当前位置:文档之家› 红外无损检测技术及其应用

红外无损检测技术及其应用

红外无损检测技术及其应用
红外无损检测技术及其应用

红外无损检测是一种非接触式在线监测的高科技技术,它集光电成像、计算机、图像处理等技术于一体,通过接收物体发射的红外线,将其温度分布以图像的方式显示于屏幕,从而使检测者能够准确判断物体表面的温度分布状况。它能够检测出设备细微的热状态变化,准确反映设备内、外部的发热情况,对发现设备的早期缺陷及隐患非常有效。

一、红外热像仪构成及原理

红外无损检测所使用的设备叫红外热像仪,是利用红外探测器、光学成像物镜和光机扫描系统接收被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上。在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换为电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。

二、红外无损检测技术特点

红外无损检测技术与其他检测技术相比有以下特点:

1)能实现非接触测量,检测距离可近可远

2)精度比较高

3)空间分辨率较高

4)反应快

5)检测时操作简单、安全可靠,易于实现自动化和实时观察6)采用周期性加热源加热时,加热频率不同可探测不同深度的缺陷。当频率高时,有利于探测表面微裂纹;频率低时,可探测较深缺陷,但灵敏度降低

7)采用热像仪检测能显示缺陷的大小、形状和缺陷深度

三、红外无损检测技术应用

现阶段,我国红外无损检测技术已经得到了广泛应用,主要应用于电力工业、钢铁工业、电子工业、石油化工、建筑、航空航天和医疗等领域。

1)电力方面:主要用于检测发电机组装置、输电线接头、绝缘部件等;

2)在钢铁工业方面:红外检测技术可用于冶炼到轧钢的各个生产环节,例如热风炉的破损诊断、钢锭温度的测定、高炉残缺口位置的确定等;

3)在电子工业方面:实现了印刷板电路的电动检测;

4)在石油化工方面:对高温高压状况下的设备进行在线检测,为设备的维修和养护提供支持;

5)在建筑方面:主要用于建筑节能监测和建筑物饰面层粘贴质量的检测,在建筑物渗漏和建筑结构混凝土火灾受损、受冻融等检测方面也有研究;

6)在航空航天方面:夹层结构件的脱粘缺陷检测,在役飞机的蜂窝积水检测,吸波图层的缺陷检测与厚度测量,热障涂层的缺陷检测等。

我们拥有专业的检测设备和检测人员,可为各个行业提供专业的红外热成像检测服务,对检测对象进行红外测温成像的工作,发现其中缺陷与特点,最终得出专业报告。

格物优信为多家冶金、电力、危废、煤矿、养殖、铁路、科研等行业客户提供了行之有效的红外热成像可行性红外监控方案,深入解决了多家行业客户的难题,获得了客户的广泛信赖,更多详细方案介绍、业绩及技术咨询可至格物优信官网,格物优信致力于为各大行业贡献更多力量,携手客户共赢未来。

红外测试技术培训试题教案资料

红外测试技术培训试 题

红外测试技术培训试题 一、 单选题 1. 红外成像仪的色标温度量程宜设置在环境温度加 左右的温升范围内。 ( ) (a ) (A )10K-20K (B )5K-10K (C )15K-25K (D )20K-30K 2. 下图中哪个成像图不符合“确保被测设备不被遮蔽”原则( ) (d ) 3. 在进行红外测试时,有以下步骤需要遵循,①重点、温度异常点精确测 温,②全面测温,③环境检测;应遵循的正确顺序为:( ) (c ) (A ) ③①② (B ) ②③① ℃ 51.5℃3540 4550AR01℃51.5℃ 35404550 AR01℃ 51.5℃ 35 40 4550 AR01℃51.5℃ 35 404550 AR01 (A ) (B ) (C ) (D )

(C)③②① (D)②①③ 4.对变压器进行红外诊断,应开变电站第种工作票。()(b) (A) 第一种工作票 (B) 第二种工作票 (C) 第三种工作票 5.在红外诊断对环境的要求中,下列说法不恰当的为()(b) (A) 环境温度一般不宜低于5℃、相对湿度一般不大于85% (B) 最好在阳光充足,天气晴朗的天气进行 (C) 检测电流致热型的设备,最好在高峰负荷下进行。否则,一般应在不低于30%的额定负荷下进行 (D) 在室内或晚上检测应避开灯光的直射,最好闭灯检测 6.在对红外热像仪拍摄的图像进行分析时,采用的是表面温度判别法,下列 解释准确的为( ) (d) (A) 同组三相设备、同相设备之间及同类设备之间对应部位的温差进行相比较 (B) 与红外测试的历史数据作相比较 (C) 在一段时间内使用红外热像仪连续检测某被测设备,观察设备温度随 负载、时间等因素变化的方法。 (D) 将所测得温度、与环境的温差,与设备运行规定值相比较 7.红外检测中,精确检测要求设备通电时间不小于()(c) (A) 2h (B) 4h (C) 6h (D) 8h

