当前位置:文档之家› 三相电路设计性实验

三相电路设计性实验

三相电路设计性实验
三相电路设计性实验

三相电路设计性实验

一、 实验目的

1. 了解三相交流电源电压的相序,学习其测量方法。

2. 掌握三相负载作星形联接和三角形联接的方法,验证这两种接法下线电压

和相电压、线电流和相电流之间的关系。 3. 理解三相四线制供电系统中中线的作用。

4. 掌握用三表法、二表法测量三相电路有功功率,用一表法测量三相电路无

功功率的方法。

二、 原理说明

1. 图4-1所示为相序指示器电路,用以测量三相交流电源电压的相序A 、B 、C 。该电路由一个电容器和两个功率相同的白炽灯组成星形不对称三相负载,如果电容器接A 相,则灯光较亮的为B 相,灯光较暗的为C 相。(相序是相对的,任何一相均可作为A 相,但A 相确定以后,B 相和C 相也就确定了)。

图4-1

为了分析问题方便,设R R R X C B C ===,另设00∠=p

A U U ,则 p

N N C C p

N

N B

B

p p p p C B

A N

N U ..U U U U ..U U U U .j .R

R jR R U R U jR U R R jR R U R U jR U U 00000613840610149160201111201200111-∠=-='-∠=-='+-=++-∠+-∠+-∠=++-++-=''' )(

由于C B

U U '>',所以B 相灯较亮。

2. 三相负载星形联接(Y 接,三相四线制供电)。若三相负载对称,则线电压等于相电压的3倍, 线电流等于相电流,这时中线电流为0,所以中线可

以省去。即使省去中线,电源中点和负载中点之间电压亦为零。 若三相负载不对称,则必须采用三相四线制接法,并且中线一定要联接牢固,以保证三相不对称负载的电压对称,这时中线电流不等于0。若断开中线,则三相不对称负载的电压不对称,电源中点和负载中点之间电压不为零,要影响负载的工作。

3. 三相负载三角形联接(△接,三相三线制供电)。若三相负载对称,则线电

压等于相电压,线电流等于相电流的3倍。若三相负载不对称,这时线电流不等于相电流的3倍,但三相不对称负载的电压却是对称的,不影响负载的工作。

4. 不论三相四线制还是三相三线制,不论负载Y 接还是△接,也不论负载对称

与否,都可以用三表法测量三相有功功率。所谓三表法即先测量出各相有功

功率P A 、P B 、P C ,则三相总有功功率为C B A P P P P ++=∑(三表法不一定要用三块表,用一块表测量三次也即三表法)。用三表法测量三相有功功率时一定要注意:测A 相功率时,功率表一定要加A 相电压和A 相电流;测B 相功率时,功率表一定要加B 相电压和B 相电流;测C 相功率时,功率表一定要加C 相电压和C 相电流。

5. 对于三相三线制,不论负载Y 接还是△接,也不论负载对称与否,都可以用

二表法测量三相有功功率。二表法的测量接线如图4-2所示,若W 1的读数

为P 1、W 2的读数为P 2,则三相总有功功率为21P P P +=∑。

6. 对于三相三线制供电的三相对称负载,可用一表法测得三相无功功率。测量

接线如图4-3所示,若W 的读数为P ,则三相总无功功率为P Q 3=∑

图4-2 图4-3

三、 实验设备

表4-1 实验设备表

四、实验内容

1.在调压器空载的情况下,将其输出电压从0开始逐渐上升,最后调节到线电压为220V,然后关断电源。

2.三相交流电源电压相序的测定步骤如下:

(1)在三相电源关断的情况下,按图4-1所示接线,其中一相负载为

4.7μF/450V的电容器一只,另两相负载为15W白炽灯各一盏。然后合上电

源,观察两只灯泡的明亮状态,判断三相交流电源电压的相序。

(2)在三相电源关断的情况下,将图4-1所示电路中的任意两相电源线对调,负载不变。然后合上电源观察两只灯泡的明亮状态,判断三相交流电源电压的相序。

3.三相负载星形联接(三相四线制供电)时,在三相电源关断的情况下,将负载进行星形联接接线,接线图自己设计。然后合上电源,按表4-2 任务,分别测量各项任务下的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压等,并观察不同情况下各相灯组亮暗的变化情况,特别注意中线的作用。

