当前位置:文档之家› 母线的保护方式

母线的保护方式

母线的保护方式

母线的保护方式

摘要: 对于母线的各种故障,其保护主要有两种方式:(1)利用供电元件的保护切除母线故障。对于不太重要的变电站,可利用变压器等供电元件的第Ⅱ段保护来切除母线故障。(2)专设母线保护。在下列情况下应装设专门的母线保护:1)在110kV 及以上的双母线和分段单母线上,为保证有选择性地切除任一段母线上所发生的故障,而另一段无故障的母线仍...

对于母线的各种故障,其保护主要有两种方式:

(1)利用供电元件的保护切除母线故障。对于不太重要的变电站,可利用变压器等供电元件的第Ⅱ段保护来切除母线故障。

(2)专设母线保护。在下列情况下应装设专门的母线保护:

1)在110kV 及以上的双母线和分段单母线上,为保证有选择性地切除任一段母线上所发生的故障,而另一段无故障的母线仍能继续运行.应装设专用的母线保护。

2) 110kV 及以上的单母线,高压侧为110kV 及以上的重要降压变电所的

母线保护调试

母线保护原理及调试 导读:注:TA 变比折算只适用于差动保护,但在充电、过流等保护中,保护瞬时跳开 I 母 所有连接元件,保护瞬时跳开II 母所有连接元件,7、母联充电保护试验, 合充电保护投入” 压板,充电保护自动展宽 300ms ,2)、做充电保护试验,当充电保护动作后,注: a )充电 保护的时间整定不能超过 300ms ,否则充电保护不会动作, C )、差动保护是否启动母联失 灵由控制字整定,充电保护启动母联失灵保护不需要控制字,只要在充电延 注:TA 变比折算只适用于差动保护。 例如,母联变比为600/5,其他回路为1200/5, 则在母联加5A 电流,经差流折算后的电流是 2.5A 。但在充电、过流等保护中,母联电流不 受TA 变比折算的影响,如上情况,只要在母联上加入大于实际定值的电流即可,不需要加 2倍的动作电流。 11)、补跳功能试验 将母线上任意元件的刀闸位置断开, 在保证电压闭锁开放的条件下, 做I 母差动试验, 保护瞬时跳开I 母所有连接元件,若此时差流仍然存在, 经过母联失灵延时跳开无刀闸位置 的元件;在保证电压闭锁开放的条件下,做 II 母差动试验,保护瞬时跳开 II 母所有连接元 件,若此时差流仍然存在,经过母联失灵延时跳开无刀闸位置的元件。 若最大单元数是偶数,采用最大单元数除以二, II 母;若最大单元数是奇数,则采用最大单元数加一 后一半默认在II 母。分段元件始终默认 1#单元。 7、母联充电保护试验 合充电保护投入”压板 1)、自动充电:母联断路器断开(母联 TWJ 存在),其中一段母线正常运 行而另一段母线无压,当母联电流从无到有时判为充电状态, 充电保护自动展宽 300ms 。 若在整定延时内母联电流越限即跳开母联断路 器。 手动充电:给母联充电闭锁一个开入,在一条母线正常运行,另一条母线无压的条件 下,若母联电流从无到有时即判为充电状态。 在整定延时内母联电流越限即跳开母联断路器。 2)、做充电保护试验,当充电保护动作后,若母联电流持续存在,充电保 护启动母联失灵,经母联失灵延时跳开所有连接在母线上的元件。 注:a )充电保护的时间整定不能超过 300ms ,否则充电保护不会动作。 b )对于单母分段接线,由于其刀闸位置是由软件定的, 一母停运的含义仅为该母无压; 对于双母线接线,一母停运含义除了无压之外还要判该母线无刀闸位置引入。 注:对于单母分段接线元件的划分: 前一半单元默认在I 母,后一半默认在 然后除以二,前一半单元默认在 I 母,

