当前位置:文档之家› 高中数学教案抛物线

高中数学教案抛物线

高中数学教案抛物线
高中数学教案抛物线

抛物线

一、知识网络

二、高考考点

1.抛物线定义的应用;

2.抛物线的标准方程及其几何性质;焦点、准线方程;

3.抛物线的焦点弦引出的问题;

4.直线与抛物线相交(或相切)引出的求法或范围问题;

5.抛物线与三角形(或四边形)问题。

三、知识要点

(一)定义与推论

1.定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. 这一定义为抛物线上任意一点M的焦点半径与水平线段(或垂直线段)的等价转换奠定理论基础.

2.推论:抛物线的焦点半径公式

设为抛物线上任意一点,则

设为抛物线上任意一点,则

其它情形从略。

(二)标准方程与几何性质

1.标准方程设抛物线的焦点F到准线l的距离为p(焦参数),则在特定直角坐标系下导出抛物线的标准方程:

①②③④

认知:上述标准方程中的一次项的功能:一次项本身决定抛物线的形状与位置.

其中,一次项所含变元对应的数轴为对称轴(焦点所在数轴);

一次项系数的符号决定焦点所在半轴(或开口方向):系数为正,焦点在相应的正半轴上(或开口朝着对称轴正向),反之,焦点在负半轴上(或开口朝着对称轴负向);

一次项系数的绝对值决定抛物线开口大小(形状):恰等于焦点参数的2倍.

2.几何性质对于抛物线

(1)范围:这条抛物线在y轴右侧,且向右上方和右下方无限延伸;

(2)对称性:关于x轴对称轴为这条抛物线的轴.

认知:抛物线的准线与其对称轴垂直(抛物线主要共性之一)

(3)顶点:原点O(0,0)(抛物线方程为标准方程的必要条件之一)

(4)离心率:(抛物线主要共性之二)

(三)挖掘与引申

1.抛物线方程的统一形式

1)顶点在原点,以x轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半);

焦点,准线;

顶点在原点,以y轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半);

焦点,准线;

(2)顶点在,对称轴垂直y轴的抛物线方程为:,其焦点参数;

顶点在,对称轴垂直x轴的抛物线方程为:,其焦点参数;

2.抛物线的焦点弦设且PQ为抛物线的一条经过焦点的弦.

(1)弦端点同名坐标的关系

(推导上述命题的副产品:,其中k为直线PQ的斜率)

(2)焦点弦长公式(Ⅰ)。

(Ⅱ)设直线PQ的倾斜角为,则

故有:

(3)的面积公式:;

(4)焦点半径与的关系(定值)

(四)直线与抛物线

直线与抛物线的位置关系,理论上由直线方程与抛物线方程的联立方程组实解的情况来确定,实践中往往归纳为对相关一元二次方程的判别式△的考察:直线与抛物线交于不同两点

直线与抛物线交于一点(相切)或直线平行于抛物线的对称轴;直线与抛物线不相交

四、抛物线经典例题

例1、(1)抛物线的焦点坐标为;

(2)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点到焦点F的距离为5,则抛物线方程为;

(3)经过抛物线的对称轴上一点作直线l与抛物线交于A、B两点,若A点纵坐标为,则B点纵坐标为 .

分析:(1)将抛物线方程化为标准方程切入

当时,抛物线标准方程为,此时,焦参数,焦点;

当时,抛物线标准方程为,此时,焦参数,焦点;

∴综上可知,不论a的正负如何,总有焦点坐标为 .

(2)这里 .注意到焦点半径在不同标准方程下的不同形式,运用抛物线标准方程的统一形式也不能避开讨论,故而爽直地从标准方程的讨论入手。①注意到点A在x轴下方,因此,

(Ⅰ)当抛物线焦点在x轴正半轴上时,设抛物线方程为,则①

又点A在抛物线上,则②∴由①,②得:或

∴由①得:p=9或p=1 ∴抛物线方程为:或

(Ⅱ)当抛物线焦点在x轴负半轴上时,设抛物线方程为,则,且

仿(Ⅰ)解得 p=1或p=9 ∴抛物线方程为或

(Ⅲ)当抛物线焦点在y轴负半轴上时,设抛物线方程为,则,∴p=4

∴此时抛物线方程为于是综合(Ⅰ)、(Ⅱ)、(Ⅲ)抛物线方程为或或 .