红外检测技术介绍-安徽电科院

电网设备状态检测技术培训 ---------红外检测技术
安徽省电力科学研究院 王庆军 2011年3月
输变电设备运维及故障诊断分析技术交流会

主讲人简介
王庆军,安徽省电力科学研究院高压所副所长,国网 公司技术专家 长期从事红外检测技术研究工作 公司技术专家,长期从事红外检测技术研究工作。
输变电设备运维及故障诊断分析技术交流会

? ? ? ? ?
一、红外检测基本知识及术语 红外 测基本 及术语 二、红外热像仪的操作使用 三、判断方法 判断 法 四、诊断依据及缺陷类型确定 、诊断依据及缺陷类型确定 五、电气设备红外缺陷典型图谱
输变电设备运维及故障诊断分析技术交流会

一、红外检测基本知识及术语 红外检测基本知识及术语
? 1 、红外线是 、红外线是一种电磁波(英国物理学家 种电磁波(英国物理学家 赫胥尔 1800 年发 现) (0.75  ̄1000 微米) ,位于可见光红色光带(0.38 ̄0.78 微米)之外,普通玻璃能透过可见光,但是却几乎不能透 过红外线。
输变电设备运维及故障诊断分析技术交流会

? 2 2、热传输的方式 热传输的方式 热传输有三种方式,分别是:传导、对流和辐射。对流通常只发生 在流体介质中。 介质中 ? 3、红外热像仪一般是由三部分组成: 红外探测头、图像处理、监视器。 ? 4、焦平面红外探测器的工作原理: 是依靠探测微型辐射热量的热探测器(Microbolometer)。探测器通过吸 收 射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 收入射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 外加电压的情况下进而产生信号电压。 ? 5、黑体: 任何情况下对一切波长的入射辐射的吸收率都等于1的物体。
输变电设备运维及故障诊断分析技术交流会

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.doczj.com/doc/753410713.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

《带电设备红外诊断技术应用导则》DLT

带电设备红外诊断技术应用导则 参照中华人民共和国 电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》 《华北电网有限公司红外技术管理制度》 1、从事红外检测与诊断工作的人员应具备以下素质: (1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。 (2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。 (3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。 2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。 二、红外检测与诊断的基本要求 (一)对检测设备的要求 1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。 2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。 3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。 (二)对被检测设备的要求 1、被检测设备应为带电设备。

无损检测--射线检测新技术及应用(DR)

射线检测面临的问题 >>国家发展的要求 节能减排、无污染、实现绿色无损检测 >>产品检测的需要 自动化、高效率、远程评判(交互)、存储查询方便 解决方法 方法之一:改变胶片及其后处理环节,切断污染源 方法之二:后续处理技术的发展 (1)数字化技术的发展 (3)计算机、自动化技术的发展 射线数字成像技术 DR技术 CR技术 像质评价 应用 1、DR技术概述 1.1 定义 DR——Digital Radiography NB/T47013.11(DR) 承压设备无损检测第11部分: X射线数字成像检测 1.2 检测系统组成 1.3 与胶片照相不同之处: 组成及成像过程 增加了硬件(数字探测器、检测工装、计算机)与软件(数据采集、控制、处理); 减少了胶片及其暗室处理环节。 RT:胶片照相是射线光子在胶片中形成潜影,通过暗室的处理,利用观片灯来观察缺陷; DR成像则是利用计算机软件控制数字成像器件,实现射线光子到数字信号再到数字图像的转换过程,最终在显 示器上进行观察和处理缺陷。 DR技术: 面阵探测器 线阵探测器 数字探测器