母线的继电保护

母线的继电保护 一.装设母线保护的基本原则 和发电机、变压器一样,发电厂和变电所的母线也是电力系统中的一个重要组成元件,当母线上发生故障时,将使连接在故障母线上的所有元件在修复故障母线期间,或转换到另一组无故障的母线上运行以前被迫停电。此外,在电力系统中枢纽变电所的母线上故障时,还可能引起系统稳定的破坏,造成严重的后果。母线保护有两种情况,一般说来,不采用专门的母线保护,而利用供电元件的保护装置就可以把母线故障切除。例如: 1. 发电厂的出线端采用单母线接线,此时母线上的故障就可以利用发电机的过电流保护使发电机的断路器跳闸予以切除; 2. 对于降压变电所,其低压侧的母线正常时分开运行,则低压母线上的故障就可以由相应变压器的过电流保护使变压器的断路器跳闸予以切除; 3. 如果是双侧电源网络(或环形网络),如图8—1所示,当变电所B 母线上d 点短路时,则可以由保护1和保护4的第II 段动作予以切除,等等。 图 8-1 在双侧电源网络上,利用电源侧的保护切除母线故障 当利用供电元件的保护装置切除母线故障时,切除故障的时间一般较长。此外,当双母线同时运行或母线为分段单母线时,上述保护不能保证有选择性地切除故障母线。因此,在下列情况下应装设专门的母线保护: (1) 在110KV 及以上的双母线和分段单母线上,为保证有选择性地切除任一组(或段)母线上所发生的故障,而另一组(或段)无故障的母线仍能继续运行,应装设专用的母线保护。 (2) 110KV 及以上的单母线,重要的发电厂的35KV 母线或高压侧为110KV 及以上的重要降压变电所的35KV 母线,按照装设全线速动保护的要求必须快速切除母线上的故障时,应装设专用的母线保护。 为满足速动性和选择性的要求,母线保护都是按差动原理构成的。 二.母线差动保护的特点 母线差动保护的特点是在母线上一般连接着较多的电气元件(如线路、变压器、发电机、电抗器等)。例如许继公司的WMH —800系列微机母线保护最多可以连接24个电气元件。由于连接元件多,因此,就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。即: 1. 在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等,或表示为0=∑I ; 2. 当母线上发生故障时, 所有与电源连接的元件都向故障点供给短路电流,A

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

母线保护及失灵保护

母线保护及失灵保护 辛伟 母线保护: 母线是发电厂和变电站重要组成部分之一。母线又称汇流排,是汇集电能及分配电能的重要设备。运行实践表明:在众多的连接元件中,由于绝缘子的老化,污秽引起的闪路接地故障和雷击造成的短路故障次数甚多。另外,运行人员带地线合刀闸造成的母线短路故障,也有发生。母线的故障类型主要有单相接地故障,两相接地短路故障及三相短路故障。两相短路故障的几率较少。 当发电厂和变电站母线发生故障时,如不及时切除故障,将会损坏众多电力设备及破坏系统的稳定性,从而造成全厂或全变电站大停电,乃至全电力系统瓦解。因此,设置动作可靠、性能良好的母线保护,使之能迅速检测出母线故障所在并及时有选择性的切除故障是非常必要的。 对母线保护的要求: 与其他主设备保护相比,对母线保护的要求更苛刻。 (1)高度的安全性和可靠性 母线保护的拒动及误动将造成严重的后果。母线保护误动将造成大面积停电;母线保护的拒动更为严重,可能造成电力设备的损坏及系统的瓦解。 (2)选择性强、动作速度快 母线保护不但要能很好地区分区内故障和外部故障,还要确定哪条或哪段母线故障。由于母线影响到系统的稳定性,尽早发现并切除故障尤为重要。 母差保护的分类: 母线差动保护按母线各元件的电流互感器接线不同可分为母线不完全差动保护和母线完全差动保护;母线不完全差动保护只需将连接于母线的各有电源元件上的电流互感器接入差动回路,在无电源元件上的电流互感器不接入差动回路。母线完全差动保护是将母线上所有的各连接元件的电流互感器连接到差动回路。母线完全差动保护又包括固定连接方式母差保护、电流相位比较式母差保护、比率制动式母差保护(阻抗母线差动保护)、带速饱和电流互感器的电流式母线保护等。 莲花厂的WMH-800微机型母线保护装置为比率制动式母差保护。 固定连接系指一次元件的运行方式下二次回路结线固定,且一一对应。双母线同时运行方式,按照一定的要求,将引出线和有电源的支路分配固定连接于两条母线上,这种母线称为固定连接母线。这种母线的差动保护称为固定连接方式的母线完全差动保护。 对它的要求是一母线故障时,只切除接于该母线的元件,另一母线可以继续运行,即母线差动保护有选择故障母线的能力。当运行的双母线的固定连接方式被破坏时,该保护将无选择故障母线的能力,而将双母线上所有连接的元件切除。 母联电流相位比较式母线差动保护主要是在母联开关上使用比较两电流相量的方向元件,引入的一个电流量是母线上各连接元件电流的相量和即差电流,引入的另一个电流量是流过母联开关的电流。在正常运行和区外短路时差电流很小,方向元件不动作;当母线故障不仅差电流很大且母联开关的故障电流由非故障母线流向故障母线,具有方向性,因此方向元件动作且具有选择故障母线的能力。 集成电路型母线保护根据差动回路中阻抗的大小,可分为低阻抗型母线保护(一般为几欧姆),中阻抗型母线保护(一般为几百欧姆),高阻抗型母线保护(一般为几千欧姆)。 低阻抗型母线保护(一般为几欧姆):低阻抗母线差动保护装置比较简单,一般采用久

