11、主元代换法

所谓主元法就是把条件等式中某一个未知数(元)视为常数,解出其余未知数(主元),再代入求值的一种方法.

例1 已知a=2b ,c=3a ,求a 2+32b 2-c 2+3的值。

分析:将b 作为已知,用b 表示c 后,运用化归的思想,归结为同一个字母,再代入求值。

解:因为a=2b ,c=3a ,所以c=6b 代入得:

原式= (2b )2+32b 2-(6b )2+3=4b 2+32b 2-36b 2+3=3

例2:已知230a b c ++=,350a b c ++=,则222

222

2322a b c a b c -+--的值______. 解:把已知条件看作关于,a b 的方程组230,350.a b c a b c ++=??++=? 解得,

2.

a c

b

c =??=-?

()()2

22

2222

22222

222322*********c c c a b c c a b c c c c c --+-+-===------.故填1.

∴评注:当遇到有多个等式且有多个字母时,通常是选一个适当的字母看作“常数”,其它的字母用其表示,代入运算后,往往含字母的项会互相抵消。 技术12、配方法

通过配方,把已知条件变形成几个非负数的和的形式,利用“若几个非负数的的和为零,则每个非负数都应为零”来确定字母的值,再代入求值. 例:若2312a b c ++=,且222a b c ab bc ca ++=++,则23a b c ++=____ 解:由222a b c ab bc ca ++=++,得2222222220a b c ab bc ca ++---=. 所以

()()()

2

2

2

0a b b c

a c -+

-+-=,由非负数的性质得,

0,0,0a b b c a c -=-=-=,

即a b c ==.又∵2312a b c ++=,∴2a b c ===. 原式=2322214++=.故填14. 技术13:根与系数关系

例1一元二次方程2310x x -+=的两个根分别是12,x x ,则221212x x x x +的值是

( ).

A.3

B.3-

C.13

D.13

-

解:由根与系数的关系得,123x x +=,121x x =-. 原式()()2212121212133x x x x x x x x =+=+=-?=-.故填3.

例2如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________

解:由根与系数的关系得,3αβ+=-;由方程根的定义得,23 1 0αα+-=,即231αα+=.所以()22+2(+3)()134ααβαααβ-=-+=--=.故填4.

技术14、运用韦达定理逆定理求值法

运用韦达定理求代数式的值是将已知条件中式结构转化为两数之和,两数积的形式,根据它构造出一元二次方程,求出代数式的值。

例10 已知a 、b 、c 为实数且a+b=5 c 2=ab+b-9,求a+b+c 之值。 [解] ∵a+b=5 c 2=ab+b-9

∴?

??+=+=++9)1(6)1(2

c a b a b 则b ,a+1为t 2-6t+c 2+9=0两根

∵a ,b 为实数 ∴b ,a+1为实数, 则t 2-6t+c 2+9=0有实根 ∴△=36-4(c 2+9)= -4c 2≥0 c=0

则a+b+c=5+0=5

[评注] 运用该法一定要注意将已知条件转化成两数之积及二数之和这一形式,从而达到构造一元二次方程的目的。

思考:若a 2-7a-5=0,b 2-7b-5=0,求b

a

a b +之值,思考如何构造。

技术15、“△”求值法

“△”法是指将已知条件中的某一参数作为变量,其余参数作为常量,构出一个一元二次方程,由二次方程必有实根得出△≥0,从而求出代数式的值。 例9 设a 、b 、c 、d 都是不为零的实数,且满足(a 2+b 2)d 2+b 2+c 2=2(a+c)bd ,求b 2-ac 的值。

[解] 将已知等式整理成关于d 的二次方程

(a 2+b 2)d 2-2b(a+c)d+(b 2+c 2)=0 △=4b 2(a+c)2-4(a 2+b 2) (b 2+c 2) =-4(b 2-ac)2

∵d 是实数,∴△≥0

即-4(b 2-ac)2≥0 则b 2-ac=0

[评析] 解决该题的绝妙之处是通过构造出现-4(b 2-ac)2≥0这样一个数学式

子,运用该法一定要出现“若一个非正数大于0,则这个非正数必为零”这样一个结论,否则,不能运用该法确定有关参数的数值。

技术16:特殊值法

有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单.