4.三相负载三角形联接(三相三线制供电)时,在三相电源关断的情况下,将负载进行三角形联接接线,接线图自己设计。然后合上电源,按表4-3任务,分别测量对称负载和不对称负载两种情况下的线电压、相电压、线电流、相电流,并观察两种情况下各相灯组亮暗的变化情况。

5.电源关断的情况下,将三相负载Y0接。然后合上电源,用三表法分别测量负载对称和不对称两种情况下的三相功率,将数据记录于表4-4中。

6.在电源关断的情况下,将三相负载Y接。然后合上电源,用三表法分别测量负载对称和不对称两种情况下的三相功率,将数据记录于表4-4中。7.三相负载仍Y接,用二表法分别测量负载对称和不对称两种情况下的三相功率,将数据记录于表4-4中。

8.在电源关断的情况下,将三相负载△接。然后合上电源,用三表法分别测量负载对称和不对称两种情况下的三相功率,将数据记录于表4-4中。9.三相负载仍△接,用二表法分别测量负载对称和不对称两种情况下的三相功率,将数据记录于表4-4中。

表4-2 三相电路电压、电流的测量数据表1

表4-3 三相电路电压、电流的测量数据表2

表4-4 三相电路电压、电流的测量数据表3

五、实验注意事项

1.本实验直接用220V的三相交流电源供电,实验中要特别注意人身安全,不可用手直接触摸通电线路的裸露部分,以免触电。

2.每次接线或拆线都应在断电的情况下进行。在带电情况下,改变三相负载时,注意不要碰到通电线路的裸露部分。

3.若功率表指针反偏,只需对调两只电压表笔或反接电流插头。

六、预习思考题

1.掌握图4-1测量相序的原理。

2.仔细阅读实验原理及内容,然后设计出本实验所有电路图,并在实验前画出接线图。

3.三相负载根据什么条件作星形联接或三角形联接。本次实验为什么要将线电压调为220V?

4.分析三相不对称负载作星形联接时,在无中线情况下,当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何?

5.明确二表法测量三相有功功率的原理。

6.明确一表法测量三相对称负载无功功率的原理

7.测量功率时,为什么要将功率表电压线圈和电流线圈的同名端接在一起?

如若不接在一起,是否影响功率的测量?

七、实验报告要求

1.据实验测得的数据,说明三相负载星形联接和三角形联接时,各自的线、相电压及线、相电流之间的关系。

2.根据实验测得的数据和观察的结果,说明三相四线制供电时中线的作用。

3.不对称三相负载三角形联接时,能否正常工作?

4.总结三表法和二表法测量三相有功功率方法的适用性。

5.总结一表法测量三相无功功率方法的适用性。

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

EDA实验指导 基于FPGA的动态扫描电路设计new

FPGA实验指导及记录 实验三基于FPGA的数码管动态扫描电路设计 1.实验目的: (1)掌握FPGA工作的基本原理、FPGA硬件平台的使用; (2)熟悉7段数码管显示译码电路的设计。 (3)掌握数码管动态扫描显示原理及动态扫描电路的设计。 2.实验任务:利用FPGA硬件平台上的6位数码管动态显示计数器输出数据。 3.电路设计 (1)顶层电路 由分频模块fre_div,计数器模块counter100,译码显示模块diaplay构成。分频模块fre_div将可将实验平台晶体振荡器提供的50MHz时钟信号分频,输出500Hz,1KHz及1Hz三种信号备用,conter100模块实现模100计数功能,display模块为数码管动态显示模块,实现计数数字在6位数码管上的动态显示。 (2)分频器模块fre_div 该模块已经设计完成,存放在F盘502文件夹里,使用时请自行拷贝至当前工程文件夹,并按设计需要选择合适的输出。 (3)计数器模块counter100 该计数器模块实现模100计数。此处同学们应掌握数据总线的画法。

