当前位置:文档之家› 天然气脱水原理及工艺流程

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程
天然气脱水原理及工艺流程

天然气脱水原理及工艺流程

一、天然气水合物

1、H2O存在的危害

(1)减少商品天然气管道的输送能力;

(2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备;

(3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断;

(4)作为燃料使用,降低天然气的热值。

2、什么是天然气水合物

天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。最大的危害是堵塞管道。

(1)物理性质

①白色固体结晶,外观类似压实的冰雪;

②轻于水、重于液烃,相对密度为0.960.98;

③半稳定性,在大气环境下很快分解。

(2)结构

采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:

I、II、H型。

3、天然气水合物生成条件

具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分

天然气中水的存在:液态水是生成水化物的必要条件。天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。

3、天然气水合物生成条件

足够低的温度:低温是形成水化物的重要条件。气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。

足够高的压力:水化物生成的温度随压力升高而升高,随压力降低而降低,也就是压力越高易生成水化物。

其它辅助条件:如气体流速和流向的突变产生的扰动、压力的波动和晶种的存在等。

4、防止水合物生成的方法

破坏生成水合物的必要条件即可防止水合物的生成。

1)长距离输气管线水合物的预防措施

对于长距离输气管线要防止水合物的生成可以采用如下方法:①天然气脱水:降低气体内水含量和露点,是防止水合物生成的最有效和最彻底的方法。

②提高输送温度:使气体温度高于水露点而不产生液态水。

③注入水合物抑制剂:抑制剂的种类很多,有甲醇、乙二醇、二甘醇、三甘醇、氯化钙水溶液等,由于使用乙二醇和二甘醇时甘醇的损失较大,而三甘醇以它较大的露点降、技术上的可靠性和经济上的合理性而在天然气脱水中普遍使用。

二、分子筛脱水

分子筛法是一种深度脱水的方法,它的露点降可达120℃以上,即脱水后的干天然气露点甚至可降到-100 ℃以下;所以常用于低温冷凝(NGL)回收及生产液化天然气(LNG)中的脱水工序;此外,生产供汽车作燃料的压缩天然气也需用分子筛脱水。

分子筛除用于脱水外,还可用于脱除天然气中的微量H2S及有机硫化合物,甚至可同时脱硫脱水。

除分子筛外,其他的一些固体吸附剂如活性氧化铝及硅胶等在天然气脱水中也有应用。

1、分子筛的结构

分子筛是一种人工合成的碱金属或碱土金属的硅铝酸盐晶体。分子筛作为一种结晶硅铝酸盐,其骨架最基本的结构是奎氧(SiO4)和铝氧(AlO4)四面体;它们按一定的方式通过公用顶点氧联结在一起,形成首尾相接的环状,具有许多排列整齐的晶穴、晶孔和孔道。分子筛中阳离子可被其它阳离子所交换,水可通过加热脱去,

硅(铝)氧骨架也可在一定条件下发生变化。其分子式的通式为:

用于天然气脱水及脱硫的主要是A型及X型分子。NaA型分子筛的有效孔径为0.4nm,即4A,所以NaA型分子筛又叫4A型分子筛。

2、分子筛的吸附性能(选择性吸附)

分子筛是具有均一孔径的吸附剂,当被吸附分子的直径小于分子筛孔径时,它才能进入孔内而被吸附,分子“筛”因而得名,所以,分子筛是具有选择性的吸附剂,几种分子筛能够吸附与不能吸附的分子见表。

当用于富天然气脱水时,为防止乙烷以上烃类被吸,可使用3A 分子筛;如用于干天然气以及用于脱硫则需要使用4A乃至更大孔径的分子筛。

分子筛是具有非常大的内表面积,约为600~1000m2/g,其表面由于离子晶格的特点具有高度的极性,因而对极性分子和可极化的分子具有较强的吸附力及较高的吸附容量。天然气中的水、含硫化合物、二氧化碳就属于极性分子一类,因此,分子筛对它们具有较强的吸附力,分子筛对一些物质的吸附强度顺序如下:

H2O>NH3>CH3OH>CH3SH>H2S>COS>CO2>N2>CH4

可见,水最易为分子筛所吸附,而CH4则不易被吸附。

作为脱水的吸附剂,分子筛虽然在高的相对温度下的平衡湿容量低于活性氧化铝和硅胶,但在低的相对温度下却大大高于它们。

随温度升高,所有吸附湿容量均显著下降,但分子筛在较高的吸附温度下仍然有较高的湿容量。

3、分子筛脱水工艺

分子筛脱水使用固定床吸附器,因此装置至少应有两台吸附器,一个负责吸附脱水阶段,另一个则负责再生及冷却阶段。

当用分子筛用于天然气脱水时,分子筛对水有最高的吸附强度,就水分而言,在吸附过程中分子筛床层存在饱和段、吸附段及未吸附段三个区域;未吸附段虽未吸附水,但却可能吸附了酸气或烃类组分。随时间增长,饱和段及吸附段不断向前延伸,当吸附段前端抵达出口处时,出口气中水含量达到转效点而迅速上升,此时继续吸附操作已

不能达到所要求的脱水深度而应切换再生。

分子筛的再生均使用加热再生,以脱水后的一部分干气或进料湿气加热后进入吸附器赶出分子筛内的水分,再生气可与进料湿天然气混合进入吸附器脱水。便在脱水深度要求高的下应使用已脱水的干气作为再生气。再生结束后冷却至常温,然后转入一下个吸附阶段。

4、分子筛吸附脱水工艺的其它问题

(1)吸附剂的再生

吸附剂的再生是为了除去吸附质,恢复吸附剂活性。吸附剂的再生过程就是吸附剂的脱附过程。工业上常用的再生方法是升温脱附,因为温度愈高,湿容量愈小。

通常是用脱过水的天然气作为再生气体,将其加热到一定高温,从塔底进入,自下而上穿过整个床层,利用再生气所具有的高温使吸附剂在吸附过程中所吸附的水分汽化,并被再生气携带从顶部出塔。