例1、已知-1<b <0, 0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b 中,对任意的a 、b ,对应的代数式的值最大的是

(A) a+b (B) a -b (C) a+b 2 (D) a 2+b

分析:取21-=b ,21

=a ,分别代入四个选择支计算得:(A)的值为0;(B)

的值1;(C) 的值为43;(D)的值为4

3

例2若)

3

230123x a a x a x a x -=+++,则()()22

0213a a a a +-+的值为

_______.

解:由

)

3

230123x a a x a x a x =+++知,

若令1x =,则)

3

01231a a a a +++=

;若令1x =-,则)

3

01231a a a a -+-=

.

所以()()()()2

2

021*********a a a a a a a a a a a a +-+=++++--

)))

3

3

3

1

11

11?

?=

==?

?

.故填1.

例3、设,)1()1(322dx cx bx a x x +++=-+则=+++d c b a

分析:d c b a +++恰好是32dx cx bx a +++当1=x 时的值。故取1=x 分别代入等式,)1()1(322dx cx bx a x x +++=-+左边是0,右边是d c b a +++,所以

d c b a +++=0。

技术17::常值代换法

常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值.

例1已知ab=1,求2

211

11b

a +++的值 [解] 把ab=1代入,得 2

211

11b a ++

+ =22b

ab ab a ab ab +++

=

b a a

b a b ++

+ =1

[评注] 将待求的代数式中的常数1,用a 〃b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。

技术18、因式分解求值法

因式分解法求代数式的值是指将已知条件和求值的代数式之一或全部进行因式分解,达到求出代数式的值的一种方法。

例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1

∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1.

则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0 当a=-1,b=-1时,a+b=-2

[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A 〃B=0,则A=0或B=0”的思想来解决问题。另一种途径是对待求的代数式进行因式分解,分解成含有已知条件的代数式,然后再将已知条件代入求值。

技术19、分解质因数求值法

此法是将有关信息进行分解重组,运用质因数的特有的性质,求出代数式中所含字母的值,从而达到求出代数式的值的一种方法。

例1 已知m 、n 为正整数,且12+22+92+92+m 2=n 2,求2m-n 的值。 [解] ∵n 2=m 2+167

∴(n-m)(n+m)=1×167

又m 、n 为正整数,167是质数

∴ ?

?

?==??

?=+=-.83,

84;

167,1m n n m m n 即

当m=83,n=84时,2m-n=2×83-84=82

课堂练习及作业: 1、已知7=-+b

a b

a ,求

)(3)(2b a b a b a b a +---+的值;

2、若1=ab ,求1

1++

+b b

a a 的值; 3、若5

43z

y x ==,且1823=+-z y x ,求z y z 35-+的值; 4、已知211=+y x ,求代数式

y

xy x y

xy x 535323+++-的值;

5、.已知20012000,20002000,19992000+=+=+=x c x b x a ,那么2

2)()(c b b a -+-

2)(a c -+的值等于( )

A 4

B 6

C 8

D 10

6. 如果z y x 2=+,且y x ≠,则

=-+-z

y y

y x x ( ) A 4- B 2- C 0 D 2

7. 如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为1,那么代数式

cd x x

b

a -++2的值等于( )

A 0

B 1

C 2

D 3

8. 在代数式2

xy 中,x 与y 的值各减少 25 %,则代数式的值( ) A 减少50 % B 减少75 % C 减少6437 D 减少64

27

9. 当z y x c b a <<<<,时,下面四个代数式的值最大的是( ) A cz by ax ++ B bz cy ax ++ C cz ay bx ++ D az cy bx ++

10. 当____=x 时,代数式x

x x ---2)

2)(4(无意义,当____=x 时,其值为零;

11. 已知2,2,2===x y z x y ,则代数式z y x ++的值为 ;

12. 若0=++c b a ,则)1

1()11()11(a

b c c a b c b a +++++的值为 ;

13. 若已知652

43

34

25

15

)3(a x a x a x a x a x a x +++++=-,则54321a a a a a ++++

_______6=+a ,________54321=++++a a a a a ;

14. 已知)12)(1(6

1

3212

222++=++++n n n n ,那么=++++222250642

15. 已知5,3,2=--=-=-d c c b b a ,则d

a d

b

c a ---)

)((的值为 ;

16. 设012=-+m m ,则______199722

3=++m m ;

17. 规定1,1-=**-=*a

b

b a b a b a ,则)68()86(****的值为 ;

18. 如果,32)2(5+=+a x 且5

)

35(3)13(-=

+x a x a 是关于x 的同解方程,则_____=a ;

