当前位置:文档之家› 字符设备驱动,架构分析,字符设备驱动笔记

字符设备驱动,架构分析,字符设备驱动笔记

字符设备驱动,架构分析,字符设备驱动笔记
字符设备驱动,架构分析,字符设备驱动笔记

字符设备驱动架构分析

好长时间没怎么看书了,最近把字符设备驱动部分又复习了一下,写个笔记. Char Device Driver

相关数据结构:

struct cdev {

struct kobject kobj;

struct module *owner;

const struct file_operations *ops;

struct list_head list;

dev_t dev;

unsigned int count;

};

struct kobj_map {

struct probe {

struct probe *next;

dev_t dev;

unsigned long range;

struct module *owner;

kobj_probe_t *get;

int (*lock)(dev_t, void *);

void *data;

} *probes[255];

struct mutex *lock;

};

static struct char_device_struct {

struct char_device_struct *next;

unsigned int major;

unsigned int baseminor;

int minorct;

char name[64];

struct file_operations *fops;

struct cdev *cdev; /* will die */

} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

#define CHRDEV_MAJOR_HASH_SIZE 255

下面本文通过一下三个方面以及他们的关联来描述字符设备驱动:

1. 字符驱动模型

2. 字符设备的设备号

3. 文件系统中对字符设备文件的访问

1. 字符驱动模型

每个字符驱动由一个cdev 结构来表示.

在设备驱动模型(device driver model)中, 使用(kobject mapping domain) 来记录字符设备驱动. 这是由struct kobj_map 结构来表示的. 它内嵌了255个struct probe指针数组

kobj_map由全局变量cdev_map 引用: static struct kobj_map *cdev_map;

.

相关函数说明:

cdev_alloc() 用来创建一个cdev的对象

cdev_add() 用来将cdev对象添加到驱动模型中,其主要是通过kobj_map()来实现的.

kobj_map() 会创建一个probe对象,然后将其插入cdev_map中的某一项中,并关联probe->data 指向cdev

struct kobject *kobj_lookup(struct kobj_map *domain, dev_t dev, int *index)

根据设备号,在cdev_map中查找其cdev对象内嵌的kobject. (probe->data->kobj),返回的是cdev的kobject

2. 字符设备的设备号

字符设备的主,次设备号的分配:

全局数组chrdevs 包含了255(CHRDEV_MAJOR_HASH_SIZE 的值)个struct char_device_struct的元素. 每一个对应一个相应的主设备号.

如果分配了一个设备号,就会创建一个struct char_device_struct 的对象,并将其添加到chrdevs 中.

这样,通过chrdevs数组,我们就可以知道分配了哪些设备号.

相关函数:

register_chrdev_region( ) 分配指定的设备号范围

alloc_chrdev_region( ) 动态分配设备范围

他们都主要是通过调用函数__register_chrdev_region() 来实现的

要注意,这两个函数仅仅是注册设备号! 如果要和cdev关联起来,还要调用cdev_add()

register_chrdev( ) 申请指定的设备号,并且将其注册到字符设备驱动模型中.

它所做的事情为:

1. 注册设备号, 通过调用__register_chrdev_region() 来实现

2. 分配一个cdev, 通过调用cdev_alloc() 来实现

3. 将cdev添加到驱动模型中, 这一步将设备号和驱动关联了起来. 通过调用cdev_add() 来实现

4. 将第一步中创建的struct char_device_struct 对象的cdev 指向第二步中分配的cdev. 由于register_chrdev()是老的接口,这一步在新的接口中并不需要.

3. 文件系统中对字符设备文件的访问

对于一个字符设备文件, 其inode->i_cdev 指向字符驱动对象cdev, 如果i_cdev为NULL ,则说明该设备文件没有被打开.

由于多个设备可以共用同一个驱动程序.所以,通过字符设备的inode 中的i_devices 和cdev中的list组成一个链表

首先,系统调用open打开一个字符设备的时候, 通过一系列调用,最终会执行到chrdev_open.

(最终是通过调用到def_chr_fops中的.open, 而def_chr_fops.open = chrdev_open. 这一系列的调用过程,本文暂不讨论)

int chrdev_open(struct inode * inode, struct file * filp)

chrdev_open()所做的事情可以概括如下:

1. 根据设备号(inode->i_rdev), 在字符设备驱动模型中查找对应的驱动程序, 这通过kobj_lookup() 来实现, kobj_lookup()会返回对应驱动程序cdev的kobject.

2. 设置inode->i_cdev , 指向找到的cdev.

3. 将inode添加到cdev->list的链表中.

4. 使用cdev的ops 设置file对象的f_op

5. 如果ops中定义了open方法,则调用该open方法

6. 返回.