脱附完成后,吸附床层的温度很高,不利于吸附。因此需要用冷干气进行冷却,这一过程称为冷吹。冷却后的塔方可进行吸附操作。

再生气和冷吹气都是从塔底进入,这样可以确保在吸附操作中未吸附脱水的床层区域在再生操作中没有含水气流过,使吸附床层底部的吸附剂得到完全再生。

(2)吸附剂的内部结构

支撑隔栅:支撑吸附剂和瓷球重量。

瓷球:使气流比较均匀分布,再生时顶部瓷球还有压住吸附剂、防止吸附剂被吹跑的作用。

支撑隔栅上的丝网:防止瓷球漏下。

吸附剂床层上、下丝网:防止吸附剂漏出。

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

天然气集输基本概念

天然气集输基本概念 一、天然气的组成 天然气是由烃类和非烃类组成的复杂混合物。大多数天然气的主要成分是气体烃类,此外还含有少量非烃类气体。天然气中的烃类基本上是烷烃,通常以甲烷为主,还有乙烷、丙烷、丁烷、戊烷以及少量的己烷及其以上烃类(C6+)。在C6+中有时还含有极少量的环烷烃(如甲基环戊烷、环己烷)及芳香烃(如苯、甲苯)。天然气中的非烃类气体,一般为少量的N2、O2、H2、CO2、H2S及水蒸气,以及微量的惰性气体如He、Ar、Xe等。 天然气中的水蒸气一般呈饱和状态。天然气的组成并非固定不变,不仅不同地区气藏中采出的天然气组成差别很大,甚至同一气藏的不同生产井采出的天然气组成也会有所区别。 世界上也有少数的天然气中含有大量的非烃类气体,甚至其主要成分是非烃类气体。例如,我国河北省赵兰庄、加拿大艾伯塔省(Bearberry)及美国南得克萨斯气田的天然气中,H2S 含量可高达90%以上。我国广东省沙头圩气田天然气中CO2含量有的高达99.6%。美国北达科他州内松气田天然气中氮含量可高达97.4%,亚利桑那州平塔丘气田天然气中He 含量高达9.8%。 二、天然气集输的定义 《油气集输设计规范》(GB50350)定义,“油气集输”为“在油气田内,将油、气井采出的原油和天然气汇集、处理和输送的全过程”。这是广义的释义。本书所描述的天然气集输系统则是狭义的,只包括气田内部天然气的汇集,即只含气田内部的井场、集气站、增压站、阀室、清管站、集气总站和集输管网等由井口至处理厂(含净化厂,下同)之间的系统。 天然气集输在很多其他书籍中也常常被称为矿场集输天然气。 三、天然气集输系统的构成 1.集输管网 天然气集输管网是对气田或一定产气区域内,由气井井15到集气站的采气管道及由集气站、单井站到天然气处理厂之间的原料天然气输送管道所构成的网状管路系统的统称,是天然气地面生产过程中必不可少的生产设施。其结构形式与气井的分布状况、采用的集输工艺技术、气田所在地的地形地貌和交通条件、产气区与处理厂之间的相对位置关系等因素有关,但所有的集输管网都是密闭而统一的连续流动管路系统,其使用功能上是一致的。 2.集输站场 集输站场是为了满足天然气集输而定点设置的专用生产场所。按使用功能的不同,可分为井场、集气站(含单井站)、增压站、阀室、清管站和集气总站等。站场的种类、数量、布置以及站内的生产工艺流程和设备配置等,与天然气的气质条件、气井的分布状况和采用的集输工艺有关。 3.自动控制系统 由于集输系统生产场所高度分散而又同步运行,工作参数紧密相关,任何一个部位的工作异常都会对其他部分产生影响。天然气特有的物性、苛刻的集输工作条件又使整个生产过程面临很大的安全风险。因此,对生产安全和各生产过程问的工作协调一致性有很高的要求。 只有具备统一的、贯穿集输全过程的生产自动控制和信息传输系统,能够对各生产过程和它们之间的工作关系做全面的实时监控,才能保证集输生产在安全和各部分间协调一致的情况下运行,并提高生产管理工作的水平和减少生产操作人员。 对集输过程的监视、控制是在连续采集、传递、储存和加工处理各种生产数据的基础上进行的。适用于对分散进行而又彼此相关的工业生产过程做自动控制的监视控制和数据采集(SCA—DA)技术,已在天然气集输系统中得到了广泛应用。 4.其他辅助配套系统

某分子筛吸附脱水工艺设计-画流程图和平面布置图

重庆科技学院 课程设计报告 院(系): 石油与天然气工程学院专业班级:油气储运工程学生姓名:美女学号: 22222222 设计地点(单位)石油与安全科技大楼K713 设计题目:某分子筛吸附脱水工艺设计 —画流程图和平面布置图 完成日期: 2014 年 6月 19 日 指导教师评语: 成绩(五级记分制): 指导教师(签字):

引言 中国天然气生产主要经历了两个阶段:第一阶段(1949-1995年)为起步阶段,天然气年产量由0.112亿立方米增至174亿立方米,年均增长仅3.8亿立方米;第二阶段(1995-2009年)为快速发展阶段,天然气年产量由174亿立方米增长到841亿立方米,期间累计增长量是1995年前的近4倍,年均增长高达47.6亿立方米。中国天然气产量开始高速增长始于2004年,之前的同比增长率大多不超过10%,而2004年之后,以年均约18%的增速增长。 权威机构分析,天然气将是未来世界一次能源中发展最快的一种。因此,提高天然气的质量是刻不容缓的事情。其中天然气脱水是提升天然气的质量一个重要环节。 天然气的脱水方法多种多样,按其原理可归纳为低温冷凝法、吸收脱水法和吸附脱水法三种。吸附法脱水由于其具有高的脱水深度、装置简单、占地面积小等优点,在天然气深度脱水、深冷液化和海上平台等方面居于不可动摇的地位。