19. 已知2,1=-=-a c b a ,则________)()()(3

3

=-+-+-a c b c b a ;

20. 已知62=ab ,求)(5

23b b a ab ab -+的值;

21. 已知1,1==y x ,求代数式2

22y xy x +-的值;

22. 已知89)413121(2181=+++z y x ,求)12346(284xyz

xy xz yz ++?+的值;

23. 若042,22

=-+=-y y y x ,求y y

x

-的值; 24. 若t z t y t x 32==,且t z y x 2223=++,求

t

z y

x 5234--的值;

25. 已知22=-y x ,求8

46

3---+y x y x 的值;

“代数式求值的常用方法”专题辅导

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中a =,b =. 解:由a = ,b =得,1a b ab +==. ∴原式()()22()()()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴ ()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------= ===-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的

代数式的化简求值问题(含答案)

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522222++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为8635=-++cx bx ax 当x =-2时,8622235=----c b a 得到8622235-=+++c b a , 所以146822235-=--=++c b a 当x =2时,635-++cx bx ax =206)14(62223 5-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数

代数式求值经典题型(含详细答案)

代数式求值 经典题型 【编著】黄勇权 经典题型: 1、x+x 1 =3,求代数式 x 2 -2 x 1的值。 2、已知a+b=3ab ,求代数式b 1 a 1+的值。 3、已知 x 2 -5x+1=0,求代数式x 1x +的值。 4、已知x-y=3,求代数式(x+1) 2 -2x+y (y-2x )的值。 5、已知x-y=2,xy=3,求代数式x 2 -xy 6+y 2的值。 6、已知y x =2,则x y -x 的值是多少?

7、若2y 1x 1=+,求代数式:3y xy -3x y 3xy -x ++的值。 8、已知5-x =4y-4-y 2,则代数式2x-3+4y 的值 是多少? 9、化简求值,12x x 1-x 2 ++÷)(1x 2 1+-, 其中x=13- 10、x 2-4x+1=0,求代数式:x 2 +2 x 1 的值。 【答案】 1、x+x 1 =3,求代数式:x 2 -2 x 1的值。 解:x 2 -2 x 1 =(x+x 1)(x-x 1 ) =(x+x 1 )2x 1-x )( =(x+x 1 )2 2x 12x +- =(x+x 1)4x 12x 2 2 -++ =(x+x 1)4x 1x 2 -+)( 将 x+x 1 =3 代入式中

=3×432- =35 2、已知a+b=3ab ,求代数式:b 1 a 1+的值。 解:b 1 a 1+ =ab b a + 将a+b=3ab 代入式中 =3 3、已知x 2 -5x+1=0,求代数式:x 1 x +的值。 解:因x 2 -5x+1=0, 等式两边同时除以x 则有:x 0 x 1x x 5x x 2=+- 化简得:x-5+x 1 =0 把-5移到等号的右边,得: x 1 x +=5

代数式的化简求值

代数式的化简求值 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

代数式的化简求值问题 一、知识链接 1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整 式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方 程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式__________24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少

2008 2007 12007 2007 20072222323=+=++=+++=++a a a a a a a 2008200712007 200722007 2)1(2007 22007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642=++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4.已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。 由012=-+a a ,得a a -=12, 所以: 解法三(降次、消元):12=+a a (消元、、减项) 变式练习:已知012=--x x ,求代数式201823+++-x x x 的值是多少 例5.若52z y x ==,且28-=+-z y x ,求z y x 1373-+的值是多少 变式练习:若5 43z y x ==,且10254=+-z y x ,求z y x +-52的值。 例6.三个数a 、b 、c 的积为负数,和为正数,且bc bc ac ac ab ab c c b b a a x +++++=, 则123+++cx bx ax 的值是_______。 变式练习:如果非零有理数c b a ,,满足0=++c b a ,那么 abc abc c c b b a a +++的值可能为哪些 家庭作业

代数式求值的十种常用方法

代数式求值的十种常用方法 一、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 例1、若和互为相反数,则 =_______。 解:由题意知,,则且,解得 ,。因为,所以,故填37。 二、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 例2、先化简,再求值:,其中 ,。 解:原式。 当,时, 原式。 三、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。

通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 例3、已知,则=_______。 解:由,即。 所以原式 。 故填1。 四、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。 例4、请将式子化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。 解:原式 。 依题意,只要就行,当时,原式或当时,原式。 五、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 例5、若的值为,则的值为

