当前位置:文档之家› 锻压成形技术基本知识

锻压成形技术基本知识

锻压成形技术基本知识

锻压成形技术基本知识

铸造成型工艺

名词解释 1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法 2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁) 4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢) 5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性 6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。 7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法 9.金属型铸造:以金属为铸型、在重力下的液态成形方法。 10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法 11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法 12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺 13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型 14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法 15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法 16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成 17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面 18.集渣包:横浇道上被局部加大加高的部分 19.浇口比:直浇道,横浇道,内浇道截面积之比 20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷 分型面:两半铸型相互接触的表面。分为平直和曲面。作用:便于造型、下芯和起模具。 21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块 22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头 23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 冒口=冒口区+轴线缩松区+末端区 24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块 26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法 27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。大而集中的称为锁孔,细小而分散的称为缩松 28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值 29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数 30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。它既保留原组分的主要特征,又获得了原组分不具备的优越性能 31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。 32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道 33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例 34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法 35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1. 变形温度 钢的开始再结晶温度约为727 ℃,但普遍采用800 ℃作为划分线,高于800℃ 的是热锻;在300 ~800 ℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2. 锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔

长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。 4)特种锻造。特种锻造包括辊锻、楔横轧、径向锻造、液态模锻等锻造方式,这些方式都比较适用于生产某些特殊形状的零件。例如,辊锻可以作为有效的预成形工艺,大幅降低后续的成形压力;楔横轧可以生产钢球、传动轴等零件;径向锻造则可以生产大型的炮筒、台阶轴等锻件。 5)锻模

材料与成形技术历年试卷1

上海大学 材料与成形技术基础(二)试卷A 2002.1 一、改错题(将下表不合适结构改为合适结构,并写出改进理 1.铸件 2.铸件 4.自由锻件

6.拉深件 7.手弧焊 8.点焊 9.手弧焊 10.焊接 合适的毛坯成形或连接方法。(每空1分,共16分)

8. 大口径管环缝对接

三、单项选择题(每题1分,共10分) 1. 今有青铜仿古铜像须按普通人尺寸的十分之一大小进行仿形 铸造,应采用() (1) 金属型铸造 (2) 压力铸造 (3) 熔模铸造 (4) 普通砂型铸造 2. 对于高熔点合金精密铸件的成批生产,常采用() (1) 压力铸造 (2) 低压铸造 (3) 熔模铸造 (4) 金属型铸造 3. 助动车发动机缸体,材料ZL202,100万件,其毛坯成形工艺为 () (1) 低压铸造 (2) 压力铸造 (3) 离心铸造 (4) 熔模铸造 4. 下列模锻设备中最适宜进行拔长工步的是() (1) 模锻锤 (2) 机械锻压机 (3) 摩擦压力机 (4) 平锻机

5. 模锻时,当要求坯料某部分横截面减少,以增加该部分的长度时 一般选用() (1) 滚压模膛 (2) 拔长模膛 (3) 弯曲模膛 (4) 切断模膛 6. 当凸模和凹模之间间隙大于板料厚度,凸模又有圆角时,此冲压模 为() (1) 冲孔模 (2) 落料模 (3) 切断模 (4) 拉深模 7. 结构钢焊接时焊条选择的主要原则是焊缝与母材在下列哪一方面 应相等() (1) 化学成份 (2) 结晶组织 (3) 强度等级 (4) 抗腐蚀性能 8. 轿车油箱生产时既经济合理又生产效率高的焊接方法是() (1) 二氧化碳焊 (2) 点焊 (3) 缝焊 (4) 埋弧焊 9. 大批生产ABS小齿轮的成形方法应是() (1) 粉末冶金 (2) 压力铸造 (3) 注塑 (4) 机械切削 10. 最便宜的快速成形方法是() (1) FDM (2) SLA (3) LOM (4) SLS 四、多项选择题(每题2分,共20分) 1.可采用金属铸型的铸造方法有:()()()()() (1) 压力铸造 (2) 离心铸造 (3) 低压铸造 (4) 机器造型 (5) 熔模铸造 2. 为提高铸铁件的强度,尽量选用:()()()()() (1) 增大壁厚 (2) 改进结构 (3) 增设加强筋 (4) 增设补缩冒口 (5) 改善结晶条件

