当前位置:文档之家› 大型水生植物对骆马湖氮磷元素及磷酸酶活性的影响_徐德兰

大型水生植物对骆马湖氮磷元素及磷酸酶活性的影响_徐德兰

大型水生植物对骆马湖氮磷元素及磷酸酶活性的影响_徐德兰
大型水生植物对骆马湖氮磷元素及磷酸酶活性的影响_徐德兰

常见农家肥的氮磷钾含量比例

常见农家肥的氮磷钾含量比例 良好的有机肥料。由于畜禽食物来源不同,其粪肥有“冷热”之分,生产中要区别对待、合理施用。 1、猪粪:猪粪养分含量丰富,钾含量最高,氮磷含量仅次于羊粪。猪粪质地较细密,氨化细菌较多,易分解,肥效快,利于形成腐殖质,改土作用好。猪粪肥性柔和,后劲足,属温性肥料。适于各种农作物和土壤、腐熟后的猪粪可用于稻田,也可用于旱土,可作基肥使用,也可作追肥使用。 2、牛粪:牛粪质地细密,含水量高,通气性差,腐熟缓慢,肥效迟缓,发酵温度低,属冷性肥料。为加速分解,可将鲜牛粪稍加晒干,再加马粪或羊粪混合堆沤,可得疏松优质的肥料。如混入钙镁磷肥或磷矿粉,肥料质量更高。牛粪中碳素含量高、氮素含量低,碳氮比大,施用时要注意配合使用速效氮肥,以防肥料分解时微生物与作物争氮。牛粪一般只作基 肥使用。 3、马粪:马粪中纤维含量高,粪质粗,疏松多孔,水分易蒸发,含水量少,腐熟快,在堆积过程中发热量大、温度高,属热性肥料。可用于温床育苗,发热效果比猪粪好。在制作堆肥时,加入适量马粪,可促进堆肥腐熟。由于马粪质地粗,特别适用于粘性土壤,可作为粘性土壤的改良剂。 4、羊粪:粪肥中含氮、钙、镁较高。羊粪发热性居于马粪与牛粪之间。羊粪适用于各类土壤和各类作物,增产效果均好,腐熟后可作基肥、追肥和种肥施用。

5、兔粪:兔粪中氮、磷含量比较高,钾的含量比较低。兔粪碳氮比值小,易腐熟, 施入土中分解比较快,属热性肥料。在缺磷土壤上施用效果更好。 6、禽粪:禽粪中养分含量比畜粪还高。家禽粪中又以鸡粪的养分含量最高。禽粪分解过程中易产生高温,属热性肥料。禽粪很容易招致地下害虫,且尿酸态氮不能被作物直接吸收利用,须经充分腐熟后才能施用。禽粪最好作追肥施用。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

氮磷钾元素作用

氮磷钾营养元素的作用 氮 氮是蛋白质、叶绿素、酶等物质的重要组成部分。蛋白质是构成植物细胞原生质的基本物质,原生质是新陈代谢的活动中心。没有蛋白质就没有生命活动。酶是一种生物催化剂,植株体内的生物化学反应都有酶的参与。叶绿素是进行光合作用必不可少的物质,充足的氮能使叶色浓绿,提高光合作用效率,生长健壮,茎叶繁茂。另外,植株体内的核酸、磷脂和某些激素也都含有氮,这些物质也是许多生理生化过程所不可缺少的。可见氮的生理作用是多方面的。 氮不足,叶色转黄,生育延迟,植株瘦弱,抽穗晚,雌穗发育不良,穗小粒少,严重时不结实,形成空杆。缺氮症状先由叶尖变黄开始,沿着中脉向内扩展,严重时叶片变褐枯死,从全株看,先由下部老叶开始变黄,然后扩展到中部和上部叶片,这是因为缺氮时老叶中的氮转移到上部正在生长的幼叶和其它器官的缘故。 玉米对氮的需要量是诸多营养元素之中最大的,占茎叶子实及根系在内的干重的百分比达到1.46%,明显高于其它营养元素,所以在生产中一定要注意氮元素的施用。 磷 磷在植株体内含量虽比氮、钾少(仅占植株干重的0.2%)。但其生理作用确是非常重要的。磷是核蛋白的重要组成成分,核蛋白是原生质、细胞核和染色体的重要组成物质。磷也是核苷酸的主要成分之一。核苷酸的衍生物在新陈代谢中具有极重要的作用,与玉米植株的正常生命活动密切相关。磷在碳水化合物代谢及氮代谢中也都有重要作用,与脂肪代谢的关系也较密切。 磷对玉米植株发育及各生理过程均有促进作用,尤其是在苗期,能促进根的发育,如果供给适量的磷,根系干重可比缺磷的高1倍。对提高粒重、提高品质也有重要作用。 如果缺磷,影响玉米正常生长发育,产量降低。如果发现缺磷,即使再供给充足的磷也难以弥补前期所造成的损失。早期缺磷、幼苗生长缓慢,根系发育差,叶片呈紫红色,严重时叶尖及叶片边缘变成褐色并枯死。中、后期缺磷,花丝抽出晚,雌、雄间隔时间长,影响授粉,果穗缺粒秃尖,成熟延迟,产量降低。在生产中一定注意从苗期开始就供给充足的磷,确保一生对磷的需要。 钾 钾在幼苗植株中的含量较高,仅次于氮(占植株总干重的0.92%),它在玉米生长发育过程中的生理作用是多方面的。 钾能增强植株的抗旱性主要是由于钾是调节植株水分状况的重要元素。气孔开闭与K+含量有很大关系。施钾使叶肉K+细胞充足,气孔开放程度大,使细胞间隙进入的CO多,从而使光合速率增大,能增强光合产物的运输,提高光合速率,使碳氮代谢加强,有更多的碳水化合物往籽粒中输送。增施钾肥能增强作物的抗旱力,是由于钾离子有调节原生质的胶体特性,使胶体保持一定的分散度、水化度和粘滞性等。钾离子可增强原生质的水合作用,而钙能促使原生质浓缩,降低细胞的渗透性。当它们同时存在时,由于拮抗作用,可使胶体保持一定的分散度,又有一定的粘滞性和透性,使水分能顺利地进入细胞,加强了细胞的持水能力,从而增强了作物抗旱能力。 钾素能增强作物的抗病抗倒伏能力,因为钾对茎部纤维素合成有关。钾营养充足时,作物茎叶中纤维素含量增加,促进了作物维管束的发育,厚角组织细胞加厚,茎秆强度增加,植株生长健壮,不仅抗倒伏,也增强对病虫的抵抗能力。