(3)为推导出其普通性的结论,我们将所给问题定义升级

经过抛物线的对称轴上一定点作抛物线的弦AB,若设,寻找点A、B的同名坐标之间的联系。

设弦AB所直线方程为①由①与联立,消去x :

∴②∴③

(Ⅱ)应用上述结论,当a=p,时,由②得∴ B的纵坐标为—4p

例2 、已知抛物线,点A(2,3),F为焦点,若抛物线上的动点到A、F的距离之和的最小值为,求抛物线方程.

分析:在解析几何中,关于到两个定点的距离之和的最小值(或距离之差的最大值)问题,运用纯代数方法解,导致复杂运算,因而常运用几何方法与相关曲线的定义。

解:注意到抛物线开口大小的不确定性

(1)当点A和焦点F在抛物线的异侧时,由三角形性质得

∴,解得p=2或p=6。

注意到p=6时,抛物线方程为,此时若x=2,则,与点A所在区域不符合;当p=2时,抛物线方程为,当x=2时,,符合此时的情形。

(2)当点A和焦点F在抛物线的同侧时(如图),作MN⊥准线l于点N,,得∴∴,解得

易验证抛物线符合此时情形。

于是综合(1)、(2)得所求抛物线方程为或.

点评:求解此题有两大误区:一是不以点A所在的不同区域分情况讨论,二是在由(1)(或(2))导出抛物线方程后不进行检验。事实上,在这里不论是A在什么位置,总得成立,本题进行的检验是必要的.

例3、经过抛物线的焦点作弦AB.

(1)若弦AB被焦点F分成的线段之比为3:1;求该弦所在直线的方程;

(2)求证:直线AB不会是这条抛物线任意一条弦CD的垂直平分线.

分析:对于比较复杂的抛物线的焦点问题,常采用对交点坐标“设而不解”的策略.

解:(1)设由题意知直线AB的斜率存在且不为0,设直线AB方程为①

将①代入消去x得:由韦达定理得:②

又由题意得(或)∴③

∴由③得:④

∴将②代入④解得:∴所求直线方程为:或 .

(2)证明:由题意抛物线焦点,准线;假设直线AB为弦CD的垂直平分线.则⑤

注意到C,D两点在抛物线上∴过C,D分别作于G,于H,则又有⑥∴由⑤、⑥知,即四边形CDHG为矩形∴轴∴轴

∴这与直线AB与抛物线有两个交点矛盾。于是可知,直线AB不是弦CD的垂直平分线。

点评:(Ⅰ)本例(1)的求解特色,一是利用三角形相似转化已知条件;弦AB被焦点F分成的线段比为3:1(或);二是以为基础构造并寻觅出和的关系式,从而为利用①式创造了条件.

(Ⅱ)对于(2)等否定性命题,常常用反证法证明.请大家在解题过程中注意领会和感悟反证法的思路与策略.

例4、如图,已知抛物线的焦点为F,直线l过定点A(4,0),且交抛物线于P、Q两点。

(1)若以PQ为直径的圆经过原点,求p的值;

(2)在(1)的条件下,若,求动点R的轨迹方程。

分析:注意到直线l过定点A(4,0),引入新参数k,故考虑对P、Q坐标“既设又解”。

解:(1)当直线l不垂直于x轴时,设直线l的方程为①

把①代入抛物线方程得

由题意:恒成立

且②∴③

由题设得④

∴②、③代入④得:∴此时p=2 当直线l垂直于x轴时,直线l的方程为x=4,将x=4代入抛物线方程得: . ∴由得

∴此时亦p=2 于是综合以上讨论得p=2.

(2)解法一(既设又解):设动点R坐标为(x,y),

由(1)知p=2,F(1,0) ∴

∴由得:⑤∴由②、⑤得:⑥

⑦由⑥、⑦消去参数得:

当直线l垂直于x轴时,有,从而点满足

因此,所求动点R的轨迹方程为 .

解法二(设而不解):由(1)所设 . 得:⑧

又∴两式组合得:,即

∴当时得:⑨注意到得四边形PRQF为平行四边形.

∴线段PQ与FR互相平分设FR中点为M,由⑧得再注意到P、Q、M、A四点共线

∴∴⑩∴由⑨、⑩得:

而当时,适合⑩式于是可知,所求动点R的轨迹方程为 .

点评:对于(2)解法一“既设又解”的思路,过程简略,不需认知条件几何意义,便可导出动点R的条件,的几何意义以及P、Q、M、A四点共线的特殊性质,解题具有较高的技术含量。

例5、直线l与抛物线交于A、B两点,O为原点,且有 .

(1)求证:直线l恒过一定点;(2)若,求直线l的斜率的取值范围.