(4)译码显示模块display 该模块由counter6模块,dig_select模块,seg_select模块以及decoder模块构成,请同学们自行完成该模块总体设计,当display模块的输入信号scanclk频率为1KHz时,数码管扫描周期为36ms,每次扫描每位数码管显示时长6ms。各子模块设计思路如下。 a)counter6模块 该模块需使用74390设计一个模6的计数器。请在空白处做预设计,画出电路图。 b)dig_select模块 该模块用于选择6位数码管中的某一位显示相应字形。74138为3-8译码器,功能表见附录。

电路设计实验报告

电子技术课程设计 题目: 班级: 姓名: 合作者:

数字电子钟计时系统 一、设计要求 用中、小规模集成电路设计一台能显示时、分、秒的数字电子钟,基本要求如下: 1、采用LED显示累计时间“时”、“分”、“秒”。 2、具有校时功能。 二、设计方案 数字电子钟主要由振荡器、分频器、计数器、译码器、显示器等几部分组成,其整体框图为 其中,秒信号发生器为:

由石英晶体发出32768Hz的振荡信号经过分频器,即CD4060——14级串行二进制计数器/分频器和振荡器,输出2Hz 的振荡信号传入D触发器,经过2分频变为秒信号输出。 校时电路为: 当K1开启时,与非门一端为秒信号另一端为高电位,输出即为秒信号秒计数器正常工作,当K1闭合,秒信号输出总为0,实现秒暂停。 当K2/K3开启时,分信号/时信号输入由秒计数器输出信号及高电平决定,所以输出信号即为分信号/时信号,当K2/K3闭合时,秒信号决定分信号/时信号输出,分信号/时信号输出与秒信号频率一致, 以实现分信号/时信号的加速校时。 秒、分计数器——60进制

首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当计数器的Q1,Q2输出均为1时经过与门电路,输出高电平,作为分 脉冲或时脉冲并同时使两计数器置零。 时计数器——24进制 时脉冲 首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当十位计数器Q1和个位计数器Q2输出均为1时经过与门电路,输出 高电平使两计数器置零。 译码显示电路

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、 4 号板 1 块 4、双踪示波器 1 台

5、万用表 1 块 三、实验原理 检波过程就是一个解调过程,它与调制过程正好相反。检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号就是高频等幅信号,则输出就就是直流电压。这就是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就就是采用这种检波原理。 若输入信号就是调幅波,则输出就就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波与同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采 用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调

电路原理图设计及Hspice实验报告

电子科技大学成都学院 (微电子技术系) 实验报告书 课程名称:电路原理图设计及Hspice 学号: 姓名: 教师: 年06月15日 实验一基本电路图的Hspice仿真 实验时间:同组人员: 一、实验目的 1.学习用Cadence软件画电路图。 2.用Cadence软件导出所需的电路仿真网表。 3.对反相器电路进行仿真,研究该反相器电路的特点。 二、实验仪器设备 Hspice软件、Cadence软件、服务器、电脑 三、实验原理和内容 激励源:直流源、交流小信号源。 瞬态源:正弦、脉冲、指数、分线段性和单频调频源等几种形式。 分析类型:分析类型语句由定义电路分析类型的描述语句和一些控制语句组成,如直流分析(.OP)、交流小信号分析(.AC)、瞬态分析(.TRAN)等分析语句,以及初始状态设置(.IC)、选择项设置(.OPTIONS)等控制语句。这类语句以一个“.”开头,故也称为点语句。其位置可以在标题语句之间的任何地方,习惯上写在电路描述语句之后。 基本原理:(1)当UI=UIL=0V时,UGS1=0,因此V1管截止,而此时|UGS2|> |UTP|,所以V2导通,且导通内阻很低,所以UO=UOH≈UDD,即输出电平. (2)当UI=UIH=UDD时,UGS1=UDD>UTN,V1导通,而UGS2=0<|UTP|,因此V2截止。此时UO=UOL≈0,即输出为低电平。可见,CMOS反相器实现了逻辑非的功能. 四、实验步骤