执行完chrdev_open()之后,file对象的f_op指向cdev的ops,因而之后对设备进行的read, write等操作,就会执行cdev的相应操作.

转载请著名出处:https://www.doczj.com/doc/7514971494.html,/BBS/showtopic-234.aspx

硅谷芯微技术中心:https://www.doczj.com/doc/7514971494.html, 芯片级IT教育第一品牌

开设课程:单片机、嵌入式、ARM、Linux、Android、iphone、PCB设计

官方网址:https://www.doczj.com/doc/7514971494.html,

字符设备驱动程序课程设计报告

中南大学 字符设备驱动程序 课程设计报告 姓名:王学彬 专业班级:信安1002班 学号:0909103108 课程:操作系统安全课程设计 指导老师:张士庚 一、课程设计目的 1.了解Linux字符设备驱动程序的结构; 2.掌握Linux字符设备驱动程序常用结构体和操作函数的使用方法; 3.初步掌握Linux字符设备驱动程序的编写方法及过程; 4.掌握Linux字符设备驱动程序的加载方法及测试方法。 二、课程设计内容 5.设计Windows XP或者Linux操作系统下的设备驱动程序; 6.掌握虚拟字符设备的设计方法和测试方法;

7.编写测试应用程序,测试对该设备的读写等操作。 三、需求分析 3.1驱动程序介绍 驱动程序负责将应用程序如读、写等操作正确无误的传递给相关的硬件,并使硬件能够做出正确反应的代码。驱动程序像一个黑盒子,它隐藏了硬件的工作细节,应用程序只需要通过一组标准化的接口实现对硬件的操作。 3.2 Linux设备驱动程序分类 Linux设备驱动程序在Linux的内核源代码中占有很大的比例,源代码的长度日益增加,主要是驱动程序的增加。虽然Linux内核的不断升级,但驱动程序的结构还是相对稳定。 Linux系统的设备分为字符设备(char device),块设备(block device)和网络设备(network device)三种。字符设备是指在存取时没有缓存的设备,而块设备的读写都有缓存来支持,并且块设备必须能够随机存取(random access)。典型的字符设备包括鼠标,键盘,串行口等。块设备主要包括硬盘软盘设备,CD-ROM等。 网络设备在Linux里做专门的处理。Linux的网络系统主要是基于BSD unix的socket 机制。在系统和驱动程序之间定义有专门的数据结构(sk_buff)进行数据传递。系统有支持对发送数据和接收数据的缓存,提供流量控制机制,提供对多协议的支持。 3.3驱动程序的结构 驱动程序的结构如图3.1所示,应用程序经过系统调用,进入核心层,内核要控制硬件需要通过驱动程序实现,驱动程序相当于内核与硬件之间的“系统调用”。

字符设备基础

Linux 字符设备基础 字符设备驱动程序在系统中的位置 操作系统内核需要访问两类主要设备,简单的字符设备,如打印机,键盘等;块设备,如软盘、硬盘等。与此对应,有两类设备驱动程序。分别称为字符设备驱动程序和块设备驱动程序。两者的主要差异是:与字符设备有关的系统调用几乎直接和驱动程序的内部功能结合在一起。而读写块设备则主要和快速缓冲存储区打交道。只有需要完成实际的输入/输出时,才用到块设备驱动程序。见下图: Linux 设备驱动程序的主要功能有: ● 对设备进行初始化; ● 使设备投入运行和退出服务; ● 从设备接收数据并将它们送到内核; ● 将数据从内核送到设备; ● 检测和处理设备出现的错误。 当引导系统时,内核调用每一个驱动程序的初始化函数。它的任务之一是将这一设备驱动程序使用的主设备号通知内核。同时,初始化函数还将驱动程序中的函数地址结构的指针送给内核。 内核中有两X 表。一X 表用于字符设备驱动程序,另一X 用于块设备驱动程序。这两X 表用来保存指向file_operations 结构的指针, 设备驱动程序内部的函数地址就保