A. 1 B. –1 C. D. 解:由,取倒数得, ,即。 所以 , 则可得,故选A。 六、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 例6、如果,则的值是 A. B. 1 C. D. 解:由得,。 所以原式 。

代数式求值方法

点击代数式求值方法 运用已知条件,求代数式的值是数学学习的重要内容之 一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。 一、常值代换求值法 常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。 例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得 2 21111b a +++ =22b ab ab a ab ab +++ = b a a b a b +++ =1 [评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。 二、运用“非负数的性质”求值法 该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值

的一种方法。 例 2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b +之值。 [解] ∵a 2b 2+a 2+b 2-4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴???==-. 1,0ab b a 解得???==;1,1b a ? ??-=-=.1,1b a 当a=1,b=1时,b a a b +=1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 [评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。 三、整体代入求值法 整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。 例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。

代数式求值(讲义)

代数式求值(讲义) ? 课前预习 1. 若a =1,则a +1=_____;若a 2=1,则a 2-3=_____; 若a +b =3,则2(a +b )=_____. 2. 对于代数式ax +4,当x =1时,ax +4=_______; 当x =2时,ax +4=_______; 当x =3时,ax +4=_______. 若代数式ax +4的值不受x 取什么值的影响,即与x 无关,只需a _______,理由是__________________. ? 知识点睛 1. 整体思想:从问题的整体性质出发,发现问题的整体结构特征,通过对问题 整体结构的分析和改造,对问题进行整体处理的解题思想叫做整体思想.整体代入是整体思想的一个重要应用. 2. 整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③_____________,化简. ? 精讲精练 1. 若a 2+2a =1,则代数式2(a 2+2a )3-5(a 2+2a )-7的值是_______. 2. 若代数式2a 2+3b 的值是6,则代数式4a 2+6b +8的值是_____. 3. 已知3440x x -+=,求代数式336102 x x -++的值. 4. 当1x =时,代数式31px qx ++的值是2 016;则当1x =-时,代数式31 px qx ++的值是________. 5. 当7x =时,代数式35ax bx +-的值是7;则当7x =-时,代数式35ax bx +-的 值是_______. 6. 当2x =时,代数式31ax bx -+的值是-17;则当1x =-时,代数式 31235ax bx --的值是_______.

代数式求值的常用方法1

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中512a +=,51 2b -=. 解:由512a += ,51 2 b -=得,5,1a b ab +==. ∴原式()()22()()5()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知 114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------====-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围. 例4先化简2332 11 x x x +---,然后选择一个你最喜欢的x 的值,代入求值. 解:原式()()()312321 111111 x x x x x x x += -=-= +-----.

初中数学重点梳理:代数式求值方法

代数式求值方法 知识定位 学习了整式后,经常会遇到一些代数式的求值问题。代数式涉及的求值类型、方法和技巧是比较多的,比如:特殊值、换元、配方等。事实上,这些方法并不是绝对孤立不变的,有时需要多种方法一起使用才能灵活解决问题,解题时,要仔细观测,深入分析,以便选择合理的解题方法,做到简洁、快速解题。 知识梳理 知识梳理:代数式求值常用方法 1、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 2、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 3、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 4、特殊值法 有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单。 5、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 6、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 7、配方法

若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果。 8、平方法 在直接求值比较困难时,有时也可先求出其平方值,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号。 例题精讲 【试题来源】 【题目】已知25x=2000,80y=2000,则?? ? ? ? ? + y x 1 1 =___________ 【答案】1 【解析】 【知识点】代数式求值方法 【适用场合】当堂练习题 【难度系数】2 【试题来源】 【题目】已知10m=20,10n= 1 5 ,求2 93 m n ÷的值. 【答案】81 【解析】 【知识点】代数式求值方法

初一上册数学代数式求值试题

初一上册数学代数式求值试题 一、选择题( 共 12 小题 ) 1.已知m=1, n=0,则代数式m+n的值为() A. ﹣ 1 B.1 C. ﹣ 2 D.2 【考点】代数式求值 . 【分析】把m、 n 的值代入代数式进行计算即可得解. 【解答】解:当m=1, n=0时, m+n=1+0=1. 故选 B. 【点评】本题考查了代数式求值,把m、n 的值代入即可,比较 简单 . 2.已知x2﹣ 2x﹣ 8=0,则 3x2﹣ 6x﹣18 的值为 () A.54 B.6 C. ﹣ 10 D.﹣ 18 【考点】代数式求值 . 【专题】计算题. 【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入 计算即可求出值 . 【解答】解:∵x2﹣ 2x﹣ 8=0,即 x2﹣2x=8,