目录 引言 ................................................................... I 摘要 (1) 1基本设计 (2) 1.1 设计原则 (2) 1.2气质工况及处理规模 (2) 2分子筛脱水工艺流程 (3) 2.1分子筛的选择 (3) 2.2流程选择 (3) 2.3再生方法选择 (5) 2.4工艺参数优选 (6) 2.5工艺流程图见附录一 (6) 2.6分子筛脱水工艺流程介绍 (6) 2.7注意事项 (7) 3平面布置图 (8) 3.1站面平面布置基本要求 (8) 3.2设备平面布置图见附录二 (8) 4总结 (10) 参考文献 (11) 附录一 (12) 附录二 (13)

MDEA天然气脱硫工艺流程

《仪陇天然气脱硫》项目书 目录 1总论 (3) 1.1项目名称、建设单位、企业性质 (3) 1.2编制依据 (3) 1.3项目背景和项目建设的必要性 (3) 1、4设计范围 (5) 1、5编制原则 (5) 1.6遵循的主要标准、规范 (8) 1.7 工艺路线 (8) 2 基础数据 (8) 2.1原料气和产品 (8) 2.2 建设规模 (9) 2.3 工艺流程简介 (9) 2.3.1醇胺法脱硫原则工艺流程: (9) 2.3.2直流法硫磺回收工艺流程: (10) 3 脱硫装置 (11) 3.1 脱硫工艺方法选择 (11) 3.1.1 脱硫的方法 (11) 3.1.2醇胺法脱硫的基本原理 (12) 3.2 常用醇胺溶液性能比较 (13) 3.1.2.1几种方法性质比较 (14) 3.2醇胺法脱硫的基本原理 (17) 3.3主要工艺设备 (18) 3.3.1主要设备作用 (18) 3.3.2运行参数 (19) 3.3.3操作要点 (20) 3.4乙醇胺降解产物的生成及其回收 (21) 3.5脱硫的开、停车及正常操作 (22) 3.5.1乙醇胺溶液脱硫的开车 (22) 3.5.2保证乙醇胺溶液脱硫的正常操作 (22) 3.6胺法的一般操作问题 (23) 3.6.1胺法存在的一般操作问题 (23) 3.6.2操作要点 (24) 3.7选择性脱硫工艺的发展 (25) 4 节能 (25) 4.1装置能耗 (25) 装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。 (25)

4.2节能措施 (25) 5 环境保护 (26) 5.1建设地区的环境现状 (26) 5.2、主要污染源和污染物 (26) 5.3、污染控制 (26) 6 物料衡算与热量衡算 (28) 6.1天然气的处理量 (28) 7.天然气脱硫工艺主要设备的计算 (33) 7.1MDEA吸收塔的工艺设计 (33) 7.1.1选型 (33) 7.1.2塔板数 (33) 7.1.3塔径 (34) 7.1.4堰及降液管 (36) 7.1.5浮阀计算 (37) 7.1.6 塔板压降 (37) 7.1.7塔附件设计 (39) 7.1.8塔体总高度的设计 (40) 7.2解吸塔 (41) 7.2.1 计算依据 (41) 7.2.2塔板数的确定 (41) 7.2.3解吸塔的工艺条件及有关物性的计算 (42) 7.2.4解吸塔的塔体工艺尺寸计算 (43) 8参数校核 (44) 8.1浮阀塔的流体力学校核 (44) 8.1.1溢流液泛的校核 (44) 8.1.2液泛校核 (44) 8.1.3液沫夹带校核 (45) 8.2塔板负荷性能计算 (45) 8.2.1漏液线(气相负荷下限线) (45) 8.2.2 过量雾沫夹带线 (45) 8.2.3 液相负荷下限 (46) 8.2.4 液相负荷上限 (46) 8.2.5 液泛线 (46) 9 附属设备及主要附件的选型和计算 (47) 10.心得体会 (49) 11.参考文献 (50)

脱水蔬菜加工生产项目建议书

脱水蔬菜加工生产项目建议书 一、总论 (一)项目名称 脱水蔬菜加工生产项目 (二)项目单位概况 四川眉山眉州食品加工厂建成后,确定生产莲花白和火葱、南瓜和竹笋四个脱水蔬菜品种,以后根据市场需求变化进行产品结构调整。生产能力5000吨,其中:莲花白脱水蔬菜2800吨/年,火葱脱水蔬菜1200吨/年,南瓜和竹笋1000吨/年。产品主要销往日本、香港和台湾。 (三)项目拟建地点 建设厂址选在永寿镇,该镇是小城镇建设示范镇。该镇在解决建设用地、发展蔬菜基地、水源、电力等条件上有很好的优势,一是党政重视,发展环境极为宽松,二是利用原已办的眉州食品厂闲臵房进行建设,可节省投资20%—30%。 (四)项目建设内容与规模 项目总投资10079万元,其中固定资产投资投资5659万元;项目建成正常经营后,每年可生产出口脱水蔬菜5000吨,以初期4000吨脱水莲花白及火葱两个品种计算,实现收入8400万元,实现税金1024万元,实现利润1200万元,带动农民增收4000万元。 (五)项目建设年限

一年 二、项目建设的必要性和条件 (一)项目建设的必要性分析 1、是发展特色农业,推进农业现代化的需要。 永寿镇是个人多土地少的农业大镇,农业在永寿国民经济中所占的份额很大,但永寿农业总体生产水平较低,农业内部结构不合理,基本是粮猪型传统农业结构,配合油料、蔬菜的种植模式,高效农业所占的比重很小。目前永寿镇的蔬菜正由传统种植过度到规模生产,还未将其当作新兴产业列入国民经济发展计划中去,仅仅依靠蔬菜生产者自发地小农经济地发展一些精菜、细菜,没有一个档次高、规模大的蔬菜生产基地。 2、是立足解决“三农”问题,推进农业和农村经济结构调整,拓展农民增收途径的需要。 “农业、农村、农民”问题关系全局,影响重大,加快农业和农村经济发展,促进农民增收致富,对实现永寿镇国民经济和社会发展的战略目标具有十分重要的意义。 国内蔬菜生产发达地区实践证明,无公害蔬菜是一个效益好,回报率高的现代化农业是现代农业中调整农业产业结构的朝阳产业之一。是当今高效农业的重要组成部分,也是目前世界各国农业中唯一不受农产品配额限制的产业。永寿本地的蔬菜生产处于初具规模阶段,生产方式比较落后,管理也较粗放,集约化经营水平低,但生产实践也取得了较传统农业更高的经济效益。所以,通过无公害蔬菜规模性生产可以进一步促进农村经济的发