1.打开Cadence软件,画出CMOS反相器电路图,导出反相器的HSPICE网表文件。 2.修改网表,仿真出图。 3.修改网表,做电路的瞬态仿真,观察输出变化,观察波形,并做说明。 4.对5个首尾连接的反相器组成的振荡器进行波形仿真。 5.分析仿真结果,得出结论。 五、实验数据 输入输出仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos *.tran 200p 20n .dc vin 0 5 1m sweep data=w .print v(1) v(2) .param wp=10u wn=10u .data w wp wn 10u 10u 20u 10u 40u 10u 40u 5u .enddata vcc vcc 0 5 vin in 0 2.5 *pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=wp m2 out in 0 0 nch l=1u w=wn .alter vcc vcc 0 3 .end 图像: 瞬态仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos .tran 200p 20n .print tran v(1) v(2) vcc vcc 0 5 vin in 0 2.5 pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=20u

PWM控制芯片认识及外围电路设计实验汇编

实验三十五 PWM 控制芯片认识及外围电路设计实验 (电力电子学—自动控制理论综合实验) 一、 实验原理 1.PWM 控制 电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM ),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。 PWM 控制的原理可以简单通过图35-1理解。图中,V 1为变换器输出的反馈电压与一个三角波信号V tri 进行比较,比较电路产生的输出电压为固定幅值、宽度随反馈电压的增大而减小的PWM 脉冲方波,如图中阴影部分所示。若将该PWM 方波作为如图35-2所示的直流降压变换器的开关管的驱动信号,当输出电压升高时,输出电压方波宽度变窄,滤波后输出直流电压降低,达到稳定到某一恒定值的目的。 由PWM 控制的原理可知,实现PWM 控制应该具备以下条件: 图35-1 PWM 控制原理 V tri V 1 V 图35-2 直流-直流降压变换电路(Buck 电路) (1) 有三角波或阶梯波这样具有斜坡边的信号,作为调节宽度的调制基础信号;从 图35-1可以知道,三角波的频率就是使图35-2中开关管通断的开关频率。 (2) 有比较器以便将调制基础信号和反馈电压信号进行比较产生PWM 信号;

(3) 对反馈电压幅度的限制门槛电压,以使反馈电压不至于超过三角波最高幅值或 低于三角波最低值。一旦超出其最高值或低于最低值,2个信号没有交点,将出现失控情况; (4) 若同时需要控制多个开关管,尤其是桥式电路的上下桥臂上的一对开关管时, 应具有死区电路。死区即上下桥臂的两个开关管都没有开通脉冲、都不导通的时间,以便待刚关断的开关管经历恢复时间完全关断后,再让另一开关管开通; (5) 有反馈控制环节(即恒定的电压给定、误差放大器及调节器(或校正环节)、 功率放大电路); (6) 按照一定逻辑关系开放脉冲的逻辑控制电路。 按照上述原则,已经有很多集成的PWM 控制芯片面世,在芯片上集成了PWM 控制的许多环节,结合芯片的外围电路,具备了所有的PWM 控制功能。采用集成方式实现PWM 控制,具有很多优越性,不仅成本和体积上具有优势,而且在降低电磁干扰、降低设计难度上也有明显的优点。 本综合实验主要采用比较常用的PWM 集成芯片TL494,下面给出了有关它的介绍以及基本设计原则。其它常用的PWM 芯片如CW3524等,详见本实验附录,或自行查询相关资料,以便完成设计。 2.集成PWM 控制芯片TL494及外围电路介绍 TL494是美国德克萨斯公司研制的PWM 芯片,16端双列直插形式,具有两路输出(从T a 、T b 两个开关管输出)。它将PWM 控制所需要的功能,包括控制器(误差放大器等),都集成到一片芯片上,加上外围电路,组成了比较完善的PWM 控制器。图35-3是其电路功能方框图。其引脚说明及外围电路如下。 (1) 芯片电源 12端接输入工作电压,7端接地。工作电压由于电路的实际情况不同而在一定范围内变化。能工作于较宽的电源电压范围是PWM 控制芯片的一大特点,使它可以方便地应用于各种场合。 CC V 芯片内部还有一个稳压电源,将芯片12端输入的供电电源变换成稳定的5伏直流电压,供内部各电路用,也可供作为控制器(调节器)的标准给定电压,从14端引出。 (2) 输出方式控制端——13端: ① 若13端接地、V 13为低电位时,P = 0,D = 0,E = 0,G 1 = C = G 2,T a 、T b 两路输出相同,如图35-3中所示,即单路输出。若实验电路中只需要驱动一个开关管,则将13点接地用单路输出;若将两路并联可扩大输出容量。 ②若13端接+5V (可接芯片内的稳压直流5V 电源),V 13为高电位时,P = 1, C Q G +=1,C G +=2:

数字电路及设计实验

常用数字仪表的使用 实验内容: 1.参考“仪器操作指南”之“DS1000操作演示”,熟悉示数字波器的使用。 2.测试示波器校正信号如下参数:(请注意该信号测试时将耦合方式设置为直流耦合。 峰峰值(Vpp),最大值(Vmax),最小值(Vmin), 幅值(Vamp),周期(Prd),频率(Freq) 顶端值(Vtop),底端值(Vbase),过冲(Overshoot), 预冲(Preshoot),平均值(Average),均方根值(Vrms),即有效值 上升时间(RiseTime),下降时间(FallTime),正脉宽(+Width), 负脉宽(-Width),正占空比(+Duty),负占空比(-Duty)等参数。 3.TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低 电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V。 请采用函数信号发生器输出一个TTL信号,要求满足如下条件: ①输出高电平为3.5V,低电平为0V的一个方波信号; ②信号频率1000Hz; 在示波器上观测该信号并记录波形数据。

集成逻辑门测试(含4个实验项目) (本实验内容选作) 一、实验目的 (1)深刻理解集成逻辑门主要参数的含义和功能。 (2)熟悉TTL 与非门和CMOS 或非门主要参数的测试方法,并通过功能测试判断器件好坏。 二、实验设备与器件 本实验设备与器件分别是: 实验设备:自制数字实验平台、双踪示波器、直流稳压电源、数字频率计、数字万用表及工具; 实验器件:74LS20两片,CC4001一片,500Ω左右电阻和10k Ω左右电阻各一只。 三、实验项目 1.TTL 与非门逻辑功能测试 按表1-1的要求测74LS20逻辑功能,将测试结果填入与非门功能测试表中(测试F=1、0时,V OH 与V OL 的值)。 2.TTL 与非门直流参数的测试 测试时取电源电压V CC =5V ;注意电流表档次,所选量程应大于器件电参数规范值。 (1)导通电源电流I CCL 。测试条件:输入端均悬空,输出端空载。测试电路按图1-1(a )连接。 (2)低电平输入电流I iL 。测试条件:被测输入端通过电流表接地,其余输入端悬空,输出空载。测试电路按图1-1(b )连接。 (3)高电平输入电流I iH 。测试条件:被测输入端通过电流表接电源(电压V CC ),其余输入端均接地,输出空载。测试电路按图1-1(c )连接。 (4)电压传输特性。测试电路按图1-2连接。按表1-2所列各输入电压值逐点进行测量,各输入电压值通过调节电位器W 取得。将测试结果在表1-2中记录,并根据实测数据,做出电压传输特性曲线。然后,从曲线上读出V OH ,V OL ,V on ,V off 和V T ,并计算V NH ,V NL 等参数。 表1-1 与非门功能测试表

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

通信电路实验报告

第一次实验报告 实验一高频小信号放大器 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 (1)单调谐高频小信号放大器仿真

图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器

(a) (b) 图1.2 双调谐高频小信号放大器

三、实验结果 (1)单调谐高频小信号放大器仿真 1、仿真电路图 2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp ==2.94Mrad/s fp 467kHz 由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路 中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz 3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

A = = 11.08 db v0 4、利用软件中的波特图仪观察通频带,并计算矩形系数。 f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz 矩形系数约为:9.4 5、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输 出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

通频带:446kHz~481kHz 带宽:35kHZ 6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 二次谐波: 加入四次谐波 f 0(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0(mv) 0.012 9 0.0155 0.0404 0.0858 0.2150 1.274 0.0526 0.0301 0.0216 0.0173 0.0144 0.0126 A V (db) -28.8 9 -27.38 -19.06 -12.60 -4.894 11.43 -16.46 -21.36 -24.22 -26.22 -27.73 -28.93