(3)设抛物线焦点为F,,试问:角能否等于?若能,求出相应的直线l的方程;若不能,试说明理由。

分析:鉴于问题的复杂性,考虑对A、B坐标“既设又解”,注意到大前提有三个小题,故从大前提的认知与延伸切入.

解:(1)设,则有由得①

∴②注意到这里,由①得:,故由②得,③

(Ⅰ)当直线l与x轴不垂直时,设其方程为,

将其与抛物线方程联立,消去x得:由题意:④

且⑤∴由③,⑤得:∴直线l的方程为,可见直线l过定点(2,0)。

(Ⅱ)当轴时可得,直线l方程为,亦过定点(2,0)。综上可得,直线l恒过定点(2,0)。

(2)由(1)得:

∴由得:

∴所求k的取值范围为

(3)设,则有⑥

⑦而由抛物线定义知:,⑧

∴将⑦,⑧代入⑥解得:,这与且矛盾。

并注意到当轴时,综上可知,。

点评:若直线与抛物线交于不同两点A、B,且,则弦AB具有与焦点弦相似的性质:(Ⅰ)弦端点同名坐标之积为定值:

(Ⅱ)直线AB经过抛物线的轴上一定点.

例6、已知抛物线 .设AB是抛物线上不重合的两个任意点,且,(O为坐标原点)

(1)若,求点M的坐标;(2)试求动点M的轨迹方程。

分析:注意到这里解题头绪的繁多,故考虑对A、B坐标“既设又解”或“解而不设”,以“求解”来化解解题的难度。

解:设,则

且 .

∴由得①

解法一(既设又解):

由得

又故得②

∴由①、②得

∴③∴(或)④

于是再由已知条件得∴此时点M坐标为(4p,0).

(2)设动点M(x,y),则由得

⑤又由①得:∴⑥

∴由⑤、⑥得:

整理得:∴所求动点M的轨迹方程为 .

解法二(对A、B坐标解而不设):

由题意,设直线OA的方程为,

则直线OB : .设M(x,y),得由解得由解得

∴由得⑦

(1)由得:∴,即

∴当时或时,均由⑦得点;

(2)注意到,由⑦得∴消去参数k,得即

∴所求动点M的轨迹方程为 .

点评:(1)本题已知条件:,四边形OAMB为矩形.

(2)对解法一、解法二进行比较:

(Ⅰ)对交点坐标“解而不设”思路简捷,过程明朗,通俗易懂。因此,当直线方程或曲线方程比较简单时,要注意适时运用这一策略。

(Ⅱ)细细品味,解法一中对A、B坐标的“既设又解”,与前面解决直线与椭圆(或双曲线)相交问题时,对交点坐标的“只设不解”有着明显不同。其中,前面解决直线与椭圆(或双曲线或抛物线)相交问题时,设出交点坐标之后,解“直线方程与曲线方程联立的方程组”,解题中途运用韦达定理;而本题中设出A、B坐标之后,解的是“关于所设交点坐标的等式所成的方程组”,而且是一解到底,直到解出所设交点坐标,前后的“既设又解”,一样说法,两种风情,其中的区别与缘由,需要我们细细品味。

五、高考真题

(一)选择题

(1)已知双曲线()的一条准线与抛物线的准线重合,则该双曲线的离心率为()

A. B. C. D.

分析:抛物线的准线为

∴对于双曲线有:①

∴②

∴由①,②得:∴由②得于是:,应选D.

(2)设抛物线的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的

斜率的取值范围为()

A. B. [-2,2] C. [-1,1] D. [-4,4]

分析:抛物线的准线方程为∴点Q坐标为(-2,0)

由题意,设直线l的方程为代入得:①

可知,k=0符合已知条件;②∴当时,由①得③

∴由②,③得应选C.

(3)过抛物线的焦点作一条直线与抛物线交于A、B两点,它们的横坐标之和等于5,则这样的直线()

A.有且只有一条

B.有且只有两条

C.有无穷多条

D.不存在

分析:抛物线的焦点F(1,0).

若直线轴,则A、B横坐标之和等于2,与题意不合,故AB不垂直于x轴,于是由抛物线关于x轴的对称性知,这样的直线有两条,故选B.

(二)解答题

1.设两点在抛物线上,l是AB的垂直平分线.

(1)当且仅当取何值时,直线l经过抛物线的焦点F?证明你的结论;

(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.