热风干燥脱水蔬菜加工的工艺流程和方法

宿迁市中艺蔬果有限公司主要生产咸菜笋丝、咸菜海鲜、咸菜鸡汁、咸菜排骨、咸菜五香、咸菜海带等几十种系列产品 1、原料挑选选择具有丰富肉质的蔬菜品种,脱水前应严格选优去劣,剔除有病虫、腐烂、干瘪部分。以八成成熟度为宜,过熟或不熟的亦应挑出,除瓜类去籽瓤外,其他类型蔬菜可用清水冲洗干净,然后放在阴凉处晾干,但不宜在阳光下曝晒。 2、切削、烫漂将洗干净的原料根据产品要求分别切成片、丝、条等形状。预煮时,因原料不同而异,易煮透的放沸水中焯熟,不易煮透的放沸水(水温一般在150℃以上)中略煮片刻,一般烫漂时间为2~4分钟。叶菜类最好不烫漂处理。 3、冷却、沥水预煮处理后的蔬菜应立即进行冷却(一般采用冷水冲淋),使其迅速降至常温。冷却后,为缩短烘干时间,可用离心机甩水,也可用简易手工方法压沥,待水沥尽后,就可摊开稍加凉晒,以备装盘烘烤。 4、烘干应根据不同品种确定不同的温度、时间、色泽及烘干时的含水率。烘干一般在烘房内进行。烘房大致有三种:第一种简易烘房,采用逆流鼓风干燥;第二种是用二层双隧道、顺逆流相结合的烘房;第三种是厢式不锈钢热风烘干机,烘干温度范围为65℃—85℃,分不同温度干燥,逐步降温。采用第一、第二种烘房时,将蔬菜均匀地摊放在盘内,然后放到预先设好的烘架上,保持室温50℃左右,同时要不断翻动,使其加快干燥,一般烘干时间为5小时左右。 5、分检、包装脱水蔬菜经检验达到食品卫生法要求,即可分装在塑料袋内,并进行密封、装箱,然后上市。 宿迁市中艺蔬果有限公司位于泗阳县王集工业园区,创于2012年9月,占地40亩,总建筑面积10000平方米,拥有脱水生产线和净菜加工生产线,现有技术人员10人,有70多名员工,,是集种植,生产,销售为一体的现代化农业龙头企业。主要生产咸菜笋丝、咸菜海鲜、咸菜鸡汁、咸菜排骨、咸菜五香、咸菜海带等几十种系列产品,拥有1000多亩蔬菜种植基地,产品畅销全国各地,公司本着诚信筑就生命,绿色打造健康,的理念,高标准,高规格,高档次要求自我,将公司打造成高标准农产品种植加工基地。 宿迁市中艺蔬果有限公司主要生产咸菜笋丝、咸菜海鲜、咸菜鸡汁、咸菜排骨、咸菜五香、咸菜海带等几十种系列产品