锻造基础知识大汇集

2015-06-08锻压世界锻压世界 forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

锻造基础知识讲座

锻造基础知识讲座 (一)锻造的基本概念。 锻造是锻压工艺的一部分,锻压包括锻造和冲压两部分。 锻造的根本目的:是获得所需形状和尺寸,同时要求其性能和组织符合一定的技术要求的毛坯。 锻造按温度来分有:热锻、温锻和冷锻。不同的锻造温度对锻件的组织和性能的影响也是不同的。 下面介绍的内容主要是热锻部分知识。 锻造分自由锻和模锻两部分。 自由锻是自由锻造的简称,自由锻包括胎模锻,适用于单件小批生产。 模锻适用于批量生产和大批量生产,如汽车制造行业。 自由锻和模锻是锻造工艺的主要支柱。 发达国家的模锻件占锻件总重量的70%以上;我国在50年 代模锻件占锻件总重量不到20%,现在有进步,但模锻件总重乃比自由锻件少。 自由锻又分手工锻和机器锻。 手工锻在现在工厂用得很少,只在工具修理部门有,农村的铁匠炉基本上还是用手工锻。 机器锻又分锤上自由锻和水压机上自由锻,前者用来生产大、中、小锻件;后者用来生产大型和特大型锻件。 自由锻特点: 1.所用工具简单,通用性强,灵活性大。 2.靠工人的手工操作来控制锻件的形状和尺寸,因此,锻件的 精度差,工人的劳动强度大,生产率低。 锻件的主要缺陷有: 1.裂纹:有横向、纵向裂纹及其它各种裂纹。 2.过烧。 3.白点(锻件内部银白色、灰白色圆形的裂纹) 4.折叠。 5.疏松、非金属夹杂物。 6.机械性能达不到要求(锻比不够)。 7.弯曲、变形。 产生以上缺陷的原因很多,有铸锭缺陷引起的,有锻造加热不当引起的,有锻造本身的原因,也有锻后冷却和热 处理不当引起的。总之,原因很多。所以当锻件的缺陷发现 后,需要综合起来进行分析,并要掌握在不同情况下产生缺

精密锻造模具成形技术的简介及应用

精密锻造模具成形技术的简介及应用 随着我国市场经济体质的不断发展和完善,传统的锻造模具技术已经无法满足市场的需求。随着科技的不断进步,锻造模具已经广泛运用在航天、船舶、汽车等重要领域,我国的锻造技术也在不断地蓬勃发展。本文主要介绍下现有的精密锻造模具成形技术,并简单的讲解下其发展趋势。 一、精密锻造技术的概念 精密锻造成形技术,指的是在零件基本成形后,只需少许加工或无需加工就可以使用的零件成形技术,又称近净成形技术。这种技术是以常规锻造成形技术为基础发展起来的,是由计算机信息技术、新能源、新材料等集成的一门应用技术。现阶段,精密锻造成形技术主要用在精锻零件和精化毛坯等方面。 二、精密锻造成形技术的种类 精密锻造成形技术,它的优势很明显,成本低、效率高、节能环保、精度高等。这种成形工艺种类很多,按成形速度划分:高速精锻、一般精锻、慢速精锻成形等;以锻造过程中金属流动状况为标准划分:半闭、闭式、开式精锻成形工艺;按成形温度划分:超塑、室温、中温、高温精锻成形等;按成形技术分为:分流锻造、等温锻造、复动锻、复合成形、温精锻成形、热精锻成形和冷精锻成形等。按成形技术对精锻技术进行的划分,已经成为了生产中人们习惯分类方式。 1.复动锻造 复动锻造,又称闭塞锻造,这种工艺是最先进的精锻技术之一。这种技术是通过一个冲头在封闭凹槽内部单向挤压或是用两个冲头双向复动挤压而使得金属一次成型的,成型的零件属于无飞边的近净精锻件。之所以要用闭塞锻造,是为了使材料使用率上升,降低加工工序的复杂度。 闭塞锻造能够做到通过一次操作而成形复杂的型面并取得很大变形量,在生产复杂零件时能够省去绝大多数的切削,有效降低成本。 2. 等温锻造 等温锻造指的是在恒定温度下将胚料在模具中锻造加工成精锻成形零件的工艺。与常规锻造相比,等温锻造能够将毛坯的加热温度控制在一定范围内,使锻造过程中的温度大致相等,大大改善了在加工过程中模具因温度骤变而发生的塑性变化。由于等温锻造的工艺特点,特别适合对形变温度很敏感的材料或是难成形的材料的精锻,如镁合金、铝合金等。 3.分流锻造 分流锻造技术的重要环节是在模具或毛坯的成形部分建立一个材料的分流通道,以确保良好的填料效果。使用这种技术时,在型腔填满材料的的过程中,一部分材料留下分流通道,形成分流,这样有助于填满难成形的部分。