蛋白质磷酸化概述

蛋白质磷酸化概述 蛋白质磷酸化是敏感而可逆地调节蛋白质功能的一种最常见和最重要的机制,是调节细胞增值的基础。很多多肽生长因子(血小板来源的生长因子和表皮生长因子)和细胞因子(白细胞介素-2、集落刺激因子-2和γ-干扰素)在与其受体结合后均激发磷酸化作用,而这些被诱导的磷酸化反过来激活细胞质内的蛋白激酶如raf、MEK和MAP。此外,在所以有核生物中,细胞周期中G1/S期和G2/M期的转换均受依赖细胞周期蛋白的蛋白激酶(CDK)的调节。磷酸化作用也控制着分化和发育,如果蝇视网膜的R7细胞和秀丽新小杆线虫(Caenorhabditis elegans)的阴门发育受控于受体蛋白激酶和胞内蛋白激酶。最后,新陈代谢受磷酸化作用的调节控制,尤其是葡萄糖和糖元的相互转换及葡萄糖的转运的代谢作用。因而,形形色色的生物学家为了弄清楚他们最感兴趣的基因及其编码产物的调控和功能,他们常常不约而同,有时还是不由自主地必须蛋白质地磷酸化。 研究蛋白质磷酸化最常用地方法是利用32P标记的无机磷酸盐(32Pi)进行生物合成标记。这种方法非常简单,而只将标记物中加入到培养基中。在节中描述了用32Pi进行生物成标记的一般方法。该方法能达到最大限度的提高掺入效率和降低放射性对工作人员的伤害及对设备的污染。 大多数蛋白质是在丝氨酸和苏氨酸残基上磷酸化,而许多与信号传导有关的蛋白质还在酪氨酸位置上被磷酸化。这三种羟基磷酸氨基酸在

酸性PH条件下化学性质稳定,酸水解后它们可被回收并被直接鉴定出来。在节中介绍了通过酸水解和双向薄层电泳鉴定磷酸丝氨酸、磷酸苏氨酸和磷酸酪氨酸的技术。蛋白质也可在组氨酸、半胱氨酸和天冬氨酸位置上与磷酸共价键合,它们可以是以磷酸-酶的中间体或稳定修饰物的形式存在,这些磷酸氨基酸在酸性条件下不稳定,不能用对酸稳定磷酸氨基酸的标准技术来研究,它们只能通过排除法或演绎法来鉴定。研究这些酸不稳定的氨基酸已超出本书的范围,读者可以参考《酶学方法》(Methods in Enzymolcgy)第200卷有关鉴定这些新磷酸氨基酸的技术。 磷酸酪氨酸不是含量丰富的磷酸氨基酸,因而一般很难在用32Pi标记的样品中检出,尤其是当样品中含有大量在丝氨酸残基上磷酸化的蛋白质或有RNA污染时则更难。凝胶电泳分级后的样品以碱处理,使RNA水解并使磷酸丝氨酸脱磷酸,可以大大提高磷酸酪氨酸和磷酸苏氨酸的检出率,在节中描述一种碱处理的简单方法。 如果蛋白质被磷酸化,无需借助生物合成标记方法也可鉴定磷酸氨基酸。例如,蛋白质中所含的稀有的磷酸酪氨酸可用抗磷酸酪氨酸的抗体来检测,其特异性和敏感性相当高。更普遍的是,蛋白质的磷酸化常常使蛋白质在SDS-聚丙烯酰氨凝胶电泳中的迁移率发生变化,而且几乎总是改变它的等电点。将蛋白质和磷酸酶共同温育后,从凝胶迁移率的变动可以推论出非标记蛋白质存在磷酸化残基。这种方法在内源性ATP以[γ-32P]ATP进行标记的效率很差时很实用,如目的蛋白是来源于某些难以进行生物合成标记的组织或来源于体外翻译的情

酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展

现代生物医学进展https://www.doczj.com/doc/6f16942271.html, Progress in Modern Biomedicine Vol.10NO.16AUG.2010 酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展* 刘振凯1艾 菁2耿美玉1,2△ (1中国海洋大学医药学院山东青岛266003;2中国科学院上海药物研究所上海201203) 摘要:酪氨酸激酶(protein tyrosine kinases,PTKs )在肿瘤细胞的增殖、分化、迁移、侵袭等相关信号通路中起到了关键的调控作用,已经成为肿瘤靶向性治疗的重要靶点。本文对靶向酪氨酸激酶的小分子抑制剂的筛选和评价方法进行综述,以期促进酪氨酸激酶抑制剂类抗肿瘤药物的研究。 关键词:酪氨酸激酶;抗肿瘤药物;小分子抑制剂;抑制剂筛选 中图分类号: R730.5,R915文献标识码:B 文章编号:1673-6273(2010)16-3134-04Advances in Research of Protein-tyrosine Kinases Inhibitors as Anticancer Drug* LIU Zhen-kai 1,AI Jing 2,GENG Mei-yu 1,2△ (1Marine drug and food Institute,Ocean university of China,Qingdao,266003,China;2Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China ) ABSTRACT:Protein tyrosine kinases (PTKs)have long been recognized as promosing therapeutic targets involved in a variety of human diseases and in particular several types of cancer.They play important roles in regulating intracellular signal transduction path-ways closely associated with the invasion,metastasis and angiogenesis of many tumors.An effort towards the development of new and more effective PTK inhibitors represents an attractive therapeutic strategy for cancer therapy.In this paper,we review the screening and evaluation methods of small-molecule inhibitors of PTKs with a view to promote the study of PTKs. Key words:Protein-tyrosine kinases;Antitumordrugs;Small-molecule inhibitors;Inhibitors screening Chinese Library Classification (CLC ):R730.5R915Document code:B Article ID:1673-6273(2010)16-3134-04 *基金项目:国家杰出青年科学基金资助(No 30725046) 作者简介:刘振凯(1983-),男,硕士。研究方向:分子药理学。E-mail :lzkai111@https://www.doczj.com/doc/6f16942271.html, △通讯作者:耿美玉(1963-),研究员、博士生导师。E-mail :mygeng@https://www.doczj.com/doc/6f16942271.html, (收稿日期:2010-05-07接受日期:2010-06-01) 恶性肿瘤是严重威胁人类生命和健康的疾病。目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类药物大多存在难以避免的选择性差、毒副作用强、易产生耐药等缺点[1]。近年来,随着生命科学研究的飞速发展,恶性肿瘤细胞内的信号转导、 细胞周期的调控、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明,给抗肿瘤药物的研发理念带来了巨大转变。以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶/蛋白作为药物靶点,筛选发现选择性强、高效、低毒的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向[2]。 蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,它们能催化ATP 分子上的γ-磷酸基转移到底物蛋白的酪氨酸残基上,使其发生磷酸化。酪氨酸激酶分为受体型和非受体型两种。受体酪氨酸激酶是一种单次跨膜蛋白,目前至少已有近六十种分属20个家族的受体酪氨酸激酶被识别。不同的受体酪氨酸激酶和配体结合后,受体自身发生二聚化或结构重排,并进一步使受体胞内区特异的酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路[3]。它们在信号由胞外转导至胞内的过程中发挥重要的作用。而非受体酪氨酸激酶是一种胞浆蛋白,现已经确认的有约30种,分为10大家族。蛋白酪氨酸激酶在细胞信号转导通路中占据了十分重要的地位, 调节细胞生长、分化、死亡等一系列生理生化过程。蛋白酪氨酸激酶功能失调则引发生物体内一系列疾病。大量资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常激活或过度表达将导致细胞无限增殖,周期紊乱,最终导致肿瘤的发生发展[4]。 同时,酪氨酸激酶调控异常还与肿瘤的侵袭、 转移,肿瘤新生血管生成,肿瘤化疗抗性等密切相关。事实上,以酪氨酸激酶为靶点进行抗肿瘤药物的开发已成为国际研究的前沿。 1酪氨酸激酶抑制剂的开发策略 目前酪氨酸激酶抑制剂的开发策略主要分为胞外、胞浆和核内三个层面:细胞外策略主要是针对于受体型,配体与受体的生物拮抗剂以及特异性抗体,通过拮抗配体和受体的相互作用,抑制酪氨酸激酶的激活[5];胞浆内策略主要分为抑制激酶区的激酶活性和拮抗酪氨酸激酶与其下游信号分子的相互作用两个方面[6];核内策略主要是利用miRNA 降解或者干扰酪氨酸激酶的mRNA ,抑制激酶的蛋白表达而达到抑制激酶活性的目的[7,8]。其中研究最多的是抑制激酶区激酶活性的小分子抑制剂,而本文也主要是针对这部分抑制剂的研究方法进行探讨。酪氨酸激酶的自磷酸化过程和催化下游信号分子磷酸化的过程都涉及到ATP 上磷酸基团的转移,这一反应过程是酪氨酸 3134··