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

分子筛更换方案

涠洲作业区技能竞赛操作工工艺方案试题 一、涠洲终端轻烃回收系统工艺流程介绍 来自原油处理系统的生产分离器、电脱水罐、原油稳定罐和稳定塔的未凝气经脱硫厂脱出硫化氢后 经过中压机一级进口分离器V-B01分离出未凝气中所含的液体,液体排到含油污水处理系统处理,气体 进入压缩机C-B02经一级增压和水冷器HE-B03冷却后,天然气中的部分重烃就在二级进口分离器V-B04中分离出来,气体再经过二级压缩和水冷器HE-B06冷却后,在二级出口分离器V-B07中全部C5以上重烃以及部分C3和C4组分都被冷凝下来。出口分离器V-B07分离出来的气体进入脱水单元与海管气会合。二级进口分离器V-B04A/B和二级出口分离器V-B07这三个分离器中分离出来的重烃经过重烃预热器HE-B08加热到60O C后在重烃闪蒸罐V-B09中闪蒸,然后用进料泵将闪蒸后的重烃打到分馏单元的脱丁烷塔进行处理。 海上油田来的天然气经8”海管上岸后进入收球器PR-B29和捕集器V-B30A,在捕集器中分离出凝析液,凝析液排到原油处理系统进行处理。从捕集器出来的天然气进入预分离器V-B31进一步脱出天然气 中的液体和水分,然后进入分子筛V-B32A/B脱水,再经粉尘过滤器FT-B33过滤出天然气中的杂质,天然气被送到冷分离系统。分子筛有两个,一个脱水,一个再生,脱水时天然气从顶部进底部出,再生时再 生气从底部进顶部出。两个分子筛交替进行脱水和再生。从粉尘过滤器出来的一小股天然气 (2600m3/h)经过再生气加热炉HE-B36升温到300O C后作为再生气对分子筛进行再生,再生气从分子筛底部进顶部出,饱含水蒸气的再生气经水冷器HE-B34冷却后进入再生气分离器V-B35脱出水分后再生气送到配气站作为透平机组的用气。 经脱水干燥后的天然气分两股进入预冷冷箱HE-B37和HE-B38,进入HE-B38的天然气与脱乙烷塔出来的乙烷干气换热,把乙烷气体加热到20O C,同时天然气本身得到预冷,进入HE-B38的天然气流量以满足乙烷干气的加热温度要求,用温度控制器TI-B381来控制HE-B38的流量,其余的大部分天然气全部进入HE-B37与膨胀机出来的干气换冷,这两股气体会合,温度被冷却到4O C,一起进入丙烷蒸发器HE- B39,经丙烷制冷系统进行制冷,温度冷却到-34O C后大部分C3和C4以上组分被冷凝下来,在一级低温分离器V-B40中进行气液分离,液体进入脱乙烷塔,气体再进入二级低温分离器HE-B41与膨胀机出来的干气换冷,进一步冷却到-61O C后全部C3以上组分及大部分C2组分都被冷凝下来,在二级低温分离器V-B42中进行气液分离,分离出来的液体进入脱乙烷塔,气体经膨胀压缩机的膨胀端节流膨胀做功,温度进一 步下降,低温甲烷干气为二级换热器和一级换热器提供冷量换冷后进入膨胀压缩机的压缩机端增压至 0.5MPa后送到配气站。 从冷分离单元的一级和二级低温分离器中来的液体分两股进入脱乙烷塔,再脱乙烷塔中分馏出乙烷干气,乙烷干气经板式换热器HE-B38与原料气换热把温度升高到20O C作为再生气和透平用气。脱出乙 烷干气后的液体进入脱丁烷塔进一步处理。 脱乙烷塔为填料塔,塔内分为4段,内装填料,有两个进料口,塔底为收液段,塔底液体大部分进入塔底重沸器HE-B47,在重沸器中被热介质油加热,加热后形成气液混合体进入塔底,这样形成对流流动,液体不断被加热,轻组分被蒸发出去向上流动,为脱乙烷塔提供塔底操作温度,在塔中液体向下流 过逐步被加热,产生的气体向上流向塔顶,使轻组分被蒸发出来,通过气体向上,液体向下,在填料层 中进行逆向传质,达到气液分离的目的。脱乙烷塔保证一定的液位,以保证热虹吸式重沸器能够形成对 流既可。来自原油稳定塔和中压单元的重烃闪蒸罐的液态烃在进入脱丁烷塔前先与塔底轻油换热使进料得到预热后从另一个进料口进入脱丁烷塔。塔中蒸发出来的C3和C4组分从塔顶出来,经水冷器HE-B54 冷凝下来积蓄在塔顶回流罐V-B55中,回流罐中的液态烃即为液化气,一部分作为回流泵回到塔顶,为 塔顶产品提供冷量,另一部分作为液化气产品泵到液化气储罐。 脱丁烷塔也为填料塔,塔内分为3段,内装填料,有两个进料口,在塔中液体向下流过逐步被加热,产生的气体向上流向塔顶,液体大部分进入塔底重沸器HE-B49,在重沸器中被热介质油加热,加热后形成气液混合体进入塔底,这样形成对流流动,液体不断被加热,轻组分被蒸发出去向上流动,为脱丁烷 塔提供塔底操作温度。通过气体向上,液体向下,在填料层中进行逆向传质,达到气液分离的目的。脱 丁烷塔保证一定的液位,以保证热虹吸式重沸器能够形成对流循环只可,经过液位控制阀流排出进入未 稳定轻烃闪蒸罐V-B50,闪蒸出来的未凝气经水冷器冷却后进入原油储运系统,稳定轻烃经与进料换热后再经水冷到轻烃储罐。 各压力容器的安全泄压都是到火炬

天然气脱硫工艺介绍

天然气脱硫工艺介绍公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矾法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。(2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H 2 S同时脱除相 当量的CO 2,原料气压力低,净化气H 2 S要求严格等条件下,可选择醇胺法作为脱 酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H 2 S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③ H 2 S含量较低的原料气中,潜硫量在d~5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1 和图2 分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。

图1 脱硫方案选择与酸气分压的关系 图2 脱硫方案选择与进、出口气质量指标的关系(3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1 原料气组分表 表2 原料气工艺参数表

脱水蔬菜烘干机的加工工艺流程

脱水蔬菜具有新鲜的色、香、味、形、质,而且便于储存,这使得近10多年来,全球需求量每年增长速度高于5%,由于原有一些脱水蔬菜的生产国家和地区,劳动力价格不断上升、技术水平又相对落后,成本加大,利润变薄,出口数量也随之减少,而我国领先的种植技术以及加工技术的优势逐渐凸显出来,在蔬菜旺季将过剩地区的蔬菜加工成脱水蔬菜,销售到缺菜地区,效益还是比较可观的。下面我们介绍一下脱水蔬菜烘干机的加工工艺流程。 1、原料挑选选择具有丰富肉质的蔬菜品种,脱水前应严格选优去劣,剔除有病虫、腐烂、干瘪部分。以八成成熟度为宜,过熟或不熟的亦应挑出,除瓜类去籽瓤外,其他类型蔬菜可用清水冲洗干净,然后放在阴凉处晾干,但不宜在阳光下曝晒。 2、切削、烫漂将洗干净的原料根据产品要求分别切成片、丝、条等形状。预煮时,因原料不同而异,易煮透的放沸水中焯熟,不易煮透的放沸水(水温一般在150℃以上)中略煮片刻,一般烫漂时间为2~4分钟。叶菜类zui好不烫漂处理。 3、冷却、沥水预煮处理后的蔬菜应立即进行冷却(一般采用冷水冲淋),使其迅速降至常温。冷却后,为缩短烘干时间,可用离心机甩水,也可用简易手工方法压沥,待水沥尽后,就可摊开稍加凉晒,以备装盘烘烤。 4、烘干应根据不同品种确定不同的温度、时间、色泽及烘干时的含水率。烘干采用空气能热泵形式烘干系统较好,空气能的制热属于缓慢提升,这样对于蔬菜的干燥是比较合理的,能够zui大化保持蔬菜原有的组织纤维与营养成分,而且通过压缩空气,提取空气热能的方式全过程不含有害物质,同时也比较省电环保,将蔬菜放入物料托盘,将物料托盘插入物料车推入烘干房,关闭密封门就可以开始烘干生产了。烘干温度范围为65℃—85℃,分不同温度干燥,逐步降温。一般烘干时间为8-10小时左右即可完成一批次。 5、分检、包装脱水蔬菜经检验达到食品卫生法要求,即可分装在塑料袋内,并进行密封、装箱,