1.4 检测原理 射线透照被检工件,衰减后的射线光子被数字探测器接收,经过一系列的转换变成数字信号,数字信号经放大和A/D转换,通过计算机处理,以数字图像的形式输出在显示器上。 数字探测器使用时注意事项 1、温湿度的要求 2、承受的最高辐照能量 3、承重 4、磕碰、划伤 5、预热 6、校正 1.5 DR与胶片比较的特点 >>提高检测效率(静止成像、连续成像) >>透照宽容度增加 >>快速查询和统计 >>减少暗室的洗片环节,降低环境污染 >>预热 >>校正(坏像素、不一致性) >>灵敏度高、分辨率低(与像素大小有关) >>一次投入成本高 >>探测器无法弯曲,有一定厚度

无损检测技术综述

无损检测技术原理与应用 安全工程1401班 2014074201 1无损检测技术的定义及发展概况 随着中国科学和工业技术的发展,高温、高压、高速度和高负荷已成为现代化工业的重要标志。但它的实现是建立在材料高质量的基础之上的。必须采用不破坏产品原来的形状,不改变使用性能的检测方法,以确保产品的安全可靠性,这种技术就是无损检测技术。无损检测技术不损害被检测对象的使用性能,应用多种物理原理和化学现象,对各种工程材料,零部件,结构进行有效地检验和测试,借以评价它们的连续性、完整性、安全可靠性及某些物理信息。目的是为了评价构件的允许负荷、寿命或剩余寿命,检测设备在制造和使用过程中产生的结构不完整性及缺陷情况,以便及时发现问题,保障设备安全[1]。 无损检测技术是机械工业的重要支柱,也是一项典型的具有低投入、高产出的工程应用技术。可能很难找到其他任何一个应用学科分支,其涵盖的技术知识之渊博、覆盖的基本研究领域之众多、所涉及的应用领域之广泛能与无损检测相比。美国前总统里根在发给美国无损检测学会成立20周年的贺电中曾说过,(无损检测)能给飞机和空间飞行器、发电厂、船舶、汽车和建筑物等带来更高的可靠性,没有无损检测(美国)就不可能享有目前在飞机、船舶和汽车等众多领域和其他领域的领先地位。作为一门应用性极强的技术,只有与国家大型工程项目结合,解决国家大型和重点工程项目中急需解决的安全保障问题,无损检测技术才能有用武之地和广阔的发展空间[2]。 我国无损检测技术的快速发展得益于经济的快速发展和国家综合实力的快速增强。近十年来,我国经济一直处于快速发展期,无损检测事业也处于蒸蒸日上的局面,其总体形势和水平已是十年前无法比拟。在我国各工业部门和国防单位,我国无损检测工作者取得了令世人瞩目的成绩[2]。 2无损检测技术的基本类型及其原理 目前常用的无损检测类型主要有超声检测技术、射线检测技术、磁粉检测技术、渗透检测和红外检测技术五种,本文选取其中3种检测技术对其基本原理和应用进行简单的讲述,选取超声波检测技术和红外检测技术这两种检测技术进行

红外检测技术介绍

红外探测技术 红外检测技术基本原理 红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。 红外线是波长在0. 76?1000 U m之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射在真空中的传播速度 C=299792458m/s ?3xlO lu cm/s 红外辐射的波长 A = — co 式中:C:速度 2:波长 3 :频率 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外

线。其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律: D一GxL (瓦?厘米”"微米") 式中: P一波长%,热力r AT 学温度为T时,黑体的红外辐射功率。 C一光速度 (axiomcm/s) C—第一辐射常 数二3.7415X104(瓦厘米?微米2) 之一波长(微米),T热力学 温度(K)温度辐射的能量密 度峰值对应的 波长,随物体温度的升高波长变短。 根据维思定律:人理(urn) T 式中: A一峰值波长,单位:um T一物体的绝对温度单位K 物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发 射率成正比。物体红外辐射的总功率对温度的关系,根据斯蒂芬—波尔兹曼定 律:

无损检测新技术-数字X射线检测技术简介

无损检测新技术-数字X射线检测技术简介 夏纪真 无损检测资讯网 https://www.doczj.com/doc/753410713.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了数字X射线检测技术的种类、基本原理与应用 关键词:无损检测数字X射线检测 1 综述 数字X射线检测(Digital Radiography,简称DR)可以分为:以图像增强器为基础的X 射线实时成像(Real-time Radiography Testing Image,缩写RRTI)、采用成像板(IP板)的模拟数字照相成像(Computed Radiography,简称CR)、采用电子成像技术的直接数字化X射线成像(DirectDigit Radiography,简称DR)以及将X射线照相胶片经扫描转为数字图像(FDR)。 2 以图像增强器为基础的X射线实时成像(RRTI) 以图像增强器为基础的X射线实时成像系统采用图像增强器代替射线照相的胶片或者旧式工业电视的简单荧光屏来实现图像转换,可以实现实时检测。系统主要由用于产生X 射线的X射线机系统(包括高压发生器、微焦点或小焦点的恒电位X射线机、电动光栏、循环水冷却器等,以投影放大方式进行射线透照)、图像增强器系统(X射线接收转换装置,将隐含的透过金属材料的X射线检测信号转换为可见的模拟图像)、进行信号处理及重构数字化图像的图像处理工作站(包括计算机、图像采集板卡、图像处理软件及系统软件与控制软件等,同时集成了整机控制,包括射线控制面板在内的所有控制面板和操作面板,射线透视的结果在显示器屏幕上显示,检测图像可以按照一定的格式储存在计算机硬盘、移动硬盘、U盘内或刻录到光盘上而长期保存)、检测机械工装、PLC电气控制系统、现场监视系统等六大部分组成。 典型的工业X射线实时成像检测系统结构原理示意图 图像增强器是X射线实时成像检测系统中除X射线源 外最关键的元件。图象增强器由外壳、射线窗口、输入屏 (包括输入转换屏和光电层,目前常用碘化铯晶体或三硫 化二锑、碲化锌镉、硒化镉、氧化铅、硫化镉、硅等对X 射线敏感的光电材料制作)、聚焦电极和输出屏组成。输入 转换屏吸收入射的射线,将其能量转换为可见光发射,光 图像增强器结构示意图 电层将可见光发射能量转换为电子发射,通过加有 25~30KV高压的聚焦电极加速电子并将其聚集到输出屏, 再由输出屏将电子能量转换为光发射,大大提高了输出光强,得到大大增强的图像亮度、动态范围以及分辨力。亦即在图像增强器内实现的转换过程是:射线→可见光→电子→可见光。 图像增强器输出屏后面是光学聚焦镜头等组成的光路系统,再由CCD(Charge Coupled Device的缩写,电荷耦合器件)或CMOS(Complementary Metal Oxide Silicon的缩写,互

红外技术的发展现状与发展趋势

红外技术的发展现状与发展趋势 第一部分红外技术的发展及主要应用领域 红外技术的发展 1800年,英国天文学家F.W.赫歇耳利用水银温度计来研究太阳光的能量分布发现了红外辐射,从那时起,人们就致力于研究各种红外探测器以便更好地研究和探测红外辐射。在红外探测器发展中,以下事件具有重要意义: 上世纪70年代,热成像系统和电荷耦合器件被成功地应用。 上世纪末以焦面阵列(FPA)为代表的红外器件被成功地应用。 红外技术的核心是红外探测器。 红外探测器 单元红外探测器:如InSb(锑化铟)、HgCdTe(碲镉汞)、非本征硅,以及热电等探测器。 线列:以60元、120元、180元和256元等,可以拼接到1024元甚至更多元。 4N系列扫描型焦平面阵列:如211所的研制生产的4x288。 凝视型焦平面阵列(IRFPA): 致冷型256x256、320x240、384x288,更大规模的如640x512,1024×1024和1280×720 元阵列也已有了; 非致冷型160×120、320x240已广泛应用于各个行业中,384x288、640x480也已开始应用。 红外探测器按其特点可分为四代: 第一代(1970s-80s):主要是以单元、多元器件进行光机串/并扫描成像; 第二代(1990s-2000s):是以4x288为代表的扫描型焦平面; 第三代:凝视型焦平面; 第四代:目前正在发展的以大面阵、高分辨率、多波段、智能灵巧型为主要特点的系统芯片,具有高性能数字信号处理功能,甚至具备单片多波段探测与识别能力。 目前非制冷焦平面探测器的主流技术为热敏电阻式微辐射热计,根据使用的热敏电阻材料的不同可以分为氧化钒探测器和非晶硅探测器两种。 非制冷焦平面阵列探测器的发展,其性能可以满足部分的军事用途和几乎所有的民用领域,真正实现了小型化、低价格和高可靠性,成为红外探测成像领域中极具前途和市场潜力的发展方向。 氧化钒技术由美国的Honeywell公司在九十年代初研发成功,目前其专利授权BAE、L-3/IR、 FLIR-INDIGO、DRS、以及日本NEC、以色列SCD等几家公司生产。非晶硅技术主要由法国的 CEA/LETI/LIR实验室在九十年代末研发成功,目前主要由法国的SOFRADIR和ULIS公司生产。 目前世界上只有美国、法国、日本、以色列四个国家拥有非制冷焦平面探测器产业化生产的能力,其核心技术仅有美国和法国两个国家掌握,日本和以色列则由美国取得技术许可,在其国内生产和有限制地使用。对我国的出口则设置了更多严格的限制,如大家遇到的帧频限制。