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

PCS-915 220KV母线保护说明书

7.4整组试验 7.4.1母线差动保护 投入母差保护压板及投母差保护控制字,以下的电流电压均通过光纤加入。 1)区外故障通过软压板强制使能刀闸位置:短接元件1的I母刀闸位置及元件2的II母刀闸位置接点。将元件2TA与母联TA同极性串联,再与元件1TA反极性串联,模拟母线区外故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护不应动作。 2)区内故障通过软压板强制使能刀闸位置:短接元件1的I母刀闸位置及元件2的II母刀闸位置接点。将元件1TA、母联TA和元件2TA同极性串联,模拟I母故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护动作跳I母。 将元件1TA和元件2TA同极性串联,再与母联TA反极性串联,模拟II母故障。通入大于差流起动高定值的电流,并保证母差电压闭锁条件开放,保护动作跳II母。 投入单母压板及投单母控制字。重复上述区内故障,保护动作切除两母线上所有的连接元件。 3)比率制动特性 通过软压板强制使能刀闸位置:短接元件1及元件2的I母刀闸位置接点。向元件1TA和元件2TA加入方向相反、大小可调的一相电流,则差动电流为 21II&&+,制动电流为() 21IIK&&+?。分别检验差动电流起动定值HcdI和比率制动特性。 4)电压闭锁元件 在满足比率差动元件动作的条件下,分别检验保护的电压闭锁元件中相电压、负序和零序电压定值,误差应在±5%以内。 7.4.2 母联充电保护 投入母联充电保护压板及投母联充电保护控制字。短接母联TWJ开入(TWJ=1),向母联TA通入大于母联充电保护定值的电流,母联充电保护动作跳母联。 7.4.3母联过流保护 投入母联过流保护压板及投母联过流保护控制字。向母联TA通入大于母联过流保护定值的电流,母联过流保护经整定延时动作跳母联。 7.4.4母联失灵保护 按上述试验步骤模拟母线区内故障,保护向母联发跳令后,向母联TA继续通入大于母联失灵电流定值的电流,并保证两母差电压闭锁条件均开放,经母联失灵保护整定延时母联失灵保护动作切除两母线上所有的连接元件。 7.4.5母联死区保护 1)母联开关处于合位时的死区故障 用母联跳闸接点模拟母联跳位开入接点,按上述试验步骤模拟母线区内故障,保护发母线跳令后,继续通入故障电流,经整定延时Tsq母联死区保护动作将另一条母线切除。 2)母联开关处于跳位时的死区故障 短接母联TWJ开入(TWJ=1),按上述试验步骤模拟母线区内故障,保护应只跳死区侧母线。(注意:故障前两母线电压均应正常) 7.4.6断路器失灵保护 投入断路器失灵保护压板及投失灵保护控制字,并保证失灵保护电压闭锁条件开放。 对于分相跳闸接点的起动方式:短接任一分相跳闸接点,并在对应元件的对应相别TA中通

继电保护原理6—母线保护全解

第六章母线保护

第一节概述 一、母线保护的概述 母线是发电厂和变电站的重要组成部分。在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是汇集和分配电能。 如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。 二、母线的主接线形式 单母线;单母分段(专设分段、分段兼旁路、旁路兼分段);单母多分段;双母线(专设母联、母联兼旁路、旁路兼母联);双母单分段(专设母联、母联兼旁路);双母双分段(按两面屏配置);3/2接线(按两套单母线配置)。 1、单母线 图6-1-1 单母线 2、单母分段(专设母联) 图6-1-2 单母分段(专设母联)