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

大型自由锻造基础知识汇编

大型自由锻造 基础知识汇编 内容提要: 1、大型锻件质量控制举例 2、世界大型自由锻和模锻液压机装备数量分布 3、大型锻件质量控制举例

锻压行业在国民经济生产和国防建设中的作用在国民经济生产和国防建设中,锻压行业是不可缺少的重要部分,它为各种机械产品和军工装备生产各种重要基础零件。一台机械产品或军工装备,如汽车、火车、采矿机械、轧钢机、发电设备、石油化工设备、工程机械、农业机械、舰船、飞机、装甲车辆、导弹、火箭、火炮、弹药……等等,都是用各种材料(如金属、塑料、陶瓷、玻璃、木材、碳纤维、皮革……)进行不同的加工之后才能组装成机器设备或产品。其中凡是负载大的受力件和传递动力的运动件,在高温、高压下工作的重要零件,都是采用金属材料经压力加工成形的锻件。 锻件的质量直接决定主机的性能、整机质量、使用寿命、安全性和可靠性。 锻件是利用金属材料的可塑性,在冷态(常温)或热态(300~1250℃)时借助锻压设备所产生的力,使金属材料变形,获得机械零件毛坯所需形状和尺寸。锻压件分自由锻件、模锻件、挤压件、冲压件、旋压件、粉锻件、封头成形件等。 锻件广泛用于各种机械设备、军工装备和日常生活中,如果设有锻件,就设有这个多彩的世界。在当代,凡锻造工业实力强大的国家,必然在机械工业和军工装备生产的实力都很强大。所以在工业发达国家,都把锻件生产放在非常重要的地位,从一个国家所拥有的锻压设备数量、品种、等级和锻件产量,就可衡量其工业水平和国防实力。

一、我国锻压行业的发展历程 世界上锻压件的生产历史起源何时无法考证,但从我国出土的文物考证已有4000多年的历史,早就用金、银、铜、铁、锡,采用热锻、冷锻、拉拔、旋压、锤薄等工艺制造武器、工具、日用品和工艺品。我国的锻压工业虽然历史悠久,但真正形成我国现代锻压工业的时间,还是近50多年的事。在1949年以前,我国仅生产少量小型机械设备,最大锻锤仅3吨,年产锻件可能数千吨。 1949年10月1日中华人民共和国成立之日,就是我国现代锻压工业发展的起点。当回顾我国锻压工业经过50多年成长发展到现在的历程时,也经过一段艰难曲折的道路。随着国民经济各部门的发展,我国的锻压工业经过恢复、创业和大发展,现在己拥有一个门类比较齐全,生产能力比较雄厚的锻压工业,在装备我国机械制造业和军事工业中发挥巨大的作用 目前我国锻压设备品种、等级和数量,随着发展需要,在开发自制新型锻压设备的同时,还进口一些高、精、尖、大的锻压设备,在品种和数量上,作为发展中国家来说,已名列前茅,可与先进工业国相媲美。椐不完全统计,我国现有各种锻压设备40000万台,其中1.自由锻设备总量约:34000台,其中 自由锻液压机约150台,公称压力8~20MN(800~2000吨)100台,25MN~150MN(2500~15000吨)50台;在2008年还有160MN、165MN、185MN三台自由锻液压机要投产。 这些设备主要为发电(火电、水电、核电)、轧钢、采矿、石化、