存在这一结构中。内核用主设备号作为索引访问file_operations结构,因而能访问驱动程序内的子程序。 从开机到驱动程序的载入 系统启动过程中可能出现几种不同的方式检测设备硬件。首先机器硬件启动时BIOS会检测一部分必要的设备,如内存、显示器、键盘和硬盘等等。机器会把检测到的信息存放在特定的位置,如CMOS数据区。而另外某些设备会由设备驱动程序进行检测。 1 开机 2 引导部分(linux/config.h,arch/i386/boot/bootsect.S) 3 实模式下的系统初始化(arch/i386/boot/setup.S) 4 保护模式下的核心初始化 5 启动核心(init/main.c) init函数中函数调用关系如下: main.c init() filesystems.c sys_setup() genhd.c device_setup() mem.c chr_dev_init() 至此,驱动程序驻入内存。 设备驱动程序基本数据结构: struct device_struct 系统启动过程中要登记的块设备和字符设备管理表的定义在文件fs/devices.c中:struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct device_struct blkdevs[MAX_BLKDEV]; 其实块设备表和字符设备表使用了相同的数据结构。在某些系统中,这些设备表也称作设备开关表,不同的是它们直接定义了一组函数指针进行对设备的管理。而这里系统用文件操作(file_operations)代替了那组开关。文件操作是文件系统与设备驱动程序之间的接口,系统特殊文件在建立的时候并没有把两者对应起来,只是把设备的缺省文件结构和i节点结构赋给设备文件,而真正的对应定义在系统启动之后,当设备被打开时时才进行的。 操作blkdev_open和chrdev_open定义在文件devices.c中,它们的基本功能是当设备文件初次打开时,根据该文件的i节点信息找到设备真正的文件操作接口,然后更新原来的设

常用字符集编码详解:ASCII 、GB2312、GBK、GB18030、...

ASCII ASCII码是7位编码,编码范围是0x00-0x7F。ASCII字符集包括英文字母、阿拉伯数字和标点符号等字符。其中0x00-0x20和0x7F共33个控制字符。 只支持ASCII码的系统会忽略每个字节的最高位,只认为低7位是有效位。HZ字符编码就是早期为了在只支持7位ASCII系统中传输中文而设计的编码。早期很多邮件系统也只支持ASCII编码,为了传输中文邮件必须使用BASE64或者其他编码方式。 GB2312 GB2312是基于区位码设计的,区位码把编码表分为94个区,每个区对应94个位,每个字符的区号和位号组合起来就是该汉字的区位码。区位码一般用10进制数来表示,如1601就表示16区1位,对应的字符是“啊”。在区位码的区号和位号上分别加上0xA0就得到了GB2312编码。 区位码中01-09区是符号、数字区,16-87区是汉字区,10-15和88-94是未定义的空白区。它将收录的汉字分成两级:第一级是常用汉字计3755个,置于16-55区,按汉语拼音字母/笔形顺序排列;第二级汉字是次常用汉字计3008个,置于56-87区,按部首/笔画顺序排列。一级汉字是按照拼音排序的,这个就可以得到某个拼音在一级汉字区位中的范围,很多根据汉字可以得到拼音的程序就是根据这个原理编写的。 GB2312字符集中除常用简体汉字字符外还包括希腊字母、日文平假名及片假名字母、俄语西里尔字母等字符,未收录繁体中文汉字和一些生僻字。可以用繁体汉字测试某些系统是不是只支持GB2312编码。 GB2312的编码范围是0xA1A1-0x7E7E,去掉未定义的区域之后可以理解为实际编码范围是0xA1A1-0xF7FE。 EUC-CN可以理解为GB2312的别名,和GB2312完全相同。 区位码更应该认为是字符集的定义,定义了所收录的字符和字符位置,而GB2312及EUC-CN是实际计算机环境中支持这种字符集的编码。HZ和ISO- 2022-CN是对应区位码字符集的另外两种编码,都是用7位编码空间来支持汉字。区位码和GB2312编码的关系有点像Unicode和UTF-8。 GBK GBK编码是GB2312编码的超集,向下完全兼容GB2312,同时GBK收录了Unicode基本多文种平面中的所有CJK汉字。同GB2312一样,GBK也支持希腊字母、日文假名字母、俄语字母等字符,但不支持韩语中的表音字符(非汉字字符)。GBK还收录了GB2312不包含的汉字部首符号、竖排标点符号等字符。 GBK的整体编码范围是为0x8140-0xFEFE,不包括低字节是0×7F的组合。高字节范围是0×81-0xFE,低字节范围是0x40-7E和0x80-0xFE。

字符设备驱动程序

Linux字符设备驱动(转载) 来源: ChinaUnix博客日期:2008.01.01 18:52(共有0条评论) 我要评论 Linux字符设备驱动(转载) 这篇文章描述了在Linux 2.4下,如何建立一个虚拟的设备,对初学者来说很有帮助。原文地址:https://www.doczj.com/doc/7514971494.html,/186/2623186.shtml Linux下的设备驱动程序被组织为一组完成不同任务的函数的集合,通过这些函数使得Windows的设备操作犹如文件一般。在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作,如open ()、close ()、read ()、write () 等。 Linux主要将设备分为二类:字符设备和块设备。字符设备是指设备发送和接收数据以字符的形式进行;而块设备则以整个数据缓冲区的形式进行。字符设备的驱动相对比较简单。 下面我们来假设一个非常简单的虚拟字符设备:这个设备中只有一个4个字节的全局变量int global_var,而这个设备的名字叫做"gobalvar"。对"gobalvar"设备的读写等操作即是对其中全局变量global_var的操作。 驱动程序是内核的一部分,因此我们需要给其添加模块初始化函数,该函数用来完成对所控设备的初始化工作,并调用register_chrdev() 函数注册字符设备: static int __init gobalvar_init(void) { if (register_chrdev(MAJOR_NUM, " gobalvar ", &gobalvar_fops)) { //…注册失败 } else