3、单母分段(母联兼旁路) 图6-1-3 单母分段(母联兼旁路)4、单母分段(旁路兼母联) 图6-1-4 单母分段(旁路兼母联)5、单母三分段 图6-1-5 单母三分段 6、双母线(专设母联)

图6-1-6 双母线(专设母联) 7、双母线(母联兼旁路) 图6-1-7 双母线(母联兼旁路)8、双母线(旁路兼母联) 图6-1-8 双母线(旁路兼母联)9、双母线单分段(专设母联)

图6-1-3 双母单分段(专设母联)10、双母线单分段(母联兼旁路) 图6-1-10 双母单分段(母联兼旁路)11、双母双分段 图6-1-11 双母双分段 三、母线保护的硬件组成 1、标准配置 1.1 保护箱

图6-1-12 保护箱(一)插件布置图(后视图) 1.1.1交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有8 路电流通道、6 路电压通道。 1.1.2交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有15 路电流通道。 1.1.3 CPU 插件(NPU-804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。 1.1.4 采保插件(NCB-801):将由变换器来的弱电信号经过低通滤波后,由多路转换开关对信号进行选通,然后通过电压跟随器对信号进行处理,以提高其负载能力。该插件还有+5V、-15V、+15V 及累加和自检功能。此外通过运算放大器过零比较检测电路可实现基频测量。能够完成80 路模拟信号采集,模拟量的输出幅值范围为-10V~+10V。 1.1.5 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。 1.1.6 开入插件(NKR-812):每个开入插件提供64 路开关量输入回路。开入电源为直流24V。 1.1.7 信号插件(NXH-808):主要提供保护的信号接点,共三组信号接点,两瞬动一保持。 1.1.8 通讯插件(NTX-803):提供的通讯接口有:一个就地打印口(RS232),两个GPS对时口(RS485、RS232),及与保护管理机通讯的LON网接口,与变电站自动化系统通讯的双通道接口(RS485,RS232,以太网口)。另外,必要时端子04、05可作为码对时通讯口。 1.1.9 稳压电源插件(NDY-801):直流逆变电源插件。直流220 V 或110 V 电压输入经抗

11母线保护习题分析

母线保护 一、选择题 1.在输电线路发生故障时,保护发出跳闸脉冲,如断路器失灵时断路器失灵保护动作(B) A:再次对该断路器发出跳闸脉冲; B:跳开连接于该线路有电源的断路器; C:只跳开母线的分断断路器。 2、母差保护中使用的母联断路器电流取自II母侧电流互感器,如母联断路器与电流互感器之间发生故障,将造成(D) A:I母差动保护动作切除故障且I母失压,II母差动保护不动作,II母不失压; B:II母差动保护动作切除故障且II母失压,I母差动保护不动作,I母不失压;C:I母差动保护动作使I母失压,而故障未切除,随后II母差动保护动作切除故障且II母失压; D:I母差动保护动作使I母失压,但故障没有切除,随后死区保护动作动作切除故障且II母失压。 3.断路器失灵保护是(C) A:一种近后备保护,当故障元件的保护拒动时,可依靠该保护切除故障; B:一种远后备保护,当故障元件的断路器拒动时,必须依靠故障元件本身保护的动作信号起动换灵保护以后切除故障点; C:一种近后备保护,当故障元件的断路器拒动时,可依靠该保护隔离故障点;D:一种远后备保护,当故障元件的保护拒动时,可依靠该保护切除故障; 4.母线电流差动保护采用电压闭锁元件主要是为了防止( A )。 A.正常运行时误碰出口中间继电器使保护误动 B.区外发生故障时该保护误动 C.区内发生故障时该保护拒动 D.系统发生振荡时保护误动 5.母联电流相位比较式母线差动保护当母联断路器和母联断路器的电流互感器之间发生故障时(A)。