汽车齿轮精密锻造技术

汽车齿轮的精密锻造技术江苏森威精锻有限公司 徐祥龙 摘李明明要 本文介绍了精密锻造成形在汽车齿轮制造中的应用,总结了各种齿形精密锻造的关键技术,特别提到分流锻造在齿形成形方面的应用。 前言 齿轮精密锻造成形是一种优质、高效、低消耗的先进制造技术,被广泛地用于汽车齿形零件的大批量生产中。随着精密锻造工艺和精密模具制造技术的进步,汽车齿轮和齿形类零件的生产已越来越多地采用精密锻造成形。当前国外一台普通轿车采用的精锻件总质量已达到(40—45)Kg,其中齿形类零件总质量达10Kg 以上。精锻成形的齿轮单件质量可达1Kg 以上、齿形精度达到(DIN) 7 级。随着汽车的轻量化要求和人们环保意识的增强,汽车齿轮制造业将更多地应用精锻成形技术。 一.伞齿轮的精锻成形 1. 伞齿轮(锥齿轮)的热精锻成形 (1)早期的伞齿轮精密锻造 伞齿轮的精密锻造最早见于50 年代德国的拜尔工厂,并在蒂森等公司得到广泛的应用(1)。我国上海汽车齿轮厂等在70 年代采用热精锻技术,成功进行了伞齿轮的精密锻造生产。在当时社会主义大协作的环境下,伞齿轮的精锻技术很快在齿轮行业得到推广应用。 该技术的应用和发展得益于2 项当时先进的技术:模具的放电加工技术和毛坯感应加热技术。先淬火后加工的放电加工避免了模具淬火变形带来的齿廓误差;快速加热的中频感应加热解决了齿轮毛坯在加热过程中的氧化和脱碳问题,以上2 项技术的应用使锻造成形的伞齿轮齿面达到无切削加工要求(图1、图2)。

图 1.精锻成形的行星和半轴齿轮 (2)锻造设备 图 2.精锻成形的汽车行星齿轮 伞齿轮的锻造设备在国外一般使用热模锻压力机。但在 60-70 年代的中国,热模锻 压力机是非常昂贵的设备。因此,国内企业普遍使用的锻造设备是双盘摩擦压力机(图 3)。该设备结构简单,价格便宜,很快成为齿轮精锻的主力设备。但摩擦压力机技术陈旧、 难以控制打击精度、而且能源利用率较低。随着高能螺旋压力机和电动螺旋压力机的出 现(图 4),落后的摩擦压力机有被取代的趋势。 图 3.双盘摩擦压力机 (3)热精锻造工艺 图 4.高能螺旋压力机和电动螺旋压力机 对于大量生产的汽车行星和差速齿轮,成熟的精锻成形技术是号称“一火两锻” 的热 精锻工艺技术。即齿轮在热锻成形和切边后利用锻件余热进行热精整。通常的设计原则

工程材料及其成形技术基础课作业参考答案

工程材料及其成形技术基础课作业参考答案 1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。 2-9 从铁-碳相图的分析中回答: ⑴随碳质量百分数的增加,硬度、塑性是增加还是减小? ⑵过共析钢中网状渗碳体对强度、塑性的影响怎样? ⑶为何钢有塑性而白口铁几乎无塑性? ⑷哪个区域熔点最低?哪个区域塑性最好? ⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大? 答:⑴随碳质量百分数的增加,硬度、增加塑性减小。 ⑵过共析钢中网状渗碳体对强度、塑性均降低。 ⑶塑性主要与铁-碳合金中的铁素体相含量多少有关,铁素体相含量越多塑性越好。钢含碳量低(ωc<2.11%)铁素体相含量多为基体而有塑性,白口铁含碳量高(ωc>2.11%),渗碳体相含量高为基体而几乎没有塑性。 ⑷共晶点熔点最低,奥氏体区塑性最好。 ⑸ C点共晶成分(ωc=4.3%)结晶间隔最小(为零),E点(ωc=2.11%)成分结晶间隔最大。 3-1 什么是珠光体、贝氏体、马氏体?它们的组织及性能有何特点? 答:珠光体(P)—铁碳合金平衡状态下,在PSK线(727℃)发生共析转变的转变产物,即铁素体片和渗碳体片交替排列的机械混合物组织。强度比铁素体和渗碳体都高,塑性、韧性和硬度介于铁素体和渗碳体之间。热处理后可得到在铁素体基体上分布着粒状渗碳体的粒状珠光体,综合性能更好。 贝氏体(B)—从550℃到Ms范围内中温转变、半扩散型转变的非平衡组织,即含过饱和碳的铁素体和渗碳体的非片层状混合物组织。按组织形态不同分羽毛状的上贝氏体(B上)和针片状的下贝氏体(B下)。上贝氏体脆性大无实用价值,下贝氏体的铁素体针细小,过饱和度大,碳化物弥散度大,综合性能好。 马氏体(M)—Ms-Mf之间低温转变、非扩散型转变的非平衡组织,即过饱和碳的α固溶体。体心正方晶格,分板条马氏体(低碳马氏体ωc<0.20%,位错马氏体),强韧性较好;针状马氏体(高碳马氏体ωc>1.0%,孪晶马氏体),大多硬而脆;ωc在0.2%~1.0%之间为两者的混合组织。马氏体的含碳量越多,硬度越高,马氏体有弱磁性。A→M,体积要膨胀,产生较大的内应力。 3-12 钢淬火后为什么一定要回火?说明回火的种类及主要应用范围。 答:钢淬火后一般不能直接使用,因为:①零件处于高应力状态(>300~500MPa),放置或使用时很容易变形和开裂;②淬火态的组织(M+A)是极端非平衡的亚稳定状态,有向稳