数字电路与系统设计实验报告

数字电路与系统设计实验报告 学院: 班级: 姓名:

实验一基本逻辑门电路实验 一、实验目的 1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。 2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。 二、实验设备 1、二输入四与非门74LS00 1片 2、二输入四或非门74LS02 1片 3、二输入四异或门74LS86 1片 三、实验内容 1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。 2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。 3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。 四、实验方法 1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。 2、用实验台的电平开关输出作为被测器件的输入。拨动开关,则改变器件的输入电平。 3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。 五、实验过程 1、测试74LS00逻辑关系 (1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯) (2)真值表 2、测试74LS02逻辑关系

(1)接线图 (2)真值表 3、测试74LS86逻辑关系接线图 (1)接线图 (2)真值表 六、实验结论与体会 实验是要求实践能力的。在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。实在检查不出来,可以请老师和同学帮忙。

实验二逻辑门控制电路实验 一、实验目的 1、掌握基本逻辑门的功能及验证方法。 2、掌握逻辑门多余输入端的处理方法。 3、学习分析基本的逻辑门电路的工作原理。 二、实验设备 1、基于CPLD的数字电路实验系统。 2、计算机。 三、实验内容 1、用与非门和异或门安装给定的电路。 2、检验它的真值表,说明其功能。 四、实验方法 按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。 五、实验过程 1、用3个三输入端与非门IC芯片74LS10安装如图所示的电路。 从实验台上的时钟脉冲输出端口选择两个不同频率(约7khz和14khz)的脉冲信号分别加到X0和X1端。对应B和S端数字信号的所有可能组合,观察并画出输出端的波形,并由此得出S和B(及/B)的功能。 2、实验得真值表

实验2指导书 组合逻辑电路的设计

组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路设计的一般概念和方法。 2.掌握集成组合逻辑电路的使用和设计方法。 3.学习EDA软件Quartus II的基本使用方法。 二、实验预习 阅读《电工电子实验教程》第6.3节中组合逻辑电路的内容。 打印实验指导书,预习实验的内容。 查阅相关芯片的数据手册,了解芯片的逻辑功能、引脚排列及外形结构,完成实验电路设计,画出原理电路,标明芯片型号和引脚。自拟实验步骤和数据表格。 三、实验设备与仪器 数字电路实验箱。 四、实验原理 使用中规模的集成电路设计组合逻辑电路的一般方法为: 第一步:从题目中完成逻辑抽象。把实际问题转换为可行的逻辑设计要求。 第二步:根据逻辑设计的要求建立输入、输出变量,并列出真值表。 第三步:用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。不一定要最简形式,应以所要使用的中规模集成芯片的逻辑功能为依据,把要产生的逻辑函数变换为与器件的逻辑函数式类似的形式。对于变换后的逻辑函数式与所选器件的逻辑函数式差别非常大的应考虑更换元器件类型。 第四步:根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。 第五步:用实验来验证设计的正确性。 设计组合逻辑电路的一般步骤如图1所示。 图1 组合逻辑电路设计流程图

五、实验内容 题目A:4人表决电路 设计一个4人表决电路,多数通过(即当四个输入端中有三个或四个为“1”时,输出端才能为“1”),用发光二极管显示表决结果,通过点亮,否决不亮。(要求选用与非门电路实现,74LS10和/或74LS20) 题目B:大月指示器电路 设计一个大月(该月份天数为31)指示器,四个二进制输入变量表示月份,发光二极管表示输出,若该月份月份为大月,则发光二极管亮,其它情况发光二极管不亮(注意任意项的处理,要求使用74LS00和74LS151)。 六、实验要求 从实验内容所列的题目中选择一个题目进行设计,使用中规模集成电路芯片完成设计,具体方案不限。要求确保电路可以完成题目功能,并使用尽可能少的器件。 列出真值表,写出逻辑表达式并根据设计要求进行化简(化简形式根据采用的器件逻辑功能自行决定),全部用门电路实现。 在数字实验系统中完成实际操作,利用实验箱上已连接好的开关电路获得所需的逻辑电平输入,LED指示灯电路完成结果显示。 自行设计测试表格,完成实际电路的测试。 实验室可提供的芯片有:74LS00、74LS10、74LS20、74LS151。 七、实验报告(本部分请附加空白页手写完成) 在实验报告中写出完整的设计思路和设计过程,越详细报告分数起评点越高,内容应包括建立逻辑变量、列真值表、逻辑化简、逻辑表达式变换、电路图设计等。 用要求的器件设计出电路,画出电路图。 列出元器件清单。 写出实验结果及分析。 写出实验体会总结。 有能力的同学可画出仿真电路图和仿真结果。