分析:从线段AB的垂直平分线的性质切入

(1)直线l经过F 又l为弦AB的垂线平分线,问题由此可以突破

(2)以A、B关于直线l对称的条件突破难点。

解:(1)抛物线∴焦点∵

∴即,

∵,∴,即当且仅当时,直线l经过抛物线的焦点F.

(2)设直线l在y轴上的截距为b,则直线l的方程为∴可设直线AB的方程为①

①代入得:

∴由题意得:②

且③又设弦AB的中点为,

解得:,,即:

注意到,∴∴④

∵由②得:∴由④得:

即直线l在y轴上的截距的取值范围为

点评:利用解出的范围②,再利用直线l经过弦AB的中点导出b与m的关系式,则由

②导出b的取值范围便呼之欲出了。

2.抛物线C的方程为,过抛物线C上一点作斜率为的两条直线分别交抛物线C于两点(P、A、B三点互不相同),且满足(,且).

(1)求抛物线C的焦点坐标和准线方程;

(2)设直线AB上一点M,满足,证明:线段PM的中点在y轴上;

(3)当时,若点P坐标为(1,-1),求为钝角时,点A的纵坐标的取值范围.

分析:(Ⅰ)对于(2),为采用向量的坐标公式,通过直线方程去求解或表示点A、B坐标。因此,解(2)由写出斜率为的直线方程切入,从求解A、B坐标突破(对A、B 坐标既设又解);

(Ⅱ)对于(3),为钝角,故仍从推导A、B以及入手.

解:(1)抛物线方程这里的焦点参数,

∴焦点坐标为,∴准线方程为

(2)由题设知①∴直线的方程为②

②与抛物线方程联立解得∴当时,,

∴,③同理,④

设点M坐标为,

则由以及③、④得

又,∴,∴,即线段PM的中点在y轴上.

(3)当时,由点P(1,-1)在抛物线上得 .

∴由(2)得,

∴,

注意到为钝角

而,∴当时,,从而;⑤

当时,,从而⑥

于是综合⑤、⑥得所求的取值范围为

点评:对于本题而言,第(2)小题的处理至关重要,在这里,利用点P坐标和斜率,首先建立起直线的方程,而后与抛物线方程联立,导出与的关系式③,则获知与的关系式④,便一蹴而就,于是再利用题设条件推导点M的横坐标与的关系便有八分胜算了。

3.在平面直线坐标系中,抛物线上异于坐标原点O的不同两点A、B满足(如图)(1)求的重心G的轨迹方程;(2)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

分析:注意到抛物线方程的简单以及重心公式的结构,容易首先对A、B坐标“设而不解”;其次是“解而不设”.其实,若注意到的表达式,则“解而不设”会更胜一筹。

解:(1)设直线OA的方程为,将其与抛物线方程联立,解得

又由,设直线OB的方程为,同理解得

设的重心为,则由三角形重心坐标公式(推导从略)得

注意到,由①,②消去参数得

∴所求的重心G的轨迹方程为

(2)设的面积为S,

由得

当且仅当时取等号. ∴(当且仅当时取得)

∴的面积存在最小值,且最小值为1.

点评:对有关直线与曲线的交点“解而不设”,使解题的脉胳清晰,前途明朗,解题的技术含量较低。因此,对于方程简单的抛物线与直线相交问题,应注意适时的运用这一策略。

4.如图,设抛物线的焦点为F,动点P在直线上运动,过点P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求的重心G的轨迹方程;(2)证明:

分析:注意到这里的PA、PB为切线,并且抛物线方程简单,

故考虑对A、B坐标“设而不解”;对于(2),由于(1)中已经

设出并表示出A、B、P的坐标,故首选以证明两角的余弦值相等突破。

解:(1)设切点

由得:切线PA的方程为①

切线PB的方程为②

∴由①,②联立解得点P坐标。设的重心坐标为,

解得:即③

∴④注意到点P在直线l上,∴⑤

∴④代入⑤得:,即:

∴所求的重心G的轨迹方程为 .

(2)由(1)知,又

∴,,

且,

∴∴

点评:在此证明习题的过程中,将有关点的坐标或向量的坐标分别代入目标式两边,乃是为了在变形之后暴露出左右两边的相同之处。因此,当目标式两边中有同一量时,可考虑暂时保持这一量不变,而率先变化其余部分;“保留相同部分,变形不同部分”,这是用计算的方法证明等式成立的基本技巧。请同学们在上述解答中品悟这一技巧的应用。

5.已知动圆过定点且与直线相切,其中p>0.