无损检测技术及其应用

无损检测技术及其应用 一、无损检测概述 无损检测NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。 与破坏性检测相比,无损检测具有以下显著特点: (1) 非破坏性 (2) 全面性 (3) 全程性 (4) 可靠性问题 开展无损检测的研究与实践意义是多方面的,主要表现在以下几方面: (1) 改进生产工艺:采用无损检测方法对制造用原材料直至最终的产品进行全程检测,可以发现某些工艺环节的不足之处,为改进工艺提供指导,从而也在一定程度上保证了最终产品的质量。 (2) 提高产品质量:无损检测可对制造产品的原材料、各中间工艺环节直至最终的产成品实行全过程检测,为保证最终产品年质量奠定了基础。 (3) 降低生产成本:在产品的制造设计阶段,通过无损检测,将存有缺陷的工件及时清理出去,可免除后续无效的加工环节,减小原材料和能源的消耗节约工时,降低生产成本。 (4) 保证设备的安全运行:由于破坏性检测只能是抽样检测不可能进行100%的全面检测,所得的检测结论只反映同类被检对象的平均质量水平。

此外,无损检测技术在食品加工领域,如材料的选购、加工过程品质的变化、流通环节的质量变化等过程中,不仅起到保证食品质量与安全的监督作用,还在节约能源和原材料资源、降低生产成本、提高成品率和劳动生产率方面起到积极的促进作用。作为一种新兴的检测技术,其具有以下特征:无需大量试剂;不需前处理工作,试样制作简单;即使检测,在线检测;不损伤样品,无污染等等。无损检测技术在工业上有非常广泛的应用,如航空航天、核工业、武器制造、机械工业、造船、石油化工、铁道和高速火车、汽车、锅炉和压力容器、特种设备、以及海关检查等等。“现代工业是建立在无损检测基础之上的”并非言过其实。 无损检测分为常规检测技术和非常规检测技术。常规检测技术有:超声检测Ultrasonic Testing(缩写UT)、射线检测Radiographic Testing(缩写RT)、磁粉检测Magnetic particle Testing(缩写MT)、渗透检验Penetrant Testing (缩写PT)、涡流检测Eddy current Testing(缩写ET)。非常规无损检测技术有:声发射Acoustic Emission(缩写AE)、红外检测Infrared(缩写IR)、激光全息检测Holographic Nondestructive Testing(缩写HNT)等。 二、无损检测分类及简介 下面对以上所说的五种常规检测技术以及几种非常规检测技术做一下简要的介绍。 1.超声检测 超声检测的基本原理是:利用超声波在界面(声阻抗不同的两种介质的结合面)出的反射和折射以及超声波在介质中传播过程中的衰减,由发射探头向被检件发射超声波,由接收探头接收从界面(缺陷或本底)处反射回来超声波(反射法)