《天然气集输》课程综合复习题含答案(适用于2015年6月考试)

《天然气集输》课程综合复习题 一、填空题 1、商品天然气无规定的化学组成,但有一系列的具体技术指标要求,其主要技术指标有:、、和。 2、烃类气体在水中的溶解度随压力增加而,随温度升高而,且随着水中含气饱和度升高,温度对气体溶解度的影响。 3、从气井产出的物质,除天然气外一般含有液体和固体物质。液体物质包括和气田水。气田水又包含和。气田水分为或和两类。固体物质包括岩屑、、酸化处理后的残存物等。 4、影响天然气中含水蒸汽量主要因素有:、、和。 5、开发凝析气藏的方式包括、、油环凝析气藏开发,油环凝析气藏开发不但要考虑天然气和凝析油的采收率,而且还要考虑的采收率。 6、天然气的主要成分是及少量乙烷、丙烷、丁烷、戊烷及以上烃类气体,并可能含有氮、氢、、及等非烃类气体及少量氦、氩等惰性气体。 7、气田集输系统的工作内容包括:收集天然气,并经过、、 、使天然气达到符合管输要求的条件,然后输往长距离输气管道。 8、采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的 构成的晶体,晶体结构有三种类型:、、。气体分子填满腔室的程度取决于和,腔室内充满气体分子程度愈高、水合物愈稳定。腔室未被气体分子占据时,结构处于,称为;气体分子占有腔室后形成稳定结构,称。 9、甘醇再生除了常规的升温再生,还有、和。 10、按天然气中液烃含量的多少可将天然气分为和或和。 11、天然气集输管网从分布形式上看主要有三种:、和。 12、吸附剂的再生是为了除去,恢复吸附剂活性。吸附剂的再生过程就是

吸附剂的脱附过程。工业上常用的再生方法是,因为温度愈高,湿容量愈。通常是用作为再生气体,从进入。脱附完成后,需要进行才能转入吸附操作。 13、有水气藏按气水界面的高低不同可分为两类,当含气高度大于或等于产层厚度时为,当含气高度小于层厚时为。 14、蒸气压缩制冷装置主要由四部分组成:压缩机、冷凝器、和。蒸气压缩制冷分为一级制冷、、和混合冷剂制冷。混合冷剂组分的合理选择和较难确定。 15、天然气质量的一个重要指标就是沃贝数,它是与的比值。 16、气田集气站工艺流程分为单井集输流程和。按天然气分离时的温度条件,又可分为和低温分离工艺流程。低温分离集气站的功能有四个:;; ;。 17、开发凝析气藏的方式包括、、三种。其中是提高凝析油采收率的主要方法。 18、燃烧是一种同时有热和光发生的强烈氧化反应。燃烧必需具备三个条件:、 和。 19、为保证连续生产,分子筛吸附脱水流程中必须包括、和三道工序。原料气从入塔,再生气和冷吹气从入塔。 20、根据气流通过膨胀机叶轮时的流动方向,透平膨胀机可分为径流和两种形式。在径流式膨胀机中,气流由径向流入叶轮并由叶轮流道转变为轴向流出。膨胀机的气体流通部分由四部分组成:、、和。 二、判断题 1、低温分离可分离出天然气中的凝析油,使管输天然气的烃露点达到管输标准要求,防止凝析出液烃影响管输能力。造成低温的方法很多,有节流膨胀法、透平膨胀机制冷法、热分离机制冷法和外加冷源法,高压集气才能采用节流膨胀低温分离工艺。

脱水蔬菜工艺简介及脱水蔬菜水分含量的测定

脱水蔬菜工艺简介及脱水蔬菜水分含量的测定 前言:脱水蔬菜的主要品种有胡萝卜、食用菌类、白菜、甘蓝和姜等。 脱水干制方法有自然晒干及人工脱水两类。人工脱水包括热风干制、微波干制、膨化干制、红外线及远红外线干制、真空干制等。目前蔬菜脱水干制应用比较多的是热风干燥脱水和冷冻真空干燥脱水,冷冻真空脱水法是当前一种先进的蔬菜脱水干制法,产品既可保留新鲜蔬菜原有的色、香、味、形,又具有理想的快速复水性。现将热风干燥脱水蔬菜和冷冻真空干燥脱水蔬菜加工的工艺流程和方法介绍如下。 一、热风干燥脱水蔬菜加工的工艺流程和方法 1、原料挑选 选择具有丰富肉质的蔬菜品种,脱水前应严格选优去劣,剔除有病虫、腐烂、干瘪部分。以八成成熟度为宜,过熟或不熟的亦应挑出,除瓜类去籽瓤外,其他类型蔬菜可用清水冲洗干净,然后放在阴凉处晾干,但不宜在阳光下曝晒。 2、切削、烫漂 将洗干净的原料根据产品要求分别切成片、丝、条等形状。预煮时,因原料不同而异,易煮透的放沸水中焯熟,不易煮透的放沸水中略煮片刻,一般烫漂时间为2-4分钟。叶菜类最好不烫漂处理。 3、冷却、沥水 预煮处理后的蔬菜应立即进行冷却(一般采用冷水冲淋),使其迅速降至常温。冷却后,为缩短烘干时间,可用离心机甩水,也可用简易手工方法压沥,待水沥尽后,就可摊开稍加凉晒,以备装盘烘烤。 4、烘干 应根据不同品种确定不同的温度、时间、色泽及烘干时的含水率。烘干一般在烘房内进行。烘房大致有三种:第一种简易烘房,采用逆流鼓风干燥;第二种是用二层双隧道、顺逆流相结合的烘房;第三种是厢式不锈钢热风烘干机,烘干温度范围为65℃—85℃,分不同温度干燥,逐步降温。采用第一、第二种烘房时,将蔬菜均匀地摊放在盘内,然后放到预先设好的烘架上,保持室温50℃左右,同时要不断翻动,使其加快干燥,一般烘干时间为5小时左右。 5、分检、包装 脱水蔬菜经检验达到食品卫生法要求,即可分装在塑料袋内,并进行密封、装箱,然后上市。 二、冷冻真空干燥脱水蔬菜加工的工艺流程和方法 1、原料挑选 叶菜类蔬菜从采收到加工不应超过24小时,人工挑选出发黄、腐烂部分;根茎类蔬菜人工挑选出等外品,腐烂部分,并分级。 2、清洗 去除蔬菜表面泥土及其他杂质。为去除农药残留,一般需用0.5%-1%盐酸溶液或0.05%-0.1%高锰酸钾或600毫克/公斤漂白粉浸泡数分钟进行杀菌,再用净水漂洗。 3、去皮 根茎类蔬菜应去皮处理。化学碱液去皮原料损耗率低,但出口产品一般要求人工去皮或机械去皮,去皮后必须立即投入清水中或护色液中,以防褐变。 4、切分成型 将蔬菜切分成一定的形状(粒、片状),切分后易褐变的蔬菜应浸入护色液中。 5、烫漂