实验一组合逻辑电路设计

实验一组合逻辑电路设计 一、实验目的 1、熟悉应用中小规模数字集成电路的工程技术; 2、掌握组合逻辑电路的设计方法。 二、设计步骤 对于某些对象的启动/停止或者打开/闭合等一类二值控制问题(电气工程称之为乒乓控制),往往可以抽象归纳成为逻辑问题。使用数字逻辑电路实现解决这一逻辑问题的电路系统,即可实现逻辑控制。使用小规模(SSI)数字集成电路进行组合逻辑电路设计的步骤是: 1、分析实际问题进行逻辑抽象:定义输入或输出变量并进行逻辑赋值,即确定True (1)或False (0)表示的含义。在此基础上列出逻辑真值表。 2、由真值表写出逻辑函数表达式并化简为最简式。 3、按照化简后的表达式画出逻辑函数原理图。 为了降低电路成本、便于系统安装和未来维修,有经验的工程师常常设法用尽可能少的数字集成电路种类和芯片数目来实现设计。因此2,3两步骤应统筹考虑。 4、查阅集成电路手册确定电路中所使用的芯片型号和具体的引脚连 接关系。 5、正确地焊接(连接)电路,在确认无误后上电试验,测试电路的逻辑关系是否实现真值表(解决逻辑问题)。当然,这需要解决全部有关逻辑变量的状态设定和输出逻辑状态的测试问题。值得说明,一种专门测试逻辑电平的常用工具是“逻辑笔”。 三、设计要求 请设计组合逻辑电路解决如下逻辑问题: 1、某竞技运动项目设主裁判一名,副裁判两名。比赛规则是:主裁判和至少一名副裁判判定某运动员胜利,则该运动员取胜。设计实现电子裁判机。 2、某储液罐设有大小各一个补液泵和高、中、低液位传感器。三个传感器都在页面低于其监测的位置时发出信号,否则没有信号输出。由于结构上的原因,高位传感器不会出故障;其余两个传感器在液面高于其监测位置时决不会产生错误的信号输出,但却可能在故障时发不出信号来。设计电路系统实现如下控制要求:液面达到或超过高位时补液泵全停;液面低于高位而高于中位时,小泵启动工作,大泵停止;液面低于中位而高于低位时,大泵启动工作,小泵停止;液面低于低位时,大小两泵同时启动工作。在实现上述控制要求的同时给出传感器发生故障的报警信号。

高频设计性实验及考查任务书

通信电路实验设计性实验及考查任务书 题目一、集成模拟乘法器在通信中的应用设计 1.设计目的:掌握模拟乘法器的功能及应用;综合运用射频通信电路的理论知识,加 强电路设计、仿真和调试能力。 2.设计任务:用集成模拟乘法器MC1496设计其应用电路。 3.设计要求: (1) 进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)单音普通调幅波,调制度可调;双边带调幅波。 b)混频功能 c)二倍频。 d)自行设计其他功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、 频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,测出试验数据和指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

通信电路实验设计性实验及考查任务书 题目二 .调幅系统实验 1. 设计目的:掌握高频系统设计的概念,掌握调幅发射接收和整机组成原理,加强电路 设计和仿真能力,掌握系统联调的方法,培养解决实际设计问题的能力 1. 任务:设计一调幅发射接收系统 2. 设计要求 (1)进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)自行设计产生载波,发射载波频率任意 b)设计调幅发射和接收模块,并联合仿真。 c)调制信号可以自行产生,也可以用音频信号,, d)发射功率最好在50mW以内。 e)自行设计仿真其它功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,实现发射与接收联调,测出试验数据和 指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方 案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