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

字符编码总结

1 文件的存储方式:2进制格存储 文件都有自己的存储格式,比如最常见的txt,cpp,h,c,xml ,png,rmvb各种格式,还有自定义格式。这些文件不论是什么格式,都是存储在计算机硬盘里的2进制格存储,对应不同文件格式,有不同的软件解析。 2 统一字符编码 文本文件对应于人类可以阅读的文本,如何从2进制转换为文本文件呢?起初由于计算机在美国发明,自然大家考虑的是英语如何表示,英语字母总共26个,加上特殊字符,128个字符,7位既一个byte即可表示出来。这个就是大家所熟知的ascill编码。对应关系很简单,一个字符对应一一个byte。 但很快发现,其他非英语国家的文字远远超过ascill码,这时候大家当然想统一字符编码,不同国家出了自己不同的编码方式,中国的gb2312就是自己做出来的编码方式,这样下去每个国家都有自己的编码方式,来回转换太麻烦了。这时候出现了新的编码方式,unicode编码方式,想将编码统一,所以规定了每个字符对应的unicode码。 3 Utf-X编码方式 1、很多文件都是ascii编码,如果用unicode 太浪费。 2、没有标志位说明该几个字节来解析为一个符号。 这时候拯救世界的utf出现了,utf是unicode的一种实现,只不过更聪明了。 utf16是占用两字节,或者四字节,utf32是占用四字节。 utf8是很聪明的一种表示方式。 1、对于单字节符号,字节第一位为0,后面7位表示字节编码。 2、对于n字节符号,第一字节的前n位都设为1,第n+1位为0,其余位为编码位置。 4 文本编码标志BOM(Byte Order Mark) 对于不同的编码,在文本的最前方有不同的标志,unicode 通常有两位来表示分别是ff fe,或者feff,fffe表示big-endian 编码feff表示litte-endian编码。utf8是efbbbf来开头的。可以看出来utf-8是自解释的,所以不用带这个标志文件,大多数程序是可以识别的。 5 big endian和little endian big endian和little endian是CPU处理多字节数的不同方式。例如“汉”字的Unicode编码是 6C49。那么写到文件里时,究竟是将6C写在前面,还是将49写在前面?如果将6C写在前面,就是big endian。还是将49写在前面,就是little endian。 “endian”这个词出自《格列佛游记》。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开,由此曾发生过六次叛乱,其中一个皇帝送了命,另一个丢了王位。 我们一般将endian翻译成“字节序”,将big endian和little endian称作“大尾”和“小尾”。

字符设备驱动开发实验

字符设备驱动实验 实验步骤: 1、将设备驱动程序使用马克file文件编译 生成模块firstdev.ko 2、将模块加载到系统中insmod firstdev.ko 3、手动创建设备节点 mknod /dev/first c 122 0 4、使用gcc语句编译firsttest.c生成可执行 文件 5、运行可执行文件firsttest,返回驱动程序 中的打印输出语句。 查看设备号:cat /proc/devices 卸载驱动:rmmod firstdev 删除设备节点:rm /dev/first 显示printk语句,(打开一个新的终端)while true do sudo dmesg -c sleep 1 done

源码分析 设备驱动程序firstdev.c #include #include #include #include #include #include //#include static int first_dev_open(struct inode *inode, struct file *file) { //int i; printk("this is a test!\n"); return 0; }

static struct file_operations first_dev_fops ={ .owner = THIS_MODULE, .open = first_dev_open, }; static int __init first_dev_init(void) { int ret; ret = register_chrdev(122,"/dev/first",&first_dev_fo ps); printk("Hello Modules\n"); if(ret<0) { printk("can't register major number\n"); return ret; }