(1)求动圆圆心的轨迹C的方程;

(2)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值时,证明:直线AB恒过定点,并求出该定点的坐标。

分析:(1)定点,直线,得由直线与圆相切的充要条件知,动圆圆心M到定直线l 的距离等于圆的半径,据此,可运用“直接法”,也可运用“定义法”求动圆圆心轨迹方程。

(2)注意到这里最终须写出直线AB的方程,又直线OA、OB的方程易求,从而A、B 坐标易解,故可优先选择对点A、B的坐标“解而不设”。

解:(1)设动圆圆心,定点,由动点M到定点F和定直线l距离相等,且定点不在定直线上

∴由抛物线定义知,动点M的轨迹C是以定点为焦点,直线为准线的抛物线

∴动点M的轨迹C的方程是:

(2)设直线OA的方程为,直线OB的方程为,则, .

∴由解得:,由解得:

(Ⅰ)直线AB的斜率:∴直线AB的方程为:

即①注意,

∴由①解直线AB的方程为:②

即③

又注意到这里为定值,∴由②知直线AB恒过定点

(Ⅱ)讨论:当时,,从而,由①直线AB的方程为

,此时直线AB恒过定点(2p,0)

当,即时,,这里不合,于是综合以上讨论可知,当时,直线AB恒过定点(-2p,0);当时,直线AB恒过定点

点评:运用这一策略解题,其难度在于由①到②的凑项;当时,为将直线AB过定点和建立联系,首先在直线AB的方程①的常数项部分凑出,则前一部分自然随之变为,于是方程①摇身一变成为方程②,直线AB经过的定点便暴露在我们的视野之中了。

6.给定抛物线,F是C的焦点,过点F的直线l与C相交于A、B两点.

(1)设l的斜率为1,求与夹角的大小;(2)设,若,求l在y轴上截距的变化范围.

分析:当与的夹角为,以求的值切入。

注意到(1)的目标与(2)的条件,故考虑对交点A、B的坐标“既设又解”,以取“设”与“解”的两者之中,简化求解过程。

解:(1)抛物线C的焦点F(1,0),直线l的方程为①设,与的夹角为,将①代入抛物线方程得:

由题设知,为这一方程的不等实根,显然成立

由违达定理得②

∴③④

∴由③、④解

∴与夹角的大小为

(2)设直线l的方程为,。

由得

显然成立且⑤

由题设得

即∴又

∴⑥

∴由⑤、⑥解得⑦

于是将⑦代入得:

解得:⑧

当解

∴在[4,9]上为增函数∴即∴

∴由⑧得或

因此,直线l在y轴上的截距的取值范围为

点评:对于(2),利用向量的坐标由导出,是沟通与A、B坐标的联系,进而通过⑤式导出k与关系。

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

2019-2020年高中数学 第二章《抛物线》教案 新人教A版选修2-1

2019-2020年高中数学第二章《抛物线》教案新人教A版选修2-1 一教学设想 12. 3 1抛物线及标准方程 (1)教具的准备 问题1:同学们对抛物线已有了哪些认识? 在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象? 问题2:在二次函数中研究的抛物线有什么特征? 在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线. 通过提问来激发学生的探究欲望,首先研究抛物线的定义,教师可以用直观的教具叫学生参与进行演示,再由学生归纳出抛物线的定义. (2)抛物线的标准方程 设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢? 让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的方案 方案1:(由第一组同学完成,请一优等生演板.)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作 MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}. 化简后得:y2=2px-p2(p>0). 方案2:(由第二组同学完成,请一优等生演板) 以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:p={M||MF|=|MD|}. 化简得:y2=2px+p2(p>0). 方案3:(由第三、四组同学完成,请一优等生演板.) 取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

(教案)高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 或P px y y x 2),(2 =其中 5一般情况归纳:方程 图象 焦点 准线 定义特征 y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. C N M 1 Q M 2 K F P o M 1 Q M 2 K F P o y x

2019人教版 高中数学【选修 2-1】专题05解密与椭圆双曲线抛物线概念有关的最值问题特色专题训练

2019人教版精品教学资料·高中选修数学 一、选择题 1.【四川省绵阳南山中学2017-2018学年高二上学期期中】已知点P 是抛物线2 2y x =上的一个动点,则点 P 到点()0,2A 的距离与P 到该抛物线的准线的距离之和的最小值为( ) A . 9 2 B C . 2 D . 2 【答案】D 2.【吉林省舒兰一中2017-2018学年高二上学期期中】如图,已知椭圆 22 13216 x y +=内有一点()122,2,B F F 、是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( ) A . B . C . 4 D . 6 【答案】B 【解析】() 122MF MB a MF MB +=-- 2 2BF a ≥-→ == 当且仅当2,,M F B 共线时取得最小值故答案选B