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1988年Tonks等首次在人的胎盘细胞中分离和纯化了第一个37kDa的蛋白酪氨酸磷酸酶1B(ProteinTyrosinePhosphatase-1B,PTP-1B)。 PTP1B是一种胞内PTP,位于内质网,在人体的各种组织中都有表达;其与蛋白酪氨酸激酶(ProteinTyrosineKinases,PTK)共同维持着酪氨酸蛋白磷酸化的平衡,参与细胞的信号转导,调节细胞的生长、分化、代谢、基因转录和免疫应答等。 PTP1B属于蛋白质酪氨酸磷酸酶家族,专一水解芳香族磷酸,如磷酸化酪氨酸(phosphotyrosyl,pTyr)残基上磷酸根的酶,通过对胰岛素受体或其底物上的酪氨酸残基去磷酸化作用,对胰岛素信号转导进行负调节,组织细胞中PTP-1B过表达都会降低PTK的活性,使胰岛素受体无法与胰岛素结合,进而引起胰岛素抵抗,最终导致2型糖尿病。 PTP-1BDNA的启动子上有一个转录因子Y盒结合蛋白-1的结合位点,它的过度表达可使PTP-1B的表达水平增加。使用反义寡核苷酸技术减少其表达后,

PTP-1B的表达随之降低,呈正相关趋势。 PTP-1B在体内没有自身的特异性受体,而是在细胞信号传导过程中,与PTP家族中的其他成员以及蛋白酪氨酸激酶协同作用,调控蛋白底物中酪氨酸的磷酸化水平,进而对细胞的生长、分化、代谢、基因转录和免疫应答等功能进行调节。 1PTP-1B的生理功能 目前研究发现PTP-1B主要表现出以下几个方面的生理功能: (1)与胰岛素受体(insulinreceptor,IR)、胰岛素受体底物(insulinreceptorsubstrate,IRS)等信号蛋白作用,使这些蛋白调节区的酪氨酸残基去磷酸化,进而阻断胰岛素信号级联反应的下传,在胰岛素信号中起着负调控作用。与II型糖尿病的发生具有密切的联系。 (2)在瘦素信号传导过程中,通过降低转录激活子-3(STAT-3)和Janus激酶-2(JAK-2)的磷酸化水平,在瘦素信号中起负调控作用。与肥胖的发生具有密切的联系。 (3)PTP-1B通过与生长因子等底物相互作用,参与细胞生长周期的调节,与肿瘤的发生具有一定的联系。 除此之外,研究还发现PTP-1B在催乳素信号传

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

蛋白酶磷酸酶抑制剂

常用蛋白酶抑制剂和磷酸酶抑制剂的贮存与工作液浓度 在与蛋白相关的检测中,首先最关键的一步便是蛋白质的提取。蛋白质的提取过程中,我们要经常加和蛋白酶抑制剂以防止蛋白质的降解。另外在磷酸化蛋白的研究过程中,磷酸酶抑制剂也是必不可少的,本文总结了常用的蛋白酶抑制剂PMSF,Leupeptin 亮肽素,Aprotini n抑肽酶,Pepstatin胃蛋白酶抑制剂,EDTA-Na2等以及磷酸酶抑制剂NaF氟化钠,Na3VO4 原矾酸钠,BETA-glycerophosphate 甘油磷酸钠,Na2P2O4 焦磷酸钠等。对这些蛋白酶抑制剂的溶解配制,贮存液与工作液浓度,保存都做了详细的说明。 蛋白酶抑制剂 PMSF: 特性:丝氨酸蛋白酶抑制剂,如胰凝乳蛋白酶,胰蛋白酶和凝血酶,也抑制半胱氨酸蛋白酶如木瓜蛋白酶(可逆的地面处理)。 溶解性:溶于异丙醇,乙醇,甲醇和丙二醇果>10mg/ml。在水溶液中不稳定。在100%异丙醇, +25℃时稳定至少9个月 分子量: 使用:贮存浓度:200mM,工作浓度:1mM Leupeptin 亮肽素 特性:抑制丝氨酸和半胱氨酸蛋白酶如胰蛋白酶,木瓜蛋白酶,纤溶酶,和组织蛋白酶B 溶解性:高度溶于水(1mg/ml)。4℃一周稳定,分成小份冷冻在-20℃至少6个月 分子量:C20H38N6O4 x 1/2 H2SO4: C20H38N6O4 x 1/2 H2SO4 x H2O:

使用:贮存浓度:1mg/ml,工作浓度 ug/ml (1mM) Aprotinin抑肽酶 特性:丝氨酸蛋白酶抑制剂,抑制纤维蛋白溶酶,激肽释放酶,胰蛋白酶,糜蛋白酶的高活性。不抑制凝血酶或因子X。 溶解性:易溶于水(10mg/ml)或缓冲液(例如,tris,,)。pH约7-8的溶液在4℃可保存1周,分装保存在-20℃可至少保存6个月。避免反复冻融, pH>的碱性环境可使其灭活。 分子量:6,512 使用:贮存浓度:1mg/ml, 工作浓度:– ug/ml– uM) Pepstatin胃蛋白酶抑制剂 特性:抑制天冬氨酸(酸)蛋白酶如胃蛋白酶,肾素,组织蛋白酶D,凝乳酶,许多微生物酸性蛋白酶 溶解性:溶于甲醇约1mg/ml;可溶于乙醇,过夜溶解可达到1 mg/ml;在6当量乙酸中溶解度为300ug/ml。4℃稳定一周,分装储存于-20℃时可保存1个月分子量: 使用:贮存浓度:1mg/ml,使用浓度:μg/ml(1 μM) EDTA-Na2 特性:金属蛋白酶抑制剂 溶解性:溶于水至,在pH8-9的条件下,4℃稳定至少6个月 分子量: 使用:工作浓度:– mg/ml– mM),不需现用现配,在溶液pH值调至8-9时再加入。