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

字符设备驱动程序

字符设备驱动程序 字符设备驱动程序与块设备不同。所涉及的键盘驱动、控制台显示驱动和串口驱动以及与这些驱动有关的接口、算法程序都紧密相关。他们共同协作实现控制台终端和串口终端功能。 下图反映了控制台键盘中断处理过程。 以上为总的处理流程,下面对每一个驱动分开分析。首先是键盘驱动。键盘驱动用汇编写的,比较难理解,牵涉内容较多,有键盘控制器804X的编程,还有扫描码(共3套,这里用第二套)和控制命令及控制序列(p209~210有讲解)。由于键盘从XT发展到AT到现在PS/2,USB,无线键盘,发展较快,驱动各有不同,此版本驱动为兼容XT,将扫描码映射为XT再处理,因此仅供参考。CNIX操作系统的键盘驱动实现为C语言,可读性更好。 键盘驱动 键盘驱动就是上图键盘硬件中断的过程。keyboard.S中的_keyboard_interrupt 函数为中断主流程,文件中其他函数均被其调用。

以上打星处为键盘驱动的核心,即主要处理过程,针对不同扫描码分别处理,并最终将转换后所得ASCII 码或控制序列放入控制台tty 结构的读缓冲队列read_q 中。 键处理程序跳转表为key_table ,根据扫描码调用不同处理程序,对于“普通键”,即只有一个字符返回且没有含义变化的键,调用do_self 函数。其他均为“特殊键”:1. crtrl 键的按下和释放 2. alt 键的按下和释放 3. shift 键的按下和释放 4. caps lock 键的按下和释放(释放直接返回,不作任何处理) 5. scroll lock 键的按下 6. num lock 的按下 7. 数字键盘的处理(包括alt-ctrl+delete 的处理,因为老式键盘delete 键在数字小键盘上。还包括对光标移动键的分别处理) 8. 功能键 (F1~F12)的处理 9. 减号的处理(老键盘’/’与’-’以0xe0加以区分,可能其中一键要按shift ) do_self 是最常用的流程,即跳转表中使用频率最高的流程:

linux字符设备驱动课程设计报告

一、课程设计目的 Linux 系统的开源性使其在嵌入式系统的开发中得到了越来越广泛的应用,但其本身并没有对种类繁多的硬件设备都提供现成的驱动程序,特别是由于工程应用中的灵活性,其驱动程序更是难以统一,这时就需开发一套适合于自己产品的设备驱动。对用户而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以像对其它文件一样对此设备文件进行操作。 通过这次课程设计可以了解linux的模块机制,懂得如何加载模块和卸载模块,进一步熟悉模块的相关操作。加深对驱动程序定义和设计的了解,了解linux驱动的编写过程,提高自己的动手能力。 二、课程设计内容与要求 字符设备驱动程序 1、设计目的:掌握设备驱动程序的编写、编译和装载、卸载方法,了解设备文件的创建,并知道如何编写测试程序测试自己的驱动程序是否能够正常工作 2、设计要求: 1) 编写一个简单的字符设备驱动程序,该字符设备包括打开、读、写、I\O控制与释放五个基本操作。 2) 编写一个测试程序,测试字符设备驱动程序的正确性。 3) 要求在实验报告中列出Linux内核的版本与内核模块加载过程。 三、系统分析与设计 1、系统分析 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 字符设备提供给应用程序的是一个流控制接口,主要包括op e n、clo s e(或r ele as e)、r e ad、w r i t e、i o c t l、p o l l和m m a p等。在系统中添加一个字符设备驱动程序,实际上就是给上述操作添加对应的代码。对于字符设备和块设备,L i n u x内核对这些操作进行了统一的抽象,把它们定义在结构体fi le_operations中。 2、系统设计: 、模块设计:

Java中编码以及Unicode总结

Java中编码以及Unicode总结 1.基本概念 ●bit 位只能是0或者1 ●byte 字节一个字节是8位,1 byte=8 bits 计算机表示的基本单位 ●KB,MB,GB,TB,PB是以1024与byte进行换算 ●进制用符号进行计数十进制、二进制、八进制(011)、十六进制(0xFF) 字符文字和符号的总称 ●字符集多个字符集合的总称。ASCII字符集、GB2312字符集、GBK字符集、BIG5 字符集、GB18003字符集、Unicode字符集 ●byte可表示2^8=256个字符的表示 0 0×00 0000,0000 1 0×01 0000,0001 2 0×01 0000,0010 127 0×7F 0111,1111 -128 0×80 1000,0000 -2 0xFE 1111,1110 -1 0xFF 1111,1111 ●以补码的形式表示的二进制编码。 -2的表示,2=0000,0010,反码1111,1101,补码=反码+1= 1111,1110表示的就是1111,1110-1=1111,1101,取反就是0000,0010也就是2,所以 就是-2 2.字符集和编码 2.1.字符(Character) 字符(Character)是文字与符号的总称,包括文字、图形符号、数学符号等。 2.2.字符集(Character Set) 一组抽象字符的集合就是字符集(Character Set)。字符集常常和一种具体的语言文字对应起来,该文字中的所有字符或者大部分常用字符就构成了该文字的字符集,比如英文字符集。一组有共同特征的字符也可以组成字符集,比如繁体汉字字符集、日文汉字字符集。字符集的子集也是字符集。 计算机要处理各种字符,就需要将字符和二进制内码对应起来,这种对应关系就是字符编码(Encoding)。制定编码首先要确定字符集,并将字符集内的字符排序,然后和二进制数字对应起来。根据字符集内字符的多少,会确定用几个字节来编码。每种编码都限定了一个明确的字符集合,叫做被编码过的字符集(Coded Character Set),这是字符集的另外一个含义。通常所说的字符集大多都是指编码字符集(Coded Character Set)。