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

无损检测技术的应用及其效益

本文由wenjin1018贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 无损检测技术的应用及其无损检测技术的应用及其效益 随着现代工业生产和科学技术的高速发展,在航空、航天、核能、汽车、石油、化工、铁路、建筑等产业方面,无损检测技术将发挥着越来越重要的作用。在现代化生产和建设中,高温、高压、高速度和高负荷无处不在,要保证产品的高质量必须进行百分百的检测,这就要求不破坏产品原来的形状、不改变产品的使用性能。从而无损检测技术应运而生。无损检测技术是在不损坏被检测对象的情况下,利用被检测对象的某些物理性质因其内部存在缺陷或结构异常而使所引起的光、声、电、磁等反应量发生的变化,从而测量这些变化以了解和评价被检测对象的性质、状态、质量或内部结构的技术。在工业领域已获得实际应用的和已在实验室阶段获得成功的无损检测方法已达五、六十种甚至更多,随着工业生产与科学技术的发展,还将会出现更多的无损检测方法与种类。根据检测原理不同,无损检测可分为声学方法检测、射线检测、电学方法检测、磁学方法检测、微波和介电方法检测、光学方法检测、热学方法检测、渗透检测与渗透检测等。其中超声波检测、磁粉检测、涡流检测、渗透检测和射线检测被称为五大常规检测技术。下面主要介绍五大常规检测技术及其在社会各个领用的应用。一、超声波检测技术及应用超声波是频率高于 20000 赫兹的声波,它的特点是方向性好,穿透能力强,易于获得较集中的声能。超声检测技术是使超声波与被检测工件现相互作用,根据超声波的反射、透射和散射的行为,对被检测工件进行缺陷检测、几何特征测量、组织机构和力学性能变化的检测和表征,并进行对其应用性进行评价的一种无损检测技术。根据超声波在物体中的多种传播特性,例如反射、透射与折射、衍射与散射、衰减、谐振以及声速等的变化,可以测知许多物体的尺寸、表面与内部缺陷、组织变化等。与其它常规无损检测技术相比,它具有被测对象范围广,检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。因此其应用范围很广。超声无损检测技术的主要应用(1)超声检测在工业无损检测技术技术中占有重要地位。金属材料(锻件、铸件、焊接件、型材、胶接结构)的探伤、厚度测量、硬度测量、纤维组织评价。非金属的检测,如混凝土、岩石、桩基和路面等质量检验,包括对其内部缺陷、内应力、强度的检测应用;陶瓷土坯的湿度、陶瓷制件的缺陷检测;气体介质特性分析等。(2)各种新材料的检测。如有机基复合材料、金属基复合材料、结构陶瓷材料、陶瓷基复合材料等,超声检测技术已成为复合材料的支柱。(3)在海洋地质领域有许多方面的应用,例如声纳、鱼群探测、海底形貌探测、地质构造探测等。(4)核电工业的超声检测。(5)在医学诊断方面广泛应用超声检测技术,例如 B 超检测。(6)在农业方面,农产品的成熟度、农畜产品的内部缺陷、畜产品的异物等的检测。目前人们正试图将超声检测技术用于开辟其它新领域和行业,如人们正努 力将超声检测技术用于血压控制系统进行系统作非接触检测、辨识。性能分析和故障诊断等二、磁粉检测技术及应用磁粉检测的基本原理是利用铁磁性材料或工件被磁化后,如果在表面和近表面有材料的不连续性的存在(材料的均质状态或致密性受到破坏),则在不连续处磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,在合适的光照下形成目视可见的磁痕,从而显示出不连续性的位置、大小、形状和严重程度等.由于有趋肤效应存在,铁磁性材料中的磁通基本集中在材料的表面和进表面,因此磁粉检测局限在检查铁磁性材料的表面和近表面,此外还不适用于检测铜、吕、镁、钛合金等非铁磁性金属材料外。但是它的优点较多,适用范围较广,成为五大常规检测技术之一。由于磁粉检测的特点和局限性,一般只应用在工业上,其适用范围如下:(1)适用于检测铁磁性材料工件表面和近表面尺寸很小,间隙极窄的铁磁性材料的微小裂纹和目视难以看出的缺陷.(2)适用于检测马氏体不锈钢和沉淀硬化不锈钢材料,不适用于检测奥氏体不锈钢材料.(3)

红外热成像检测技术的应用和展望

红外热成像检测技术的应用和展望 摘要:无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 关键词:无损检测;热成像技术;应用;发展趋势