铸造工培训计划及培训大纲

铸造工培训计划 一、培训目标 1、总体目标 培养具备以下条件的人员:具有创新精神和较强实践能力,掌握必要的文化基础知识和专业知识,掌握现代金属材料铸造等专业知识,有较强的实际操作能力,能适应社会主义市场经济的生产、建设、服务、管理等一线需要的技术应用性专门人才。 学员应掌握较宽的基本理论知识和较扎实的基本技能。具有分析、解决铸造生产技术问题的能力。具有应用现代铸造技术的能力和自学能力。2、理论知识培训目标 依据《铸造工国家职业标准》中对铸造工的理论知识要求,通过培训,使培训对象掌握本专业培养目标所必需的技术基础知识,机械制图基本知识,公差与配合、常用金属材料与热处理知识;掌握铸造工艺与工装设计及铸件质量检测方面的专业知识;了解铸造新技术的发展现状及基本原理。 3、操作技能培训目标 依据《铸造工国家职业标准》中对铸造工的操作技能要求,通过培训,使培训对象具备铸造工艺的编制与实施的基本能力;具有铸造工装的设计与制造的基本能力;具有材料检验及管理的基本能力;具备运用所学知识,

分析、解决铸造车间现场技术问题的能力;具备良好的文字表达能力和用普通话进行社交的能力。 二、教学要求 2.1理论知识要求 2.1.1职业道德、职业守则、安全文明生产与环境保护知识 2.1.2专业基础知识 2.1.3加工准备知识 2.2操作技能要求 2.2.1 加工准备 2.2.2钳工、车工、铣工、磨工、焊接的基本过程、工艺范围及其应用 2.2.3了解各工种的操作方法 2.2.4 铸造工装的设计与制造 三、教学计划安排 总课时数:400课时。 理论知识授课:110课时。 理论知识复习:25课时。 操作技能授课:50课时。 操作技能练习:190课时。 机动课时:25课时。

锻造基本知识教学提纲

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不

大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。

材料成形技术及新材料

材料成形技术及新材料 ` 一、项目定义 项目名称:材料成形技术及新材料 项目所属领域:基础产业和高新技术 涉及的主要学科:材料加工工程(国家重点学科)、材料学、材料物理化学 项目主要研究方向: ●塑性精成形及模具CAD/CAE/CAM的集成 ●铸造合金新材料及其精密成形 ●汽车现代焊接成形与控制 ●纳米材料相变及组织与性能 ●功能新材料在塑性精成型中的应用 二、项目背景 1.项目建设意义 材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。其中囊括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智 95

能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。 材料科学的基础研究为新材料、新技术提供理论基础,是现代国防、机械、汽车等支柱产业发展的共性基础。同时,材料科学基础研究揭示物质本质,促进成形新型材料,引导新型技术和行业,产生新的支柱产业。材料合成与加工新技术研究包含纳米结构材料和金属加工、聚合物加工、陶瓷加工、复合材料加工、快速凝固、超纯材料、近终型加工等各类合成与加工的基础研究。根据材料的服役效能来调整成份、组织、结构、进而对材料的制备工艺进行设计,将使材料在强韧性、抗摩擦、抗冲击、抗腐蚀等方面的性能大大提高,对材料科学的全面发展起关键促进作用。 吉林大学材料加工工程学科是国家重点学科,在师资队伍、人才培养、科学研究和设备条件等方面,居国内先进地位。以材料加工工程学科为核心,结合材料学、材料物理与化学,加强内涵建设、重视专业外延,强调团队精神,突出个性特色。力争跟住世界先进水平、缩小差距,在本学科群中的一些有相对优势的研究分支(金属塑性与超塑性、无模成形、变质铸造、纳米材料及应用和功能材料等)继续保持世界先进水平,对于我国在材料科学与工程领域实现教学和科研水平的跨越式发展有重要意义。 96

相关主题
文本预览
相关文档 最新文档