∴ 3x2﹣ 6x﹣ 18=3(x2 ﹣ 2x)﹣ 18=24﹣ 18=6. 故选 B. 【点评】此题考查了代数式求值,利用了整体代入的思想,是一 道基本题型. 3.已知 a2+2a=1,则代数式 2a2+4a﹣ 1 的值为 () A.0B.1C. ﹣ 1D.﹣ 2 【考点】代数式求值 . 【专题】计算题. 【分析】原式前两项提取变形后,将已知等式代入计算即可求出 值. 【解答】解:∵a2+2a=1, ∴原式 =2(a2+2a) ﹣ 1=2﹣ 1=1, 故选 B 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练 掌握运算法则是解本题的关键 . 4.在数学活动课上,同学们利用如图的程序进行计算,发现无论 x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的 是 () A.4, 2, 1 B.2, 1, 4 C.1, 4, 2 D.2, 4, 1

初一:代数式的求值专题

——代数式的求值 类型一、利用分类讨论方法 【例1】 已知x =7,y =12,求代数式x +y 的值. 变式练习: 1、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 43 12--的值 2、|x|=4,|y|=6,求代数式|x+y|的值 3、已知1,1==y x ,求代数式2 22y xy x +-的值;

类型二、利用数形结合的思想方法 【例】有理数a ,b ,c 在数轴上的位置如图所示:试试代数式 │a +b │-│b -1│-│a -c │-│1-c │的值. 变式练习: 1、有理数a , b , c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a| b a c 1 C B 0 A

题型三、利用非负数的性质 【例1】已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值. 【例2】 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b 之值。 变式练习: 1、已知:│3x-5│+│2y+8│=0求x+y 2、若205×│2x-7│与30×│2y-8│互为相反数,求xy+x 题型四、利用新定义 【例1】 用“★”定义新运算:对于任意实数a ,b ,都有a ★b =b 2+1.例如,7★4=42+1=17,那么5★3=___;当m 为实数时,m ★(m ★2)=___.

变式练习: 1、定义新运算为a △b =(a +1)÷b ,求的值。6△(3△4) 2、假定m ◇n 表示m 的3倍减去n 的2倍,即 m ◇n=3m-2n 。 (2)已知x ◇(4◇1)=7,求x 的值。 3、规定1,1-=**-=*a b b a b a b a ,则)68()86(****的值为 ; 题型五、巧用变形降次 【例】已知x 2-x -1=0,试求代数式-x 3+2x +2008的值.

初一上册的的数学代数式求值试题.doc

初一上册数学代数式求值试题 一、选择题 ( 共 12 小题 ) 1.已知 m=1,n=0,则代数式 m+n的值为 () A. ﹣1 B.1 C. ﹣2 D.2 【考点】代数式求值 . 【分析】把 m、n 的值代入代数式进行计算即可得解. 【解答】解:当m=1,n=0 时, m+n=1+0=1. 故选 B. 【点评】本题考查了代数式求值,把 m、n 的值代入即可,比较简单 . 2. 已知 x2﹣2x﹣8=0,则 3x2﹣6x﹣18 的值为 () A.54 B.6 C. ﹣10 D.﹣18 【考点】代数式求值 . 【专题】计算题 . 【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入计算即可求出值 . 【解答】解:∵ x2﹣ 2x﹣8=0,即 x2﹣2x=8, ∴3x2﹣ 6x﹣18=3(x2 ﹣2x) ﹣18=24﹣18=6. 故选 B. 【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型 . 3. 已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为 ()

A.0B.1C. ﹣1D.﹣2 【考点】代数式求值 . 【专题】计算题 . 【分析】原式前两项提取变形后,将已知等式代入计算即可求出值. 【解答】解:∵ a2+2a=1, ∴原式 =2(a2+2a) ﹣1=2﹣1=1, 故选 B 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键 . 4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是() A.4 ,2,1 B.2,1,4 C.1,4,2 D.2,4,1 【考点】代数式求值 . 【专题】压轴题 ; 图表型 . 【分析】把各项中的数字代入程序中计算得到结果,即可做出判断. 【解答】解: A、把 x=4 代入得: =2, 把x=2 代入得: =1, 本选项不合题意 ; B、把 x=2 代入得: =1, 把x=1 代入得: 3+1=4, 把x=4 代入得: =2,