天然气分子筛脱水装置工艺设计说明书

天然气分子筛脱水装置工艺 设计说明书 1 概述 1.1 设计要求 原料气压力为4.5MPa,温度30℃,工艺流程要求脱水后含水量在1ppm以下(质),采用球形4A分子筛吸附脱水,已知4A分子筛的颗粒直径为 3.2mm,堆密度为660kg/m3,吸附周期采用8小时。 其具体内容如下: 1.绘制天然气脱水工艺流程图; 2.确定工艺流程的主要工艺参数; 3.对脱水系统中主要设备进行工艺计算,并确定主要设备的结构尺寸和型号。 4.确定流程中主要管线的规格(材质、壁厚、直径)。 5.编写工程设计书。 1.2 设计范围 分子筛吸附塔装置 导热油换热单元 过滤器 再生气分离器 连接管道 排污放空系统 安全阀,调压阀 1.3 设计原则 1)贯彻国家建设基本方针政策,遵循国家和行业的各项技术标准、规范。 2)贯彻“安全、可靠”的指导思想,紧密结合上、下游工程,以保证中央处理厂

安全、稳定地运行。 3)根据高效节能、安全生产的原则,采用先进实用的技术和自控手段,实行现代 化的管理模式,实现工艺、技术成熟可靠、节省投资、方便生产。 4)充分考虑环境保护,节约能源。 1.4 气质工况及处理规模 气体处理规模:100×104 m3/d 原料气压力:4.5 MPa 原料气温度:30 ℃ 脱水后含水量:≤1 ppm 天然气气质组成见表1-1。 表1-1 天然气组成表(干基) 组分H2 He N2 CO2 C1 C2 mol% 0.097 0.052 0.55 0.026 94.595 3.305 组分C3 iC4 nC4 iC5 nC5 C6+ mol% 0.73 0.121 0.156 0.056 0.052 0.262 1.5 分子筛脱水工艺流程 1.5.1 流程选择 本装置所处理的湿净化气流量为100×104m3/d(20℃、101.325kPa标准状态下)。对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。 在两塔流程中,一塔进行脱水操作,另一塔进行吸附剂的再生和冷却,然后切换操作。在三塔或多塔流程中,切换的程序有所不同,通常三塔流程采用一塔吸附、一塔再生、一塔冷吹同时进行。 表1-2 三塔方案(常规)时间分配表 吸附器0~8h 8~16h 16~24h 分子筛脱水塔A 吸附加热冷却

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程 一、天然气水合物 1、H2O存在的危害 (1)减少商品天然气管道的输送能力; (2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备; (3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断; (4)作为燃料使用,降低天然气的热值。 2、什么是天然气水合物 天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。最大的危害是堵塞管道。 (1)物理性质 ①白色固体结晶,外观类似压实的冰雪; ②轻于水、重于液烃,相对密度为0.960.98; ③半稳定性,在大气环境下很快分解。 (2)结构 采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:

I、II、H型。 3、天然气水合物生成条件 具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分 天然气中水的存在:液态水是生成水化物的必要条件。天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。 3、天然气水合物生成条件 足够低的温度:低温是形成水化物的重要条件。气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。

脱水蔬菜项目

目录 第一章项目提出的背景 (1) 第二章项目建设的资源条件 (1) 第三章市场预测 (2) 第四章厂址选定 (2) 第五章节能措施 (3) 第六章环境保护 (4) 第七章建设规模 (7) 第八章设备及工艺流程 (7) 第九章投资估算与资金筹措 (8) 第十章经济效益及盈亏平衡分析 (10)

第一章项目提出的背景 当前,我国已经进入了主要农产品供求基本平衡、部分农产品相对过剩的阶段。因此调整农业结构、提高农业整体效益、增加农民收入、提高农产品国际竞争力已成为我国农业和农村经济工作的首要任务。 农产品加工不仅可以提高农产品自身的收入弹性,开拓农产品的市场需求空间,而且可以延长农业的产业链,增加农产品的附加值。Xx制定的《国民经济和社会发展第十个五年计划纲要》中明确指出:“加强农牧业的基础地位,努力增加农牧民收入,始终是我区经济工作的首要任务。工作的重点是加快发展优质专用农产品和绿色产品,优化种植业结构。”xx属于农业大盟,根据自身的实际特点,依托当地资源优势和良好气候条件,将农产品深加工列为第一重点发展的产业。 第二章项目建设的资源条件 Xx地处内蒙古东部,是连接东北三省地区的重要窗口,土质肥沃,日照充足,气候适宜,水源丰富,发展种植业具有得天独厚的优越条件。全旗现有耕地510万亩,土壤和气候条件适宜种植胡萝卜、菠菜、黄瓜、甘蓝等多种蔬菜,年产蔬菜超过4亿吨,当地农民具有种植蔬菜的传统和经验,蔬菜品质好,且境内无大型工矿企业和大规模污染源,具有