A :将会快速切除非故障母线,而故障母线反而不能快速切除 B :将会快速切除故障母线,非故障母线不会被切除 C :将会快速切除故障母线和非故障母线 D :故障母线和非故障母线均不会被切除 6.双母线接线形式的变电站,当母联断路器断开运行时,如一条母线发生故障,对于母联电流相位比较式母差保护会(B)。 A :仅选择元件动作 B :仅差动元件动作 C :差动元件和选择元件均动作 D :差动元件和选择元件均不动作 7.在母差保护中,中间变流器的误差要求,应比主电流互感器严格,一般要求误差电流不超过最大区外故障电流的(C)。 A :3% B :4% C :5% 8.中阻抗型母线差动保护在母线内部故障时,保护装置整组动作时间不大于(B)ms 。 A :5 B :10 C :20 D :30 9.如右图所示,中阻抗型母差保护中使用的母联断 路器电流取自靠II 母侧电流互感器,如母联断路器的跳 闸保险烧坏(即断路器无法跳闸),现II 母发生故障,在 保护正确工作的前提下将不会出现的是:(A)。 A :II 母差动保护动作,丙、丁断路器跳闸,甲、乙线 路因母差保护停信由对侧高频闭锁保护在对侧跳闸,切除故障,全站失压 B :Ⅱ母差动保护动作,丙、丁断路器跳闸,失灵保护动作,跳甲、乙断路器,切除故障,全站失压 C :Ⅱ母差动保护动作,丙、丁断路器跳闸,因母联断路器跳不开,导致I 母差动保护动作,跳甲、乙两条线路,全站失压 10.母线差动保护的暂态不平衡电流与稳态不平衡电流相比,(A)。 A :前者更大 B :两者相等 C :前者较小 11.全电流比较原理的母差保护某一出线电流互感器单元零相断线后,保护的动作行为是(B)。 A :区内故障不动作,区外故障可能动作 B :区内故障动作,区外故障可能I 母II

35kV 母线差动保护的调试

35kV母线差动保护的调试 周剑平(镇海炼化检安公司) 摘要: 对BUS1000母线差动保护继电器的原理进行分析,介绍了镇海炼化公司第二热电站35kV母线差动保护的调试方法。通过合理的调试,减少由于35kV母线差动保护出现误动而引起故障。关键词:继电器差动保护调试 1概述 镇海炼化公司第二热电站35kV及110kV母线的差动保护采用美国通用电气公司(GE)生产的BUS1000保护装置,BUS1000保护装置是一种高速静态保护系统,动作时间可达到10毫秒,灵敏度高,防误动性能好,运行中如出现电流回路断线,经10秒延时即闭锁继电器出口,防止误动作。BUS1000保护装置对电流互感器的要求不高,允许各回路的电流互感器具有不同的变比,但变比差异不能超过10倍,互感器的最小饱和电压应大于100V。 2000年8月,发生炼油303线电缆炸裂事故,二电站的35kV母差保护出现误动,至使部分装置失电,影响到生产。因此,搞清BUS1000保护装置误动的原因及采取何种方法解决,如何通过合理的调试来验证保护装置的完好显得尤为重要。 2BUS1000保护装置的动作原理 图1和图2分别为BUS1000保护装置内部故障及外部故障的原理图。

图1内部故障时BUS1000原理图 图2外部故障时BUS1000原理图

被保护母线上各线路的电流互感器(即主电流互感器)二次电流经BUS1000装置中的辅助电流互感器转换为统一的0~1A的电流,再经电流/电压转换板变成0~1V交流电压信号,经整流后成为直流电压信号。由图中可以看出,整流后的直流电压VF与各线路的电流之和成正比,V D 与各线路的电流之差成正比。BUS1000保护装置是一个比率制动差动保护,用VF作制 动量,反应制动电流I F ,V D 作动作量,反应差动电流I D ,V D 和V F 经加法器和电平比较器后获得 以下动作特性: I D -KI F ≥0.1 式中:I D -差动回路电流; I F -制动回路电流; K-比率制动系数。 电平比较器是一个固定门槛的比较器,当输入差流大于0.1安培时输出信号,继电器动作。比率制动系数K可在0.5~0.9之间调节,它决定了继电器的动作特性和灵敏度。图3为继电器的动作特性曲线(图中电流值为辅助电流互感器二次值)。 图3BUS1000的比率差动特性曲线图

母线差动保护的工作原理和保护范围

母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换

投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出 “在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