蛋白质酪氨酸磷酸酶SHP_1的中药抑制剂筛选

第46卷 第6期吉林大学学报(理学版) Vol .46 No .6 2008年11月JOURNAL OF J I L I N UN I V ERSI TY (SC I E NCE E D I TI O N ) Nov 2008 蛋白质酪氨酸磷酸酶SHP 21的中药抑制剂筛选 李婉南1 ,李 莹1 ,庄 妍1 ,李 贺1 ,陈颖丽2 ,赵志壮 1,3 ,付学奇 1 (1.吉林大学生命科学学院,长春130012;2.吉林省中医药科学院,长春130021; 3.美国俄克拉荷马大学健康科学中心,俄克拉荷马城73104,美国) 摘要:用含有蛋白质酪氨酸磷酸酶SHP 21催化结构域(ΔSHP 21)的质粒转化大肠杆菌,得到 ΔSHP 21的高效表达,经分离纯化后,以ΔSHP 21为靶标,通过体外酶反应动力学实验,对157种中药水提液的抑制效果进行研究,筛选出两种对ΔSHP 21具有显著抑制作用的中药:山茱萸和蒲公英,并对其I C 50及抑制类型做了进一步研究.为建立蛋白质酪氨酸磷酸酶抑制剂的筛选方法和中药在治疗免疫疾病和糖尿病上的开发和应用提供了理论依据.关键词:包含SH2结构域的蛋白质酪氨酸磷酸酶1(SHP 21);中药;抑制剂;筛选中图分类号:Q55 文献标识码:A 文章编号:167125489(2008)0621211206 Screen i n g Traditi onal Chi n ese M edi ci n es for I nhi bitors of Prote i n Tyrosi n e Phosphat ase SHP 21 L IW an 2nan 1 ,L I Ying 1 ,ZHUANG Yan 1 ,L I He 1 ,CHEN Ying 2li 2 ,ZHAO Zhi 2zhuang 1,3 ,F U Xue 2qi 1 (1.College of L ife Sciences,J ilin U niversity,Changchun 130012,China; 2.A cade m y of Traditional Chinese M edicine and Herbs of J ilin P rovince,Changchun 130021,China; 3.Health Sciences Center ,O klaho m a U niversity,O klaho m a C ity 73104,USA ) Ab s trac t:W ith pT7as a vect or,ΔSHP 21,a recombinant p r otein containing the catalytic domain of p r otein tyr osine phos phatase SHP 21,was highly exp ressed in E .coli cells .The enzy me was further purified t o near homogeneity .W ith the purified recombinant enzy me as a target,aqueous extracts of 157traditi onal Chinese herb medicines were analyzed f or their abilities t o inhibit SHP 21.T wo most potent inhibit ors,na mely,cornel and dandeli on,were identified,and their I C 50values and inhibit ory types were further analyzed .This study thus established a good syste m t o screen inhibit ors of SHP 21and de monstrated the potential of traditi onal Chinese medicines in treat m ent of i m munol ogical diseases and diabetes . Key wo rd s:SH22containing tyr osine phos phatase 1(SHP 21);traditi onal Chinese herb;inhibit or;screening 收稿日期:2008201215. 作者简介:李婉南(1975~),女,汉族,博士,讲师,从事蛋白质酪氨酸结构与功能的研究,E 2mail:wyshshk@https://www.doczj.com/doc/6f16942271.html,.联系人:付学奇(1960~),男,汉族,博士,教授,博士生导师,从事细胞信号传导与药物筛选的研究,E 2mail:fxq@jlu .edu .cn . 基金项目:吉林省科技发展计划项目基金(批准号:20060563;200705394;20080434). 蛋白质酪氨酸磷酸酶(Pr otein Tyr osine Phos phatase,PTPs )与蛋白质酪氨酸激酶(Pr otein Tyr osine Kinases,PTKs )协同作用,控制着蛋白质酪氨酸的磷酸化过程,调节细胞生长发育,并在细胞信号传导过程中发挥重要作用 [1] ,许多生理和病理现象都与此相关 [2] .研究表明,一些疾病如某些癌症、糖尿 病、白血病、免疫缺陷病、努南氏综合症等正是由于PTPs 的基因突变或异常表达导致的[3,4] ,因此 PTPs 已经成为继PTKs 之后又一个热门的研究领域.SHP 21(SH22Containing Tyr osine Phos phatase 1),又称为HCP,SHPTP1或PTP1C,是含有SH2结构域的具有高度保守序列的蛋白质酪氨酸磷酸酶的亚家