种植和开发绿色食品所必需的优良的生态环境。其次,当地劳动力充足,劳动力及农产品价格低廉,加之原料收购及运输半径小,成本优势明显。 第三章市场预测 随着社会的发展和生活水平的提高,人们更趋向于选择纯天然绿色食品,食品添加剂的使用受到很大的限制,食品的冷藏、保鲜处理日益增长,加上其分销系统冷藏链复杂、病菌易混入和费用较高等缺点,使人们需要一种既易保存又能长期保鲜的方法,因此各种脱水蔬菜的问世正是迎合了这种需要。高品质的脱水蔬菜不仅含水分少,易储存,运输方便,适口性强等特点,而且最大限度地保留了蔬菜中的有效营养成分,解决了蔬菜保鲜问题,使人们能常年吃上新鲜蔬菜,国内外销售市场空间巨大,尤其是日本、韩国等岛国每年都要大量进口脱水蔬菜。本项目以无公害绿色有机蔬菜为原料,采用了现代化的的先进蔬菜脱水生产工艺,生产出的产品市场竞争力很强,销售前景乐观,因此该项目具有很强的生命力。 第四章厂址选定 本项目拟建厂址xx新区,该新区位于xx距省际通道18公里处,规划总面积20平方公里,一期规划2平方公里。

天然气造气工艺流程说明

天然气造气工艺流程说明 一、合成氨工序造气流程: 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体和甲醇工段送来的驰放气进入二段炉。压缩送来的空气,经过空气预热器预热达到一定温度后进入二段炉,空气中的氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化(当有甲醇弛放气时,配适量的纯氧)。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后进入中温变换炉进行一氧化碳的变换,中温变换炉出来的气体进入甲烷化第二换热器,预热甲烷化入口气,换热后的中温变换气进入中变废锅,气体降至一定温度后进入低温变换炉,进一步将一氧化碳变换为二氧化碳,出低温变换炉一氧化碳达到≤. 0.3%,经低变废锅回收部份热量产蒸汽,回收热量后的低变气进入脱碳系统低变气再沸器预热再生塔底部溶液,最后进入低变冷却系统降温至35℃以下进入压缩工段或碳化工段。脱碳来的净化气或压缩来的碳化气进入甲烷化第一换热器

预热后进入甲烷化第二换热器进一步预热,气体达到一定温度后进入甲烷化炉,残余的一氧化碳和二氧化碳在镍触媒作用下生成甲烷,使CO+CO的含量<10PPm,甲烷化出来的气2体进入甲一换回收部份热量后进入甲烷化第一、第二冷却器,气体温度降至35℃以下送压缩加压,最后送往合成氨工序。 二、甲醇造气流程 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体进入二段炉。空分来的氧气经预热后达到一定温度进入二段炉,氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然.气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后根据甲醇合成气体成分情况通过中变近路阀调 整入中温变换炉的气量进行一氧化碳的变换,以便调整气体成分。中温变换炉出来的气体和中变近路转化气进入甲化第二换热器,预热甲醇合成来的弛放气,换热后的中温变换气或转化气进入中变废锅,气体降至一定温度后根据中变气体的成分通过低变近路阀调整入低温变换炉的气量,进一步调整气体成分,低变炉或低变近路来的气体经低变废锅回收部

干制蔬菜、盐渍裙带菜生产工艺流程

干制蔬菜生产工艺流程 一、干制蔬菜【蔬菜干制品(脱水蔬菜根菜类)、干制食用菌(黑木耳)】加工工艺描述 1、工艺流程 原材料挑选→切段→精捡→真空包装→金属探测→打包 2、工艺流程说明 (1)挑选:挑选无病虫害、机械损伤,长度为25~30cm的贡菜条、龙筋菜、黑木耳片和黑 木耳丝作为原料 (2)切段:将清洗后的贡菜两头的根帯和尖部切除,保留中间均匀的部分进行切段,控制 切段长度为1--2cm (3)精捡:将切完段的贡菜置于操作台,再次人工精捡,确保无异物; (4)封口包装:精捡完的干制蔬菜达到质量要求,将干制蔬菜置于食品包装袋进行焊包封口,既得蔬菜干制品(脱水蔬菜根菜类)、干制食用菌(黑木耳)成品; (5)金属探测:将包装完成的干制蔬菜成品,通过金属探测机(FeФ<2.0mm SusФ<2.5mm) 检测金属,含有金属的盐渍裙带菜单独存放、挑选或废弃,确保产品质量安全; (6)打包:将检验完成的贡菜按照重量标准装入箱中打包。 3、生产设备 清洗机、切段机、标准包装材料、手动封口机 二、盐渍裙带菜加工工艺 1、工艺流程 原材料挑选→清洗→切段→精捡→清洗→真空包装→金属探测→装箱 2、工艺流程说明 (1)挑选:挑选新鲜、无机械损伤,长度为25~30cm的裙带菜条作为原料 (2)切段:将清洗后的裙带菜条两头的根帯和尖部切除,保留中间均匀的部分进行切段, 控制切段长度为1-2厘米 (3)精捡:将切完段的裙带菜清洗后置于操作台,再次人工精捡,确保无异物; (4)真空包装:待精捡完的裙带菜达到质量要求,将裙带菜置于食品包装袋进行真空包装,既得裙带菜成品; (5)金属探测:将真空包装完成的贡菜成品,通过金属探测机(FeФ<2.0mm SusФ<2.5mm) 检测金属,含有金属的盐渍裙带菜单独存放、挑选或废弃,确保产品质量安全; (6)装箱:将检验完成的贡菜按照重量标准装入箱中打包。 (7)贮蔵温度为-5℃~-15℃,贮藏时间为一年 3、生产设备 清洗机、切段机、标准包装材料、真空包装机

相关主题
文本预览
相关文档 最新文档