初中数学代数式化简求值题归类及解法

初中数学代数式化简求值题归类及解法 代数式化简求值是初中数学教学的一个重点和难点内容。学生在解题时如果找不准解决问题的切入点、方法选取不当,往往事倍功半。 一. 已知条件不化简,所给代数式化简 1.先化简,再求值: ()a a a a a a a a -+--++÷-+2214442 22 ,其中a 满足:a a 2 210+-=。(1) 2.已知x y =+ =-2222,,求( )y xy y x xy x xy x y x y x y ++-÷+?-+的值。(2-) 二.已知条件化简,所给代数式不化简 3.已知a b c 、、为实数,且 ab a b +=13,bc b c ac a c +=+=1415,,试求代数式 abc ab bc ac ++的值。(1 6 ) 三.已知条件和所给代数式都要化简 4.若x x +=13,则x x x 242 1++的值是( )。(1 8 ) 5.已知a b +<0,且满足a ab b a b 2 2 22++--=,求a b ab 33 13+-的值。(1-) 第十三讲 有条件的分式的化简与求值 能够作出数学发现的人,是具有感受数学中的秩序、和谐、整齐和神秘之美的能力的人. ————————彭加勒 【例题求解】 例1 若 a d d c c b b a ===,则 d c b a d c b a +-+-+-的值是_________________. 例2 如果03 1 2111,0=+++++=++c b a c b a ,那么222)3()2()1(+++++c b a 的值为 ( ). A .36 B .16 C .14 D .3 例3 已知16,2,12 2 2 =++=++=z y x z y x xyz , 求代数式++++x yz z xy 21 21y zx 21+的值. 例4 已知 1325))()(())()((=+++---a c c b b a a c c b b a ,求a c c c b b b a a +++++的值.

代数式的化简求值问题(含标准答案)

代数式的化简求值问题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式( ) x y x x x mx 5378522 2 2+--++-的值与x 无关, 求()[] m m m m +---4522 2 的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522 2 2 2 ++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 441616444522 2 2 -=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为863 5=-++cx bx ax 当x =-2时,8622235=----c b a 得到862223 5-=+++c b a , 所以14682223 5-=--=++c b a 当x =2时,63 5-++cx bx ax =206)14(62223 5-=--=-++c b a

代数式的化简求值

代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式6 35-++cx bx ax 的值。

2008 20071200720072007 2222323=+=++=+++=++a a a a a a a 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式 __________ 24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少? 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642 =++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4. 已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得 023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。

11代数式求值

学科教师辅导讲义 学生姓名:年级:七课时数:3 辅导科目:数学辅导教师: 辅导内容:代数式求值辅导日期: 教学目标: 1.掌握代数式的化简求值 2.会看懂程序图,并求值 3.掌握整体代入的思想 【同步知识讲解】 知识点1:列代数式 知识点概念梳理 1.一般地,用数值代替代数式的字母,按照代数式中的运算关系计算出的,叫做 . 2.给代数式中的字母取一个确定的数后,它就有一个相应的值,字母所取的数不同,代数式的值往往也不同. 例1.已知一件商品的进价为a元,超市标价b元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利元.(用含有a、b的代数式表示) 例2.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为. 变式: 1.长红枣是地方特产,色泽红艳,酥脆甘甜,营养丰富,有着较高的滋补和药用价值,被誉为“天然维生素丸”.某网店以a元一包的价格购进500包长红枣,加价20%卖出400包以后,剩余每包比进价降低b元后全部卖出,则可获得利润元. 2.太谷饼是山西省传统名吃,以其香、酥、绵、软而闻名全国,某网店以a元一包的价格购进500包太谷饼,加价20%卖出400包以后,剩余每包比进价降低b元后全部卖出,则可获得利润元. 3.一根长80cm的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg可使弹簧增长2cm,正常情况下,当挂着xkg的物体时,弹簧的长度是cm.(用含x的代数式表示)知识点2:程序图 概念:以特定的图形符号加上说明,表示算法的图称为流程图。

代数式求值的几种方法

代数式求值的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

2 代数式求值的几种方法 代数式的求值问题,是初中代数基础知识与基本技能的重要内容。求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。 一、公式法 例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值 分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。 解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a 又a 2 + b 2 =2 ,∴a b = -2 1 ()()()()( )[]()()871 12141222121232322222223 443442266=???? ??--????????? ???-???? ??+?=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a