字符设备驱动框架

Linux中设备分类: 按照对设备的访问方式可分为以下三类: 1.字符设备(char device) (1)例如:键盘、鼠标、串口、帧缓存等; (2)通过/dev/下的设备节点访问;以字节为单位访问; (3)一般只支持顺序访问;(特例:帧缓存framebuffer) (4)无缓冲。 2.块设备(block device) (1)例如:磁盘、光驱、flash等; (2)以固定大小为单位访问:磁盘以扇区(512B)为单位;flash以页为单位。 (3)支持随机访问; (4)有缓冲(减少磁盘IO,提高效率)。 3.网络设备(network device) (1)无设备文件(节点); (2)应用层通过socket接口访问网络设备(报文发送和接收的媒介)。 设备驱动在内核中的结构: 1.VFS虚拟文件系统作用:向应用层提供一致的文件访问接口,正是由于VFS 的存在,才可以将设备以文件的方式访问。 2.虚拟文件系统,存在于内存中,不在磁盘上,掉电丢失。例如:/proc、/sys、 /tmp。

设备号: 1.作用:唯一地标识一个设备; 2.类型:dev_t devno;即32位无符号整型; 3.组成: (1)主设备号:用于区分不同类型(按功能划分)的设备; (2)此设备号:用于区分相同类型的不同设备。 注意:相同类型的设备(主设备号相同)可以使用同一个驱动。 4.构建设备号: int major = 250; int minor = 0; (1)dev_t devno = (major << 20) | minor;不建议使用; (2)利用宏来构建:dev_t devno = MKDEV (major, minor); 注意:我们可以通过文件$(srctree)/documentation/device.txt来查看内核对设备号的分配情况。 (1)该文本中的有对应设备文件的设备号是已经被申请过的,我们不可以重 复使用(申请); (2)从中可以看出,我们在编写驱动程序时可以使用的主设备号范围为 240~254,为了方便记忆,通常使用250作为主设备号。 字符设备驱动框架: 驱动:作用,为应用层提供访问设备的接口(对设备发的各种操作)。 一、申请设备号 1.构建设备号:dev_t devno = MKDEV (major, minor); 2.申请设备号: (1)动态申请:alloc_chrdev_region; (2)静态申请: register_chrdev_region。

字符设备驱动步骤

编写字符设备驱动框架的步骤 Step 1: 申请设备号(主要是申请主设备号) 有两种方式: ⑴静态申请 通过下面这个函数实现: int register_chrdev_region(dev_t from, unsigned count, const char *name); /* register_chrdev_region() - register a range of device numbers * @from: the first in the desired range of device numbers; must include * the major number. * @count: the number of consecutive device numbers required * @name: the name of the device or driver. * * Return value is zero on success, a negative error code on failure.*/ 这种方式主要用于,驱动开发者事先知道该驱动主设备号的情况。 ⑵动态申请 通过下面这个函数实现: int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name) /* alloc_chrdev_region() - register a range of char device numbers * @dev: output parameter for first assigned number * @baseminor: first of the requested range of minor numbers * @count: the number of minor numbers required * @name: the name of the associated device or driver * * Allocates a range of char device numbers. The major number will be * chosen dynamically, and returned (along with the first minor number) * in @dev. Returns zero or a negative error code.*/ 这种方式由系统动态分配一个设备号,返回的设备号保存在参数dev中。 Step 2 :注册字符设备 在linux 内核中用struct cdev表示一个字符设备。 字符设备的注册与注销分别通过下面的两个函数来实现: int cdev_add(struct cdev *p, dev_t dev, unsigned count); /** * cdev_add() - add a char device to the system * @p: the cdev structure for the device * @dev: the first device number for which this device is responsible * @count: the number of consecutive minor numbers corresponding to this * device * * cdev_add() adds the device represented by @p to the system, making it * live immediately. A negative error code is returned on failure.