母线保护保护配置及测试交流

母线保护保护配置及测试方法 一、母线保护的几个术语和概念 ●主接线形式 常见的主接线形式:单母线接线形式、单母分段接线形式、单母三分段接线形式、双母线接线形式、双母单分段接线形式、双母双分段接线形式;3/2接线形式。 其他主接线形式:单母分段分段兼旁路接线形式、双母线母联兼旁路接线形式、双母线旁路兼母联接线形式、双母线母线兼旁母接线形式。 ◆单母线接线形式 特点:单母线运行方式固定,接线简单清晰,设备少、投资小运行操作方便,利于扩建。但可靠性和灵活性较差,母线发生故障时跳开母线上所有连接元件,检修时也需全站停电。 ◆单母分段接线形式 II I 需根据分段刀闸位置、分段断路器位置识别分段运行状态;分段TA极性端默认在I母侧。 特点:单母线分段接线可以减少母线故障的影响范围,提高供电的可靠性。当一段母线有故障时,分段断路器在继电保护的配合下自动跳闸,切除故障段,使非故障母线保持正常供电,母线或母线隔离开关检修或故障时的停电范围缩小了一半。对于重要用户,可以采用双回路供电,将双回路分别接引在不同分段母线上,保证不中断供电。

◆双母线专设母联接线形式 I I I 需根据各元件刀闸位置确定该元件所运行母线,根据母联刀闸位置、母联断路器位置识别母联运行状态,母联TA 极性端默认在I 母侧。 特点:具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。双母线接线比单母线分段接线的供电可靠性高、运行灵活,但投资也明显增大,因此,只有当进出线回路数较多、母线上电源较多、输送和穿越功率较大、母线故障后要求尽快恢复送电、母线和母线隔离开关检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求等情况下,才采用双母线接线方式。 ◆单母双分段接线形式 II I III 根据分段刀闸位置、分段断路器位置识别分段运行状态;分段1的TA 极性端默认I 母侧,分段2的TA 极性端默认II 母侧。 ◆双母单分段接线形式

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2)

其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为: cdzd T m j j DI DI I +?>?∑=1 (1) ∑∑==?'>?m j j m j j I K I 1 1 (2) 其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。 3)故障母线选择元件

8、母线保护调试

一、装设母线保护基本原则 (一)母线的短路故障 母线是电力系统中的重要的一次设备,母线的作用是集中和分配电能。母线上接有高压线路、变压器、高压电动机、分段和母线联络断路器等设备。若母线发生故障,将使接于母线上的所有设备断路器动作,使其上的全部设备被迫停电,造成大面积停电,危及设备安全,甚至使电力系统稳定性遭到破坏,导致电力系统崩溃瓦解。 常见的母线故障有母线绝缘子和断路器套管的闪络或损坏、母线电压互感器、母线与断路器之间的电流互感器的故障、运行人员的误操作等。母线所表现出的故障类型有各种类型的接地短路和相间短路。 (二)、母线故障的保护方式 母线保护的方式有两种:一是利用供电元件的保护兼作母线保护;另一种是采用专用母线保护。 1.供电元件保护兼作母线保护 (1)图1-1为一降压变电所,其低压侧采用单母线分段接线,正常运行时QF5断开,则母线K点的故障就可以由变压器T1的过电流保护使QF1及QF2跳闸切除故障。变压器T1的过电流保护兼作母线保护。 图1-1 变压器过电流保护兼作低压母线故障保护图 1-2 发电机过电流保护兼作母线故障保护 (2)图1-2为一单母线接线的发电厂,其母线K点故障可以由发电机过电流保护使QF1及QF2跳闸切除故障。发电机过电流保护兼作母线保护。 (3)图1-3为双侧电源辐射性电网,在B母线上发生故障时,可以利用线路断路器QF1及QF4所对应的保护的第Ⅱ段将故障切除。