3 另外考虑a 7 + b 7 的值的求法 二、参数法 例2:若542c b a == ,求c b a c b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。 解:设k c b a === 5 42 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k 所以c b a c b a +--+2 = 133542544==+--+k k k k k k k k 三、倒数法 例3:已知 71 2=+-x x x ,求 1242++x x x 的值 分析:由已知式与所求式之间的结构及各自分子、分母的幂次数特点出发,本题使用“倒数法”较为简便。 解:由已知取倒数,则7112=+-x x x ,即7 81=+x x 再由未知式取倒数: 4915178111112 222224=-?? ? ??=-??? ??+=++=++x x x x x x x 所以1242++x x x = 1549 四、消元法

代数式的求值技巧

代数式的求值 技术1、利用分类讨论方法 例1 已知x =7,y =12,求代数式x +y 的值. 分析 先利用绝对值的意义,求出字母x 和y 的值,再分情况讨论求值. 解 因为x =7,y =12,所以x =±7,y =±12. 所以当x =7,y =12时,原式=19; 当x =-7,y =-12时,原式=-19; 当x =7,y =-12时,原式=-5; 当x =-7,y =12时,原式=5. 所以代数式x +y 的值±19、±5. 技术2、利用数形结合的思想方法 例1 有理数a ,b ,c 在数轴上的位置如图所示:试试代数式│a +b │-│b -1│-│a -c │-│1-c │的值. 分析 由于只知道有理数a ,b ,c 在数轴上的位置,要想直接分别求出有理数a ,b ,c 是不可能的,但是,我们可以利用数形结合的思想方法,从数轴上发现有理数a ,b ,c 的符号,还可以准确地判定a +b 、b -1、a -c 、1-c 的符号,这样就可以化去代数式中的绝对值的符号. 解 由图可知,a +b <0,b -1<0,a -c <0,1-c >0, 所以│a +b │-│b -1│-│a -c │-│1-c │=-a -b -1+b -c +a -1+c =-2. 技术3、利用非负数的性质 例1 已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值. 分析 在等式(a -3)2+│-b +5│+│c -2│=0中有三个字母,要想分别求其值,可以利用平方和绝对值的非负性求解. 解 因为(a -3)2+│-b +5│+│c -2│=0,又(a -3)2≥0,│-b +5│≥0,│c -2│≥0. 所以a -3=0,-b +5=0,c -2=0,即a =3,b =5,c =2, 所以当a =3,b =5,c =2时,原式=2×3+5+2=13. 例2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求b a a b +之值。 [解] ∵a 2b 2+a 2+b 2 -4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴? ??==-.1,0ab b a 解得???==;1,1b a ? ??-=-=.1, 1b a 当a=1,b=1时, b a a b +=1+1=2 b a c 1

代数式求值(整体代入一)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③整体代入,化简. 问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值. ①根据2a2+3b=6无法求出a和b的具体值,考虑_____________; ②对比已知及所求,考虑把________作为整体; ③整体代入,化简,最后结果为______. 代数式求值(整体代入一)(北师版) 一、单选题(共13道,每道7分) 1.把看成一个整体,合并同类项的结果为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:合并同类项 2.把看成一个整体,合并同类项的结果为( ) A. B.

C. D. 答案:B 解题思路: 试题难度:三颗星知识点:合并同类项 3.设,把用含的代数式表示并化简的结果为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 4.设,把用含的代数式表示并化简的结果为( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:整体代入 5.若,则代数式的值为( ) A.0 B.4 C.6 D.2 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 6.已知,则的值为( ) A.-1 B.0 C.1 D.3 答案:A 解题思路: 试题难度:三颗星知识点:整体代入 7.若,则代数式的值为( )

A.-1 B.1 C.-5 D.5 答案:A 解题思路: 试题难度:三颗星知识点:整体代入 8.已知代数式的值是4,则的值为( ) A.1 B.5 C.9 D.10 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 9.若代数式的值为5,则代数式的值为( ) A.1 B.9 C.11 D.21 答案:B 解题思路:

(完整word版)代数式求值

代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下

即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

初中奥数竞赛辅导资料之第六讲代数式求值

第六讲代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下

即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

相关主题
文本预览
相关文档 最新文档