字符集与编码

字符集与编码 一.字符集与编码之间的关系 1.为了在计算机中存储与处理,必须对字符进行数字化编码。 2.字符集规定了包含哪些字符,每个字符的值是什么 3.编码规定了对于这些值,如何存储 4.有些标准同时规定了字符集及其编码 如:目前使用最广泛的西文字符集及其编码是ASCII 字符集和ASCII码(ASCII是American Standard Code for Information Interchange的缩写),它同时也被国际标准化组织(International Organization for Standardization, ISO)批准为国际标准 5.有些标准同一个字符集可以有多种编码格式 二.字符集及编码 1.SBCS (single byte character set) 1.1 ASCII (1).7位编码,范围0x00-0x7F (2).码值32-127(0x20-0x7F) (3).0x00-0x1F 之间的为控制字符,每个字符有一个缩写的名字 (4).数字,大写字母,小写字母的编码都是连续的 目前使用最广泛的西文字符集及其编码是 ASCII 字符集和 ASCII 码( ASCII 是American Standard Code for Information Interchange 的缩写),它同时也被国际标准化组织( International Organization for Standardization, ISO )批准为国际标准。 基本的 ASCII 字符集共有 128 个字符,其中有 96 个可打印字符,包括常用的字母、数字、标点符号等,另外还有 32 个控制字符。标准 ASCII 码使用 7 个二进位对字符进行编码,对应的 ISO 标准为 ISO646 标准。下表展示了基本 ASCII 字符集及其编码: 字母和数字的 ASCII 码的记忆是非常简单的。我们只要记住了一个字母或数字的ASCII 码(例如记住 A 为 65 , 0 的 ASCII 码为 48 ),知道相应的大小写字母之间差 32 ,就可以推算出其余字母、数字的 ASCII 码。 虽然标准 ASCII 码是 7 位编码,但由于计算机基本处理单位为字节( 1byte = 8bit ),所以一般仍以一个字节来存放一个 ASCII 字符。每一个字节中多余出来的一位(最高位)在计算机内部通常保持为 0 (在数据传输时可用作奇偶校验位)。 由于标准 ASCII 字符集字符数目有限,在实际应用中往往无法满足要求。为此,国际标准化组织又制定了 ISO2022 标准,它规定了在保持与 ISO646 兼容的前提下将ASCII 字符集扩充为 8 位代码的统一方法。 ISO 陆续制定了一批适用于不同地区的扩充 ASCII 字符集,每种扩充 ASCII 字符集分别可以扩充 128 个字符,这些扩充字符

LINUX字符设备驱动编写基本流程

---简介 Linux下的MISC简单字符设备驱动虽然使用简单,但却不灵活。 只能建立主设备号为10的设备文件。字符设备比较容易理解,同时也能够满足大多数简 单的硬件设备,字符设备通过文件系统中的名字来读取。这些名字就是文件系统中的特 殊文件或者称为设备文件、文件系统的简单结点,一般位于/dev/目录下使用ls进行查 看会显示以C开头证明这是字符设备文件crw--w---- 1 root tty 4, 0 4月 14 11:05 tty0。 第一个数字是主设备号,第二个数字是次设备号。 ---分配和释放设备编号 1)在建立字符设备驱动时首先要获取设备号,为此目的的必要的函数是 register_chrdev_region,在linux/fs.h中声明:int register_chrdev_region(dev_t first, unsigned int count, char *name);first是你想 要分配的起始设备编号,first的次编号通常是0,count是你请求的连续设备编号的 总数。count如果太大会溢出到下一个主设备号中。name是设备的名字,他会出现在 /proc/devices 和sysfs中。操作成功返回0,如果失败会返回一个负的错误码。 2)如果明确知道设备号可用那么上一个方法可行,否则我们可以使用内核动态分配的设 备号int alloc_chrdev_region(dev_t *dev, unsigned int firstminor,unsigned int count, char *name);dev是个只输出的参数,firstminor请求的第一个要用的次编号, count和name的作用如上1)对于新驱动,最好的方法是进行动态分配 3)释放设备号,void unregister_chrdev_region(dev_t first unsigned int count); ---文件操作file_operations结构体,内部连接了多个设备具体操作函数。该变量内部 的函数指针指向驱动程序中的具体操作,没有对应动作的指针设置为NULL。 1)fops的第一个成员是struct module *owner 通常都是设置成THIS_MODULE。 linux/module.h中定义的宏。用来在他的操作还在被使用时阻止模块被卸载。 2)loff_t (*llseek) (struct file *, loff_t, int);该方法用以改变文件中的当前读/ 写位置 返回新位置。 3)ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);该函数用 以从设备文件 中读取数据,读取成功返回读取的字节数。