钙调磷酸酶抑制剂

钙调磷酸酶抑制剂 (一)器官移植排斥反应 1、移植排斥反应 人体的免疫系统对各种致病因子有着非常完善的防御机制,能够对细菌、病毒、异物、异体组织、人造材料等“异己成分”进行攻击、破坏、清除,这种复杂的免疫学反应是人体非常重要的一种保护机制。受者进行同种异体组织或器官移植后,外来的组织或器官等移植物作为一种“异己成分”被受者免疫系统识别,后者发起针对移植物的攻击、破坏和清除,这种免疫学反应就是移植排斥反应(transplant rejection)。移植排斥反应是影响移植物存活的主要因素之一。 移植排斥反应是非常复杂的免疫学现象,涉及细胞和抗体介导的多种免疫损伤机制,发生原因主要是受体和移植物的人类白细胞抗原HLA(human leucocyte antigen)不同。因此,供者与受者HLA的差异程度决定了排异反应的轻或重。除同卵双生外,二个个体具有完全相同的HLA 系统的组织配型几乎是不存在的,因此在供受者进行配型时,选择HLA配型尽可能地接近的供者,是减少异体组织、器官移植后移植排斥反应的关键 2、发病机制 排斥反应的发生机制主要包括细胞免疫和体液免疫两个方面。临床最常见的急性排斥反应主要由细胞免疫介导,而超急性排斥反应和慢性排斥反应主要由体液免疫介导。 (1)细胞介导的排斥反应 细胞免疫在急性排斥反应发生发展过程中起主导作用。移植物中供体的淋巴细胞和树突状细胞具有丰富的HLA-Ⅰ和Ⅱ类抗原,是诱发排斥反应的主要致敏原。在移植物植入受体后,随着移植物的血液循环重建,供者的HLA-Ⅰ和Ⅱ类抗原不可避免的暴露于受者的免疫系统,受者的免疫细胞识别外来抗原后,即可引发下述一系列免疫反应: CD8+细胞毒性T细胞前体细胞与供者HLA-Ⅰ类抗原结合后活化增殖为成熟的细 胞毒性T细胞,对移植物产生攻击效应;CD4+T辅助细胞识别供体HLA-Ⅱ类抗原,促使抗原递呈细胞释放IL-I,后者可促进T辅助细胞增殖和释放IL-2,IL-2可进一步促进T辅助细胞增殖并为细胞毒性T细胞的分化提供辅助信号;除了IL-2之外,TH

氮磷钾分析

有机肥料氮、磷、钾的化学分析方法 摘要: 介绍了用化学分析方法测定有机肥料氮、磷、钾的含量, 即样品经硫酸—过氧化氢消化后, 制备待测溶液, 分取待测溶液用NC - 2 型快速定氮仪测定氮, 用磷钼酸喹啉重量法测定磷, 用四苯硼酸钾重量法测定钾,不须使用分光光度计和火焰光度计, 适宜一般复混肥料厂采用, 对含氮、磷、钾分别达011 %以上的样品均可用本法测定, 方法的准确度和精密度能满足生产的要求。 关键词: 有机肥料; 氮、磷、钾; 化学分析方法 有机肥料中氮、磷、钾含量的测定, 按国家行业标准NY525 —2002 的要求, 氮采用全量蒸馏滴定法、磷采用磷钒钼黄光度法、钾采用火焰光度法测定。对普通复混肥料厂来说, 一是测氮的时间过长; 二是因为这些厂一般都没有购置分光光度计和火焰光度计, 不便于磷、钾的测定。为了解决厂家都能分析测定有机肥料中氮、磷、钾的问题, 笔者在生产实践中总结出适宜厂家使用的有机肥料中氮、磷、钾快速测定的化学分析方法。方法的要点是用硫酸—过氧化氢消化样品制取待测液, 分别测定氮、磷、钾。测氮用NC - 2 型快速定氮仪, 在10 min 内可完成氮的蒸馏、吸收、滴定全过程, 具有快速、准确的特点; 测磷用磷钼酸喹啉重量法;测钾用四苯硼酸钾重量法。在温度120 ℃的条件下, 将磷、钾的沉淀物一起烘干115 h , 可以同时测定磷、钾, 大大缩短了操作的时间。此方法用于生产实践, 与国家行业标准的分析方法结果基本一致。普通的复混肥料厂不须增添分析仪器, 便可应用本法测定有机肥料氮、磷、钾的含量, 达到指导 生产的要求。 1 方法原理 有机肥料在硫酸溶液中加热, 滴加过氧化氢溶液, 使有机质迅速消化, 制备氮、磷、钾的待测液,然后用NC - 2 型快速定氮装置测定氮、磷钼酸喹啉重量法测定磷、四苯硼酸钾重量法测定钾。

生物质谱分析蛋白质磷酸化位点

磷酸化蛋白的高效富集 在线酶解与快速鉴定 项目申请人:袁敏婷黄懿 指导教师:杨芃原 摘要:蛋白质的可逆磷酸化具有重要的生物学意义,对蛋白质磷酸化位点进行分析有助于阐明蛋白质磷酸化的机制与功能。生物质谱是目前进行蛋白质磷酸化分析最有力的方法之一,但由于蛋白质磷酸化的丰度低以及磷酸化的肽段离子化效率低,在质谱分析前,依然需要结合富集或分离的步骤。本作品旨在利用四氧化三铁磁性纳米材料对磷酸化肽或蛋白快速高效的特异性吸附,结合在线酶解技术的快速,高序列覆盖度特性构建一个快速,高效鉴定分析磷酸化蛋白的新技术。 关键词:蛋白质磷酸化;Fe3O4磁性材料富集;在线酶解 1.引言 蛋白质的翻译后修饰(PTMs)是目前蛋白质组研究中的一个重要课题。蛋白质磷酸化是最普遍、最重要的一种蛋白翻译后修饰方式,它几乎调节着生命活动的整个过程,包括细胞的增殖、发育和分化,神经活动,肌肉收缩,新陈代谢,肿瘤发生等。了解蛋白质磷酸化对功能的影响可深入理解生命系统如何在分子水平进行调控。据统计,在哺乳动物中大约有三分之一的蛋白质被认为是磷酸化修饰的,而脊椎动物基因组中有5%的基因编码蛋白激酶或磷酸酯酶。对众多生物化学功能起开/关调控作用,是一种普遍的调控机制。 蛋白质的可逆磷酸化使得蛋白质组学研究更为复杂。真核生物细胞蛋白质中主要的磷酸化氨基酸为丝氨酸、苏氨酸和酪氨酸,其比例大概为1800∶200∶1。大多数磷酸化蛋白质都有多个磷酸化位点,并且其磷酸化位点是可变的。因此,一种蛋白可能有多种磷酸化形式。对单一蛋白质进行研究的传统方法远不能满足分析这一层面上蛋白质的多样性和复杂性的需要,用蛋白质组技术和生物信息学高通量地研究翻译后蛋白质的修饰已成为必然趋势。虽然对磷酸化蛋白质组学分析已有很大进步,但依然存在多个难点亟待解决包括磷酸化蛋白和肽段的富集,可逆性磷酸化位点的鉴定以及磷酸化位点的定量等。 在过去几十年中已有多种分离和鉴定蛋白质磷酸化的技术发展起来,包括放射性同位素标记、免疫沉淀反应、化学修饰、固定金属离子亲合色谱法等,而生物质谱技术已经成为磷酸化蛋白鉴定的主要工具,串联质谱更是可以高通量,快速的给出详细的磷酸