3.【北京朝阳垂杨柳中学2016-2017学年高二上学期期中】已知经过椭圆 22 12516 x y +=右焦点2F 的直线交椭圆于A 、B 两点,则1AF B 的周长等于( ) A . 20 B . 10 C . 16 D . 8 【答案】A 【解析】因为椭圆的方程为 22 12516x y +=,所以由椭圆的定义可得1212210,210AF AF a BF BF a +==+==, 1ABF ∴?周长为112220AF BF AF BF +++=,故选A . 4.【内蒙古自治区太仆寺旗宝昌一中2016-2017学年高二下学期期中】设为定点,动点满 足 |,则动点的轨迹是( ) A . 椭圆 B . 直线 C . 圆 D . 线段 【答案】D 5.【福建省闽侯第六中学2018届高三上学期第一次月考】已知椭圆: 22 2 1(02)4x y b b +=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +的最大值为5,则b 的值是( ) A . 1 B C . 3 2 D 【答案】D 【解析】试题分析:由椭圆定义,得2248AB AF BF a ++==,所以当线段AB 长度达最小值时, 22BF AF +有最大值.当AB 垂直于x 轴时, 22 2min ||222 b b AB b a =?=?=,所以22BF AF +的最大 值为2 85b -=,所以23b =,即b = D . 考点:1、椭圆的定义及几何性质;2、直线与椭圆的位置关系. 【方法点睛】(1)涉及椭圆上的点与两焦点的距离时,要注意联想椭圆的定义,要结合图形看能否运用定

高中数学《任意角》教案3 苏教版必修4

第 1 课时:§1.1.1 任意角 【三维目标】: 一、知识与技能 1. 使学生理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角; 2.能在00到0360范围内,找出一个与已知角终边相同的角,并判定其为第几象限角; 3.能写出与任一已知角终边相同的角的集合 二、过程与方法 1.通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法; 2.通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示; 3.讲解例题,总结方法,巩固练习. 三、情感、态度与价值观 1. 通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系. 2.理解掌握终边相同角的表示方法,树立运动变化的观点,理解静是相对的,动是绝对的,学会运用运动变化的观点认识事物,并由此深刻理解推广后的角的概念. 【教学重点、难点与关键】: 重点:任意角的概念 难点:把终边相同的角用集合和符号语言正确地表示出来; 关键:理解终边相同的角的意义 【学法与教学用具】: 1.学法:在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示,以及正负角的表示,另外还有相同终边角的集合的表示等。 2. 教学用具:多媒体、实物投影仪、三角板、圆规. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 我们已经学习过一些角,如锐角、直角、钝角、平角、周角。利用这些角,我们已能表示圆周上某些点P 。但要表示圆周上周而复始地运动着的点,仅有这些角是不够的。如点P 绕圆心旋转一周半,所在位置怎样用角来表示?在生活中,也有类似情形。如在体操、跳水中,有“转体0720”、“翻腾两周半”这样的动作名称,“0720”在这里也是用来表示旋转程度的一个角。 ●0720是怎样的一个角? 二、研探新知

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

高二数学教案:抛物线教案人教版

人教版抛物线教案 一.教学目的: 1.掌握抛物线的概念. 2.掌握抛物线的标准方程及其应用. 3.理解并应用抛物线的几何性质. 二.重点难点: 1.重点:抛物线的标准方程及其应用.抛物线的几何性质. 2.难点:抛物线的几何性质. 三.教学过程: 引入新课:与一定点的距离和一条定直线的距离比是常数e的点的轨迹,当e<1时,是椭圆,当e>1时,是双曲线。当e=1时,是什么曲线呢?(让同学们看课件抛物线的定义部分,然后让学生回答,给出抛物线的定义。) 如图平面内与一个定点F 和一条定直线L 的距离 相等的点的轨迹叫做抛物线. 结合课件,让学生推导抛物线的标准方程. 取过焦点F且垂直与准线L的直线为x轴,x轴与L相交于点K,以线段KF 的垂直平分线为y轴,如右图.设KF =p,则焦点F的坐标为F(2 p ,0),准线L 的方程为:x=- 2 p . 设抛物线上的点M(x,y)到L的距离为d.抛物线也就是集合P={MMF =d}. ∵MF =2 2y p x +??? ?? - , d=2 p x +, ∴2 2y p x +??? ?? - =2 p x + 将上式整理可得抛物线的标准方程:y2 =2px(p>0) 让学生自己总结,写出抛物线标准方程的其他几种形式.教师总结如下表:

最后让学生看课件抛物线的标准方程部分,加深印象. 接着让学生看e与图线形状之间的关系.让学生对抛物线、椭圆、双曲线有一个整体认识,为后面综合应用打好基础. 例题1:求下列抛物线的焦点坐标和准线方程: ⑴x2=2y: ⑵y2-6x=0: 例题2:拱形桥洞是一段抛物线,宽7m,高为0.7m,求这条抛物线的方程.