电子电工综合实验报告

电工电子综合试验——数字计时器实验报告 学号: 姓名: 学院: 专业:通信工程

目录 一,实验目的及要求 二,设计容简介 四,电路工作原理简述 三,设计电路总体原理框图五,各单元电路原理及逻辑设计 1. 脉冲发生电路 2. 计时电路和显示电路 3. 报时电路 4. 较分电路 六引脚图及真值表

七收获体会及建议 八设计参考资料 一,实验目的及要求 1,掌握常见集成电路实现单元电路的设计过程。 2,了解各单元再次组合新单元的方法。 3,应用所学知识设计可以实现00’00”—59’59”的可整点报时的数字计时器 二,设计容简介: 1,设计实现信号源的单元电路。( KHz F Hz F Hz F Hz F1 4 , 500 3 , 2 2 , 1 1≈ ≈ ≈ ≈ ) 2,设计实现00’00”—59’59”计时器单元电路。 3,设计实现快速校分单元电路。含防抖动电路(开关k1,频率F2,校分时秒计时器停止)。4,加入任意时刻复位单元电路(开关K2)。 5,设计实现整点报时单元电路(产生59’53”,59’55”,59’57”,三低音频率F3,59’59”一高音频率F4)。 三,设计电路总体原理框图 设计框图: 四,电路工作原理简述 电路由振荡器电路、分频器、计数器、译码器、显示器、校时电路和报时电路组成。振荡器产生的脉冲信号经过十二级分频器作为秒脉冲,秒脉冲送入计数器,计数器通过“时”、“分”、“秒”译码器显示时间,将分秒计时器分开,加入快速校分电路与防抖动电路,并控制秒计

时器停止工作。较分电路实现对“分”上数值的控制,而不受秒十位是否进位的影响,在60进制控制上加入任意时刻复位电路。报时电路通过1kHz或2kHz的信号和要报时的时间信号进行“与”的运算来实现的顶点报时的,通过两个不同频率的脉冲信号使得在不同的时间发出不同的声响。 五,各单元电路原理及逻辑设计 (1)脉冲发生电路 脉冲信号发生电路是危机时期提供技术脉冲,此次实验要求产生1HZ的脉冲信号。用NE555集成电路和CD4040构成。555定时器用来构成多谐振荡器,CD4040产生几种频率为后面电路使用。 实验电路如下(自激多谐振荡电路,周期矩形波发生电路) 震荡周期T=0.695(R1+2*R2)C,其中R1=1KΩ,R2=3KΩ,C=0.047uf,计算T=228.67*10-6 s ,f=4373.4Hz产生的脉冲频率为4KHz,脉冲信号发生电路 和CD4040连接成如图所示的电路,则从Q12输出端可以得到212分频信号F1,即1Hz的信号,Q11可以得到F2即2Hz的信号提供给D触发器CP和校分信号,Q3输出分频信号500Hz,Q2输出1KHz提供给报时电路 二,秒计时电路 应用CD4518及74LS00可以设计该电路,CD4518是异步清零,所以在进行分和秒十位计数的时候,需要进行清零,而在个位计数的时候不需要清零。所以Cr2=2QcQb,Cr4=4Qc4QB。当秒个位为1001时,秒十位要实现进位,此时需要EN2=1Qd,同理分的个位时钟EN3=2Qc,分十位时钟端EN4=3Qd。因此,六十进制计数器逻辑电路如下图所示

基本运算电路设计实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的和要求 1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2. 掌握基本运算电路的调试方法。 3. 学习集成运算放大器的实际应用。 二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路: 1212 12121 2 =( ) f o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+ 当R1=R2时, 121 () f o I I R u u u R =- +,输出电压与Ui1,Ui2之和成正 比,其比例系数为1f R R ,电阻R ’=R1//R2//Rf 。 2、减法器(差分放大电路) 专业:机械电子工程 姓名:许世飞 学号: 日期: 桌号:

11o I f u u u u R R ----= 由于虚短特性有:2 3 23 321231 1233211 11,() I f f o I I f f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+== ?+?? =+ - ?+??===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。 3、由积分电路将方波转化为三角波: 电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 4 、同相比例计算电压运算特性:

相关主题
文本预览
相关文档 最新文档