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模拟研究

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模 拟研究 目的:蛋白酪氨酸磷酸酶SHP2是新的抗肿瘤药物研究靶点。为寻找新的具有较强抗肿瘤活性的SHP2抑制剂,本课题以文献报道的SHP2抑制剂GS493,SHP836等为先导化合物,设计、合成了苯磺酸和吡嗪胺两类新的衍生物;测试了苯磺酸类衍生物对SHP2蛋白活性中 心的抑制作用;在细胞水平测试了所有化合物对人乳腺癌细胞 MDA-MB-231和非小细胞肺癌NCI-H1975的增殖抑制活性;选择活性较好的化合物If、IIe进行计算机辅助的分子动力学研究,以探讨它们与SHP2作用的具体模式及对SHP2的选择性。方法:1.目标化合物的设计与合成:(1)保留GS493的苯基腙吡唑啉酮以及磺酸基团,用内脂环或酰胺代替1位苯环的硝基,3位苯环的硝基替换为氟、甲氧基等基团,设计了12个目标化合物 Ia-Il。其合成方法为:对硝基苯甲酸经酰氯化,再与胺反应形成酰胺,然后再将其硝基还原,重氮化,还原,得到N-取代-4-肼基苯甲酰胺中间体;对氨基苯磺酸经过重氮化,与取代苯甲酰乙酸乙酯耦合得到4-{2-[1-乙氧基-3-(4-取代)-1,3-二氧代丙-2-基]肼基}苯磺酸中间体,其再与N-取代-4-肼基苯甲酰胺中间体反应得到目标产物Ia-Il。(2)保留 SHP836,SHP099的吡嗪胺结构,3位引入新的芳环或芳杂环替代二氯 苯环,6位引入大位阻的取代哌嗪基团,设计了12个目标化合物 IIa-IIl。其合成方法为:以2-氨基-3-溴-6-