高中数学《任意角》教案1 苏教版必修4

1.1.1 任意角(1) 一、课题:任意角(1) 二、教学目标:1.理解任意角的概念; 2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书 写。 三、教学重、难点:1.判断已知角所在象限; 2.终边相同的角的书写。 四、教学过程: (一)复习引入: 1.初中所学角的概念。 2.实际生活中出现一系列关于角的问题。 (二)新课讲解: 1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。 说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类: 正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角; 零角:如果一条射线没有做任何旋转,我们称它为零角。 说明:零角的始边和终边重合。 3.象限角: 在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。 例如:30,390,330-o o o 都是第一象限角;300,60-o o 是第四象限角。 (2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:90,180,270o o o 等等。 说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。 4.终边相同的角的集合:由特殊角30o 看出:所有与30o 角终边相同的角,连同30o 角自身在内,都可以写成30360 k +?o o ()k Z ∈的形式;反之,所有形如30360k +?o o ()k Z ∈的角都与30o 角的终边相同。 从而得出一般规律: 所有与角α终边相同的角,连同角α在内,可构成一个集合 {}|360,S k k Z ββα==+?∈o , 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 说明:终边相同的角不一定相等,相等的角终边一定相同。 5.例题分析: 例 1 在0o 与360o 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120-o (2)640o (3)95012'-o 解:(1)120240360-=-o o o , 所以,与120-o 角终边相同的角是240o ,它是第三象限角; (2)640280360=+o o o , 所以,与640o 角终边相同的角是280o 角,它是第四象限角; (3)95012129483360''-=-?o o o , 所以,95012'-o 角终边相同的角是12948'o 角,它是第二象限角。

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

沪教版高中数学高二下册 -12.7 抛物线的标准方程 教案

教学题目:抛物线的标准方程 教学目标: 1. 能力与技能: (1)掌握抛物线的定义,理解抛物线的发生过程 (2)掌握抛物线的四种标准方程、图像、焦点、准线之间的关系 (3)会用待定系数法确定抛物线标准方程。 2. 过程与方法: (1) 有实际问题引入要研究的课题,发展学生的实践能力,通过实验使学生 发现抛物线的形成过程。 (2) 求抛物线的焦点坐标和准线方程中贯彻数形结合的思想。 (3) 掌握待定系数法在方程中的应用。 3. 情感与价值观: 让学生学会细心观察周围的事物,数学来源于生活,又为生活服务。 教学过程: 一.引入:探照灯、汽车前灯、卫星天线、激光 望远镜都是利用抛物线原理制成的,因此在生活当 中,抛物线是一个用途非常广泛的曲线。下面简单 介绍抛物线的光学反射原理,引起学生的兴趣。从 而引出课题:抛物线的标准方程。 二.新课: 1. 抛物线的定义:先从一个有趣的实验说起,仔细讲解实验的过程,让学生从实验的过程中发现抛物线的特点,从中学生可以自己总结出抛物线的定义:平面上与一个定点F 和一条定直线l(F 不在l 上)的距离相等的点的轨迹叫做抛物线。点F 叫做抛物线的焦点。定直线l 叫做抛物线的准线。同时强调抛物线定义也是抛物线的性质即:是抛物线上的点就满足到焦点距离等于到准线的距离。 2. 抛物线标准方程的推导: 求一般曲线的方程(一般步骤):1.建系2.设点3列式4.化简 建立抛物线的坐标系(由学生讨论)过点F 做准线L 的垂线,垂足为K 。以直线KF 为x 轴,线段KF 的中垂线为y 轴建立直角坐标系。 设︱KF ︱= p,则焦点F 的坐标是(2p ,0),准线l 的方程为2 p x -=