实验二:字符设备驱动实验

实验二:字符设备驱动实验 一、实验目的 通过本实验的学习,了解Linux操作系统中的字符设备驱动程序结构,并能编写简单的字符设备的驱动程序以及对所编写的设备驱动程序进行测试,最终了解Linux操作系统如何管理字符设备。 二、准备知识 字符设备驱动程序主要包括初始化字符设备、字符设备的I/O调用和中 断服务程序。在字符设备驱动程序的file_operations结构中,需要定义字 符设备的基本入口点。 open()函数; release()函数 read()函数 write()函数 ioctl()函数 select()函数。 另外,注册字符设备驱动程序的函数为register_chrdev()。 register_chrdev() 原型如下: int register_chrdev(unsigned int major, //主设备号 const char *name, //设备名称 struct file_operations *ops); //指向设备操作函数指针 其中major是设备驱动程序向系统申请的主设备号。如果major为0, 则系统为该驱动程序动态分配一个空闲的主设备号。name是设备名称,ops 是指向设备操作函数的指针。 注销字符设备驱动程序的函数是unregister_chrdev(),原型如下:int unregister_chrdev(unsigned int major,const char *name); 字符设备注册后,必须在文件系统中为其创建一个设备文件。该设备文件可以在/dev目录中创建,每个设备文件代表一个具体的设备。 使用mknod命令来创建设备文件。创建设备文件时需要使用设备的主设备号和从设备号作为参数。 阅读教材相关章节知识,了解字符设备的驱动程序结构。

字符设备驱动程序的扩展操作

第5章字符设备驱动程序的扩展操作 在关于字符设备驱动程序的那一章中,我们构建了一个完整的设备驱动程序,从中用户可以读也可以写。但实际一个驱动程序通常会提供比同步read和write更多的功能。现在如果出了什么毛病,我已经配备了调试工具,我们可以大胆的实验并实现新操作。 通过补充设备读写操作的功能之一就是控制硬件,最常用的通过设备驱动程序完成控制动作的方法就是实现ioctl方法。另一种方法是检查写到设备中的数据流,使用特殊序列做为控制命令。尽管有时也使用后者,但应该尽量避免这样使用。不过稍后我们还是会在本章的“非ioctl设备控制”一节中介绍这项技术。 正如我在前一章中所猜想的,ioctl系统调用为驱动程序执行“命令”提供了一个设备相关的入口点。与read和其他方法不同,ioctl是设备相关的,它允许应用程序访问被驱动硬件的特殊功能――配置设备以及进入或退出操作模式。这些“控制操作”通常无法通过read/write文件操作完成。例如,你向串口写的所有数据都通过串口发送出去了,你无法通过写设备改变波特率。这就是ioctl所要做的:控制I/O通道。 实际设备(与scull不同)的另一个重要功能是,读或写的数据需要同其他硬件交互,需要某些同步机制。阻塞型I/O和异步触发的概念将满足这些需求,本章将通过一个改写的scull设备介绍这些内容。驱动程序利用不同进程间的交互产生异步事件。与最初的scull相同,你无需特殊硬件来测试驱动程序是否可以工作。直到第8章“硬件管理”我才会真正去与硬件打交道。 ioctl 在用户空间内调用ioctl函数的原型大致如下: int ioctl(int fd, int cmd, ...); 由于使用了一连串的“.”的缘故,该原型在Unix系统调用列表之中非常突出,这些点代表可变数目参数。但是在实际系统中,系统调用实际上不会有可变数目个参数。因为用户程序只能通过第2章“编写和运行模块”的“用户空间和内核空间”一节中介绍的硬件“门”才能访问内核,系统调用必须有精确定义的参数个数。因此,ioctl的第3个参数事实上只是一个可选参数,这里用点只是为了在编译时防止编译器进行类型检查。第3个参数的具体情况与要完成的控制命令(第2个参数)有关。某些命令不需要参数,某些需要一个整数做参数,而某些则需要一个指针做参数。使用指针通常是可以用来向ioctl传递任意数目数据;设备可以从用户空间接收任意大小的数据。 系统调用的参数根据方法的声明传递给驱动程序方法: int (*ioctl) (struct inode *inode, struct file *filp,unsigned int cmd, unsigned long arg) inode和filp指针是根据应用程序传递的文件描述符fd计算而得的,与read和write的用法一致。参数cmd不经修改地传递给驱动程序,可选的arg参数无论是指针还是整数值,它都以unsigned long的形式传递给驱动程序。如果调用程序没有传递第3个参数,驱动程序所接收的arg没有任何意义。

相关主题
文本预览
相关文档 最新文档