图1-3 双侧电源辐射性电网线路保护兼作母线故障保护 2.专用母线保护 当利用供电元件的保护装置兼作母线保护来切除母线故障时,故障切除的时间较长,而且当母线为单母线或双母线接线时,上述保护不能有选择性的切除故障母线。因此应装设专用母线保护。根据《继电保护和安全自动装置技术规程》的规定,在下列情况下应装设专用母线保护: (1)110kV及以上双母线或分段母线,为了保证有选择性地切除任一条母线故障。 (2)110kV单母线、重要发电厂35kV母线或110kV及以上的重要降压变电所的35kV母线,按照电力系统稳定性和保证母线电压等要求,需要快速切除母线上故障时。 为满足速动性和选择性的要求,母线保护都是按照差动原理构成。即不管母线上有多少电气元件,都可以利用各元件电流之和(即公式)在正常运行或外部故障时为零,在内部故障时为短路点总电流。 对于重要的220~500kv的超高压变电站按照要求应当装设母线保护以保证系统稳定性,而对于500kv和重要的220kv变电站配置双重化的母线保护。另对于母线故障要求有选择性切除故障及快速切除母线故障的变电站也可装设专用母线保护。 对于低压母线当在母线发生故障时如无专用母线保护则只能靠变压器后备保护及相邻的其它保护切除母线故障。 (三)、母线保护类型 母线保护一般采用差动原理构成,包括完全电流母差保护、不完全电流母差保护及电流相位比较式母差保护。大多数母差保护采用完全电流母差保护,在中低压母差保护当负荷支路很多时则可采用不完全电流母差保护,对于电流相位比较式母差保护则极少采用了。

变压器和母线保护配置重点讲义资料

1.1.10.4MVA及以上车间内油浸式变压器和0.8MVA及以上油浸式变压器,均应装设瓦斯保护。当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当壳内故障产生大量瓦斯时,应瞬时动作于断开变压器各侧断路器。 瓦斯保护应采取措施,防止因瓦斯继电器的引线故障、震动等引起瓦斯保护误动作。 1.1.2对变压器的内部、套管及引出线的短路故障,按其容量及重要性的不同,应装设下列保护作为主保护,并瞬时动作于断开变压器的各侧断路器: 1.1. 2.1电压在10kV及以下、容量在10MVA及以下的变压器,采用电流速断保护。 1.1. 2.2电压在10kV以上、容量在10MVA及以上的变压器,采用纵差保护。对于电压为10kV的重要变压器,当电流速断保护灵敏度不符合要求时也可采用纵差保护。 1.1. 2.3电压为220kV及以上的变压器装设数字式保护时,除非电量保护外,应采用双重化保护配置。当断路器具有两组跳闸线圈时,两套保护宜分别动作于断路器的一组跳闸线圈。 1.1.3纵联差动保护应满足下列要求: a.应能躲过励磁涌流和外部短路产生的不平衡电流;

b.在变压器过励磁时不应误动作; c.在电流回路断线时应发出断线信号,电流回路断线允许差动保护动作跳闸; d.在正常情况下,纵联差动保护的保护范围应包括变压器套管和引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。在设备检修等特殊情况下,允许差动保护短时利用变压器套管电流互感器,此时套管和引线故障由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 1.1.4对外部相间短路引起的变压器过电流,变压器应装设相间短路后备保护。保护带延时跳开相应的断路器。相间短路后备保护宜选用过电流保护、复合电压(负序电压和线间电压)启动的过电流保护或复合电流保护(负序电流和单相式电压启动的过电流保护)。 1.1.4.135kV~66kV及以下中小容量的降压变压器,宜采用过电流保护。保护的整定值要考虑变压器可能出现的过负荷。 1.1.4.2110kV~500kV降压变压器、升压变压器和系统联络变压器,相间短路后备保护用过电流保护不能满足灵敏性要求时,宜采用复合电压起动的过电流保护或复合电流保护。 1.1.5对降压变压器,升压变压器和系统联络变压器,根据各侧接线、连接的系统和电源情况的不同,应配置不同的相间

深瑞BP-2B母线保护装置使用说明

BP-2B 母差及失灵保护装置使用说明 BP-2B 母线差动保护是母线故障时的快速保护,能满足双母线运行灵活的要求。其在双母线并列运行,单母线运行解列运行,固定联结破坏及倒闸操作过程中均能正确动作,不必进行手动切换。在双母线并列运时发生母线短路或接地故障时保护动作无时限跳开母联及故障母线上联结的各元件断路器。在单母线运行时,当母线发生短路或接地故障时保护动作无时限跳开母线上联结的各元件断路器。 BP-2B 微机母差及失灵保护装置装置面板布置图如下图1: 图1 BP-2B 母差及失灵保护 BP-2B 型微机母线保护装置面板指示灯与按钮说明表:见表1 表1 BP-2B 型微机母线保护装置面板指示灯与按钮说明表