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶 蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)是细胞增殖和信号传导的调节过程中,调节蛋白酪氨酸残基磷酸化水平的酶家族。PTP 和蛋白酪氨酸激酶(protein tyrosine kinase,PTK)及其各自相应的底物协同作用,形成一个复杂的信号传导网络,通过调控蛋白氨基酸残基的磷酸化水平,调节生物体内细胞的生长、分化、代谢过程,参与细胞周期调控、细胞迁移、基因转录和免疫应答等过程。目前的研究发现人类共有112 种PTPs,依据它们的结构分为酪氨酸特异性、双特异性和低分子量磷酸酶,其中蛋白酪氨酸磷酸酶-1B (Protein Tyrosine Phos-phatase-1B,PTP-1B)于1988 年由Tonks 等首次在人的胎盘细胞中分离和纯化得到,属于酪氨酸特异性磷酸酶,依据受体结构可分为受体样PTP-1B 和胞内PTP-1B。PTP-1B 专一水解芳香族磷酸,由435 个氨基酸残基组成,分子量约50ku。其结构中有一个氨基末端催化区和两个富含脯氨酸的模序。PTP-1B 在肌肉、心、肝、睾丸、肾、脾、脑和脂肪等组织中广泛表达,主要集中在细胞浆的内质网的表面。PTP-1B 的N 端为包含半胱氨酸和精氨酸残基的催化中心,朝向胞浆方向;C 端通过35 个特异性氨基酸与内质网相结合,羧基末端水解断裂后从内质网释放出有活性的PTP1B;N 端和C 端之间为两段富含脯氨酸的区域,在PTP1B 与其他蛋白之间的相互作用上发挥重要作用。 PTP-1B DNA 的启动子上有一个转录因子Y 盒结合蛋白-1 的结合位点,它的过度表达可使PTP-1B 的表达水平增加。使用反义寡核苷酸技术减少其表达后,PTP-1B 的表达随之降低,呈正相关趋势。 PTP-1B 在体内没有自身的特异性受体,而是在细胞信号传导过程中,与PTP 家族中的其他成员以及蛋白酪氨酸激酶协同作用,调控蛋白底物中酪氨酸的磷酸化水平,进而对细胞的生长、分化、代谢、基因转录和免疫应答等功能进行调节。 1 PTP-1B 的生理功能 目前研究发现PTP-1B主要表现出以下几个方面的生理功能: (1)与胰岛素受体(insulin receptor ,IR)、胰岛素受体底物(insulin receptor substrate,IRS)等信号蛋白作用,使这些蛋白调节区的酪氨酸残基去磷酸化,进而阻断胰岛素信号级联反应的下传,在胰岛素信号中起着负调控作用。与II 型糖尿病的发生具有密切的联系。 (2)在瘦素信号传导过程中,通过降低转录激活子-3(STAT-3)和Janus 激酶-2(JAK-2)的磷酸化水平,在瘦素信号中起负调控作用。与肥胖的发生具有密切的联系。 (3)PTP-1B 通过与生长因子等底物相互作用,参与细胞生长周期的调节,与肿瘤的发生具有一定的联系。 除此之外,研究还发现PTP-1B 在催乳素信号传导、血小板凝集等方面具有一定的影响。 2 PTP-1B 与糖尿病之间的关系 糖尿病是一类慢性代谢性疾病,随着生活水平的提高,糖尿病的发病率呈逐年上升趋势,成为继心脑血管疾病及癌症之后,威胁人类健康的第三大类疾病。目前已有约 3 亿糖尿病患者,到2030 年,预计患者人数将突破5 亿。根据糖尿病的发病机制,糖尿病可分为I 型糖尿病和II 型糖尿病,其中II 型糖尿病患者超过糖尿病患者总数的80%,主要表现为胰岛素抵抗或胰岛素受体不敏感,分泌胰岛素的胰腺B 细胞数量减少,功能障碍,从而导致糖代谢障碍,血糖水平升高。对PTP-1B 生理功能的研究已经证实,其与胰岛素及瘦素信号传导呈负调节关系,因此PTP-1B 与II 型糖尿病的发病原因关系密切,是开发II 型糖尿病治疗药物的重要靶点之一。 2.1 PTP-1B 胰岛素抵抗:代谢过程中,胰岛素可与脂肪、骨骼肌、肝细胞等细胞的细胞膜上的胰岛素受体胞外亚基结合,进而使受体胞内亚基酪氨酸激酶活化,导致自身及其底物

蛋白质提取过程中常用的蛋白酶和磷酸酶抑制剂详细使用说明

蛋白质提取过程中常用的蛋白酶和磷酸酶抑制剂详细使用说明转自:https://www.doczj.com/doc/6f16942271.html,/html/980.html 在与蛋白相关的检测中,最关键的一步便是蛋白质的提取。在提取的过程中,我们要经常加入以防止。另外在磷酸化蛋白的研究过程中,也是必不可少的。 本文详细总结了常用的PMSF、 Leupeptin亮肽素、Aprotinin抑肽酶、Pepstatin胃、EDTA-Na2等以及NaF氟化钠、Na3VO4原矾酸钠、Beta-glycerophosphate甘油磷酸钠、 Na2P2O4焦磷酸钠等的溶液配制、贮存液与工作液浓度及保存条件。一、蛋白酶抑制剂 PMSF:特性:丝氨酸蛋白酶抑制剂,如胰凝乳蛋白酶、胰蛋白酶和凝血酶,也抑制半胱氨酸蛋白酶如木瓜蛋白酶。溶解性:溶于异丙醇、乙醇、甲醇和丙二醇里>10mg/ml。在水溶液中不稳定。在100%异丙醇,25℃时稳定至少9个月。分子量:174.2使用:贮存浓度 200mM,工作浓度1mM Leupeptin 亮肽素特性:抑制丝氨酸和半胱氨酸蛋白酶如胰蛋白酶、木瓜蛋白酶、纤溶酶和组织蛋白酶B。溶解性:高度溶于水(1mg/ml)。4℃一周稳定,分成小份,冷冻在 -20℃至少6个月。分子量:C20H38N6O4×1/2 H2SO4:475.6 C20H38N6O4 x 1/2 H2SO4 × H2O:493.6使用:贮存浓度1mg/ml,工作浓度0.5 ug/ml (1mM)。 Aprotinin抑肽酶特性:丝氨酸蛋白酶抑制剂,抑制纤维蛋白溶酶、激肽释放酶、胰蛋白酶、糜蛋白酶的高活性。不抑制凝血酶或因子X。溶解性:易溶于水(10mg/ml)或缓冲液(例如0.1M tris,pH8.0)。pH约7~8的溶液在4℃可保存1周,分装保存在-20℃可至少保存6个月。避免反复冻融, pH>12.8的碱性环境可使其灭活。分子量:6,512使用:贮存浓度 1mg/ml,工作浓度0.06~2.0 ug/ml(0.01~0.3 uM)。 Pepstatin胃蛋白酶抑制剂特性:抑制天冬氨酸(酸)蛋白酶如胃蛋白酶、肾素、组织蛋白酶D、凝乳酶、许多微生物酸性蛋白酶溶解性:溶于甲醇约1mg/ml;可溶于乙醇,过夜溶解可达到1 mg/ml;在6当量乙酸中溶解度为300ug/ml。4℃稳定一周,分装储存于-20℃时可保存1个月。分子量:685.9使用:贮存浓度1mg/ml,使用浓度0.7 μg/ml(1 μM)。

相关主题
文本预览
相关文档 最新文档