红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,

无损检测新技术

无损检测新技术 无损检测是指在不损害或不影响被检测对象使用性能,不伤害被检测对象内部组织的前提下,利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试的方法[1] 。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)四种。其他无损检测方法有涡流检测(ECT)、声发射检测(AE)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)、超声波衍射时差法(TOFD)等。 一、磁记忆检测 金属磁记忆检测技术是一种利用金属磁记忆效应来检测部件应力集中部位的快速无损检测方法。克服了传统无损检测的缺点,能够对铁磁性金属构件内部的应力集中区,即微观缺陷和早期失效和损伤等进行诊断,防止突发性的疲劳损伤,是无损检测领域的一种新的检测手段。金属磁记忆方法自诞生以来,对其机理的解释就成为国内外学术界关注的焦点。国外专家俄罗斯 Doubov教授最早提出:磁记忆现象的出现是由于工件载荷作用下在铁磁材料内部形成位错稳定滑移带,高密度的位错积聚部位形成磁畴边界(位错壁垒),产生自有漏磁场。 在机理研究方面。如从电磁学角度出发的电磁感应说,即铁磁性材料垂直于地磁场作用方向的横截面积,在定向应力作用下会发生应变,因而通过此横截面的磁通量会发生变化。由电磁感应定律知,该截面上必然产生感应电流,并激励出感应磁场使工件磁化。又如基于铁磁学基本理论的能量平衡说,即磁记忆效应产生的内在原因是金属组织结构的不均匀性,材料内部不均匀处会出现位错,在地磁场环境中施加应力,则会出现滑移运动…,其结果会引起位错的增殖,产生很高的应力能。能量平衡的结果,使得铁磁零件内部磁畴的畴壁发生不可逆的重新取向排列,由于金属内部存在多种内耗效应,使得动载衙消除后,在金属内部形成的应力集中区会得以保留。为抵消应力能,磁畴组织的重新排列也会保留下来,并在应力集中区形成类似缺陷的漏磁场分布形式,即磁场的切向分量为最大值,而法向分量符号发生改变,且具有过零值点。丁辉等17呗0建立了裂纹类缺陷应力场和磁通量变化间的数学模型,为磁记忆检测裂纹类缺陷提供了理论依据。在磁记忆检测技术应用研究方面,大庆石油学院开展的对带有预制焊接裂纹的球型容器、爆破试验后破裂的管件和带有焊接缺陷的管件进行了磁记忆检测实验研究,利用已知评价标准,准确找出了构件中的缺陷,充分验证了金属磁记忆方法的有效性。中国科学院上海精密机械研究所等单位开展的利用地磁场检测钢球表面裂纹的可行性研究,表明钢球被地磁场磁化后,从位于地磁场中的磁阻传感器采样得到的信号就能够分辨出钢球表面缺陷,为磁记忆技术在轴承检测中的应用

无损检测技术的发展及其运用

浅谈无损检测技术的发展及其运用 摘要:在现代生产中针对不同对象选择何种无损检测方法已成为人们关注的问题,为解决好这个问题,就必须对无损检测方法及其 特征有较全面的了解。所谓无损检测,是在不损伤材料和成品的条件下研究其内部和表面有无缺陷的手段。下面简要介绍三种常用方法的应用和发展。关键词:激光无损检测;超声无损检测;射线无损检测 abstract: in modern production according to different objects in the choice of nondestructive detection method has become a concern of the people, in order to solve this problem, we must to nondestructive testing methods and features a more comprehensive understanding. the nondestructive testing, is in no damage to the material and finished products under the conditions of its internal and surface defects have the means. below is a brief introduce three kinds of commonly used method of application and development. keywords: laser nondestructive testing; ultrasonic nondestructive testing; x-ray nondestructive testing 中图分类号:tb553 文献标识码:a 文章编号:2095-2104(2013)一、无损检测的目的及其方法的选用 不管在什么情况下,都必须首先搞清楚究竟想检测什么东西,随后才能确定应该采用什么样的检测方法和检测规范来达到预定目

在用压力容器无损检测技术的原理和应用

在用压力容器无损检测技术的原理和应用 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

在用压力容器无损检测技术的原理和应用压力容器在生产和生活中的使用越来越广泛,其安全性也受到人们越来越多的关注。压力容器处于高温、高压的工作条件下,一旦出现损伤将会引起严重的后果。定期实行压力容器无损检验是在保证容器正常使用的前提下,提高生产和使用安全水平的必要措施。 在用压力容器的无损检测是在被检测容器不受损伤的前提下,应用一定的技术和原理,通过科学、先进的检测设备,完成容器性能、结构以及使用状况的检验。目前无损检测技术较为成熟,常用的检测技术包括:磁粉检测、射线检测、超声波检测、渗透检测、涡流检测和磁记忆检测。 1.磁粉检测 1.1.技术原理和应用 磁粉检测是将铁磁性材料的压力容器进行磁化,如果容器内部存在缺陷,将会导致容器表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,在合适的光照下形成目视可见的磁痕,从而显示出缺陷的位置、大小、形状和严重程度。磁粉检测主要应用于检