BP-2B保护装置运行或操作时相应的信号指示灯和界面显示表:见表2

BP-2B微机母线保护装置异常信息含义及菜单操作 BP-2B微机母线保护装置自检信息含义及处理建议:见下表3 表3 BP-2B微机母线保护装置自检信息含义及处理建议 BP-2B保护插件异常信息含义及处理建议:见下表4

BP-2B母线保护装置告警信号灯处理表:见下表5 表5 BP-2B母线保护装置告警信号灯处理表

BP-2B微机母线成套保护液晶显示画面总体结构示意图,如下图2: 图2 BP-2B微机母线成套保护液晶显示画面总体结构示意图 保护插件刀闸辅助接点与一次设备状态不对应时强制对应的步骤: a)由主界面按“确认”键进入一级菜单; b)按“←”键选中“参数”,后按“↓”键选中“运行方式设置”,按“确认”键, 后按“↑”、“↓”键输入密码后进入下一级菜单,按“确认”键,间隔数变成灰色; c)利用“↓”、“↑”,从界面中找到相应线路所对应的间隔,再按“确认”键,此 时间隔数灰色消失; d)按“↓”键选中所要改变的刀闸,再按“确认”键此时又变灰色;

母线差动保护调试方法

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值0.5,大差比例低值0.3,小差比例高值0.6,小差比例低值0.5,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,在差流比率制动动作满足条件下,分别验证保护Ⅰ母的电压闭锁中相电压(40.4V),负序电压(4V),零序电压定值(6V),正常电压,相应母线差动不出口,复合电压闭锁任一条件开放,差动出口。对于Ⅱ母故障,Ⅱ母单元加入故障电流,正常电压,逐项验证Ⅱ母复压开放。 3、CT断线闭锁差动,默认投入,闭锁三相,在Ⅰ母(或Ⅱ母)上任一单元A相加电流至CT断线闭锁定值,延时5S发“CT断线闭锁”事件,CT断线信号灯亮及信号接点闭合,此时另选一单元,A相加故障电流至差动动作值,此时差动不出口,B相故障电流满足差动条件,差动不出口,C相加故障电流满足差动

110KV母线保护

目录 1概述 (2) 1.1母线短路故障的原因 (2) 1.2 配置主要功能 (2) 1.3母线保护功能的主要技术要求 (3) 2装置主要功能及特点 (5) 2.1原理特点 (5) 2.2辅助功能及结构特点 (6) 3保护配置及技术参数 (6) 3.1技术参数 (6) 3.2保护配置 (7) 3.2.1母线差动保护 (7) 3.2.2 断路器失灵保护 (7) 3.2.3母联充电保护 (7) 3.2.4 母联过流保护 (8) 3.2.5 母联断路器失灵和死区保护 (8) 3.2.6 母联断路器非全相保护 (9) 3.2.7 复合电压闭锁 (9) 3.2.8 运行方式识别方式识别 (9) 4保护原理说明 (10) 4.1母线差动保护 (10) 4.2断路器失灵保护 (12)

110KV母线差动保护 1.概述 母线是电力系统配电装置中最常见的电气设备,是构成电气主接线图的主要设备。在发电厂和变电所的各级电压配电装置中,将发电机、变压器等大型电气设备与各种电器之间连接的导线称为母线。 母线的作用是汇集、分配和传送电能。 母线的分类: 按所使用的材料可分为铜母线、铝母线和钢母线。不同材料制作的母线具有各自不同的特点和使用范围。 ●铜母线:铜的电阻率低,机械强度高,抗腐蚀性强,是很好的 母线材料。但它在工业上有很多重要用途,而且储量不多, 是一种贵重金属。 ●铝母线:铝的电阻率为铜的1.7~2倍,而重量只有铜的30%, 铝母线比铜母线经济。 ●钢母线:钢的优点是机械强度搞,价格便宜。但钢的电阻率大, 为铜的6~8倍,用于交流时产生很强烈的集肤效应,并造成 很大的磁滞损耗和涡流损耗。 母线按截面形状可分为矩形、圆形、槽形和管形等。母线的截面形状应保证集肤效应系数尽可能小,同时散热条件好,机械强度高。 ●矩形截面:通常在35KV及以下的屋内配电装置中。优点是散 热好,集肤效应小,安装简单,连接方便。 ●圆形截面:在35KV以上的户外配电装置中,为了防止电晕,

相关主题
文本预览
相关文档 最新文档