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

1.1.1任意角教案

1.1.1任意角教案 一、教材分析 1、本节教材的地位和作用: 本课是数学必修4第一章三角函数中第一节的第一课时。三角函数是基本初等函数,它是描述周期现象的重要数学模型。这一节中包括任意角、终边相同的角的表示方法和象限角三个内容。角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续。为进一步研究角的和、差、倍、半关系提供了条件,也为今后学习解析几何、复数等相关知识提供有利的工具,所以学生正确的理解和掌握角的概念的推广尤为重要。 2、教学目标: 知识与技能目标: (1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角a终边相同的角(包括角a)的表示方法; 过程与方法目标: (1)提高学生的计算能力,归纳概括能力和类比思维能力; (2)通过画图和判断角的象限,培养学生数形结合的思想方法; 情感态度与价值观目标: (1)创设问题情景,激发分析探求的学习态度,强化参与意识; (2)学会运用运动变化的观点认识事物. 3、教学重点、难点: 重点:理解任意角中正角、负角和零角和象限角的定义。 难点: 终边相同的角的表示方法。 二、学生情况分析 学生在初中就已经学过角的定义。从学生学过的东西出发,结合实际生活中的例子,将任意角的范围扩展到大于360度,可以引发学生的的认知冲突,激发学生的求知欲望,为这节课的顺利进行提供了有利的条件。 三、教法学法 教法分析: 探索与发现新知识是教学的重点。所以在教学中主要采用以问题驱动、层层铺垫,从特殊到一般启发学生获得新知识。 学法指导: 建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的知识背景相联系。 在教学中,采用自主探索与合作交流的学习方式,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

吉林省东北师范大学附属中学2014-2015学年高中数学人教A版选修1-1课时教案:2.3.1抛物线及标准方程

(1)教具的准备 问题1:同学们对抛物线已有了哪些认识? 在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象? 问题2:在二次函数中研究的抛物线有什么特征? 在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线. 通过提问来激发学生的探究欲望,首先研究抛物线的定义,教师可以用直观的教具叫学生参与进行演示,再由学生归纳出抛物线的定义. (2)抛物线的标准方程 设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢? 让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的方案 方案1:(由第一组同学完成,请一优等生演板.)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作 MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}. 化简后得:y2=2px-p2(p>0). 方案2:(由第二组同学完成,请一优等生演板) 以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:p={M||MF|=|MD|}. 化简得:y2=2px+p2(p>0). 方案3:(由第三、四组同学完成,请一优等生演板.) 取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第 3 讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点 F 的距离与它到定直线l ( F l )的距离相等的点的轨迹叫抛物线,这 个定点F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。 注 1:在抛物线的定义中,必须强调:定点 F 不在定直线l 上,否则点的轨迹就不是一个抛 物线,而是过点 F 且垂直于直线l 的一条直线。 注 2:抛物线的定义也可以说成是:平面内到某一定点 F 的距离与它到定直线l ( F l ) 的距离之比等于 1 的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事 实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1. 抛物线的标准方程 抛物线的标准方程有以下四种: p ,0) ,准线为 x p (1) y 2 2 px ( p0),其焦点为F ( 2 2 ; (2) y 2 2 px ( p0 ),其焦点为F (p,0) ,准线为x p 2 2 ; F (0, p y p (3)x2 2 py ( p0 ) 2 ),其焦点为2,准线为; F (0, p p (4)x 2 2 py ( p )y ),其焦点为 2 ,准线为 2 . 2. 抛物线的标准方程的特点

抛物线的标准方程 y 2 2 px ( p 0 )或 x 2 2 py ( p )的特点在于:等号的一端 是某个变元的完全平方, 等号的另一端是另一个变元的一次项, 抛物线方程的这个形式与其 位置特征相对应:当抛物线的对称轴为 x 轴时,抛物线方程中的一次项就是 x 的一次项,且 一次项 x 的符号指明了抛物线的开口方向; 当抛物线的对称轴为 y 轴时, 抛物线方程中的一 次项就是 y 的一次项,且一次项 y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 y 2 2 px ( p 0 )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围: x , y R ; (2)顶点:坐标原点 O (0,0) ; (3)对称性:关于 x 轴轴对称,对称轴方程为 y ; ( 4)开口方向:向右; ( 5)焦参数: p ; F ( p ,0) (6)焦点: 2 ; p x (7)准线: 2 ; ( 8)焦准距: p ; ( 9)离心率: e 1; (10)焦半径:若 P(x 0 , y 0 ) 为抛物线 y 2 2 px ( p 0 )上一点,则由抛物线的定义,有 PF x 0 p 2 ; (11)通径长: 2p . 注 1 :抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 y 2 2 px

相关主题
文本预览
相关文档 最新文档