测铁磁性材料做成的容器表面或近表面,可以准确直观地发现裂纹、夹杂等缺陷。 1.2.优缺点分析 磁粉检测对表面和近表面的缺陷检测灵敏度较高,检测成本较低,操作简便。如果在用压力容器可能存在表面缺陷可以首选磁粉检测。它的缺点体现在局限于检测铁磁性材料。检测的范围较小、效率较低。另外,磁粉检测对容器表面的形状要求较高,不适合检测不规则的压力容器。 2.射线检测 2.1.技术原理和应用 射线检测技术是应用放射性元素产生的射线投射入被检测容器上,可以发现压力容器铸件材料中气孔、夹杂物以及焊接中漏焊、未熔合等缺陷。通过射线检测可以将容器材料中缺陷的尺寸准确地反馈到设备的显示屏上,形成生动直观的图像并且能够保存和记录。该技术适用于检测不能直接用人工测量的容器或外包保护层较厚的容器,射线可以准确地检测到这类压力容器是否缺陷以及缺陷的长宽尺寸。 2.2.优缺点分析

红外检测方法

红外检测方法 红外线的划分 1672年英国著名科学家牛顿首次用三棱镜将太阳光分解为红、橙、黄、绿、青、兰、紫七色,开始了可见光光谱学的研究.英国著名天文学家赫胥尔在研究太阳光谱中各单色光的热效应时,发现最大的热效应是出现在红色光谱以外,从而发现了红外线的存在。英国著名物理学家马克斯威尔在研究电磁理论时,证实了可见光及看不见的红外线,紫外线等均属于电磁波段的一部分,从而把人们的认识统一到电磁波理论中。从波长为数千米的无线电波, 到波长为10-8A ~10-10A(1A=10-4 μm )的宇宙射线均属于电磁波的范围,而可见光谱的波长从0.4~0.76μm 仅占电磁波中极窄的一部波段。红外光谱的波段为0.76~1000μm ,要比可见光波段宽得多。为了研究和应用的方便。根据红外辐射与物质作用时各波长的响应特性和在大气中传输吸收的特性,可把红外线按波长划分为四部分: ①近红外线——波长为0.76~3 μm ; ②中红外线——波长为3~6 μm ; ③远红外线——波长为6~15 μm ; ④超远红外线——波长为15~1000 μm 目前,600 ℃以上的高温红外线仪表多利用近红外波段。600℃以下的中、低温测温仪表面热成像系统多利用中、远红外线波段,而红外线加热装置则主要利用远红外线波段。超远红外线的利用尚在开发研究中。 红外线辐射的基本定理 ①辐射能 Q ——辐射源以电磁波形式所辐射的能量(J)。 ②辐射功率 P ——辐射源在单位时间内向整个半球空间所发射的能量 (w /s)。 ③辐射度M ——辐射源单位面积所发射的功率, ( W/m -2 )。一般,源的表面积A 越大,发射的功率也越多。因此辐射度M 是描述辐射功率P 沿源表面分布的特性。辐射度在某些文献上又称为辐出度或辐射出射度等。 ④光谱辐射度M λ——表示在波长λ处单位波长间隔内,辐射源单位面积所发射的功率。即 单位波长的辐射度, ( W/m 2·μm ),通常辐射源所发出的红外电磁波都是由多种波长成分所组成(全波辐射)。前述的辐射度M 是描述全波辐射的,因此又称为全辐射 度。而光谱辐射度则是描述某一特定波长成分的辐射度。而光谱辐射度则是描述某一特定波长成分的辐射度。 ⑤黑体的概念——黑体是为了研究方便而引入的一种理想物体。它定义为能在任何温度下将辐射到它表面上的任何波长的热辐射能全部吸收;并与其它任何物体相比,在相同温度和相同表面积的情况下其辐射功率为最大的一种物体。黑体辐射可用黑体炉来模拟。对 此,19世纪末叶的物理学家们曾做了大量实验工作,为非黑体辐射的研究奠定了基础。 ⑥比辐射率 ——定义为在相同温度及相同的条件下,实际物体(非黑体)与黑体的辐射度的比值,即: 黑体的辐射度实际物体的辐射度==b M M ε 有的文献还定义了光谱比辐射率 黑体的光谱辐射度实际物体的光谱辐射度== b λλεM M Q P t ?=?P M A ?=?M M λλ?=?

相关主题
文本预览
相关文档 最新文档