当前位置:文档之家› 永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定
永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

摘要:介绍了永磁同步直线电机的结构。根据矢量控制的特点和要求,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法,并经试验加以验证。

关键词:初始寻相;电角度测定;矢量控制;永磁电机;同步电机;直线电机;实验

O 引言

永磁同步交流直线电机由于其行程长、推力大、响应快等优点,在机械装备中越来越受到重视。

永磁交流直线电机系统存在多个电磁变量和机械变量,在这些变量之间存在较强的耦合作用。为了提高控制效果,获得良好的动态调速特性,矢量控制技术成为永磁直线电机系统中重要的控制手段。

对于永磁同步直线电机矢量控制系统,初始寻相和电角度的测量是影响系统性能的关键之一”如果系统上电时无法精确测定电机的初始相位或者在运行时不能精确测定电机的电角度,系统将无法正确完成直线矢量控制的一系列算法,导致直线电机运动混乱,甚至无法起动。本文针对这个问题,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法。

1永磁同步直线电机及其矢量控制系统

根据永磁体的安装位置,永磁同步直线电机分为表面磁极型和内部磁极型。用于伺服目的的一般采用表面磁极的结构;其凸极效应很弱,气隙均匀且有效气隙大。图1为其结构简图。

在定子表面交错排列着不同极性的铷铁硼磁体。

对于永磁同步旋转电机,矢量控制的中的d轴方向沿着转子上永磁体的磁极方向,q轴超前d轴90。

电角度。永磁同步直线电机可以看成是将永磁同步旋转电机沿轴向剖开而形成的。据此可以确定永磁同步直线电机的d轴和q轴的位置,如图1所示,电角度θ就是d轴和q轴间的夹角。

永磁同步直线电机的矢量控制系统的完薹结构则如图2所示。矢量控制一般采用id=O的控制策略,即控制初级电枢电流矢量在d—g坐标系中的d轴分量为零。此外由于电机的d轴和q轴电压分量仍然存在耦合,需要采用前馈补偿的方法进行接耦。由图2可以看出,电角度θ主要用在2s/二R和2R/2s 变换中。由此可见,直线电机在起动对的初始相位以及在运行时的电角度,是实现矢量控制的重要参数。两参数能否精确测定,关系到矢量控制系统能否实现。

2 电机初始寻相的实现

直线电机在起动时,动子的位置具有不确定性。直线伺服系统中一般采用增量式光栅尺作为位置传感器,无法确定动子的绝对位置及电机的初始相位角。对于直线伺服系统一般还需要一个确定的机械零点;对于增量式系统,每次上电后都需要进行回零点操作,之后才能建立起坐标系统。

为了让直线电机有一个确定的机械零点,可以在直线电机端部安装一个接近开关,并保证在接近开关能检测到的范围内光栅尺有一个z轴脉冲。将光栅尺的z轴脉冲和接近开关的输出信号进行逻辑与,用

此信号控制计数器的复位。系统上电后直线电机以一定的速度向零点运动,当系统检测到电机端部的z轴脉冲时,计数器复位信号有效,计数器清零,此时电机所在的位置即为零点。此过程的原理如图3所示。电机的零点确定后,可以用实验的方法确定电机在零点处d轴与A轴之间的电角度,并以此角度作为初始电角度。

在此方案中,电机回零点前是无法确定其电角主的,因此只能作开环运动。为了在回原点前就确定电机的电角度,可以给电机的定子方向的电压矢量,如图4所示。在初始定位阶段由于%和f,一都是定值,即给电机施加的是一固定的电压空间矢量,电机的动子会在此电压矢量的作用下运动到与之重合的位置。此时电机的初始电角度为90°,这就是矢量控制的初始电角度,而此时的位置也就是电机的初始位置。当给电机施加直流电压时,动子绕组中的电流会很大,因此要控制施加的直流电压的幅值和时间。为了避免给电机施加直流电压时加速度过大,可以采用缓慢升高直流电压幅值的方式。如图4所示,在1.5 s内升高到0.25umax维持0.5 s。试验表明这种方法可使电机平稳的定位。用这种方法测量电角度的精度受若干因素的影响,包括所施加的直流电压矢量的幅值,电机的磁阻力和摩擦力等。为了更准确的测定电机的初始相位,可以在电机回零点后对电角度进行校正,用零点处的电角度作为初始电角度,而电机零点处的电角度可以用试验的方法精确测出。

3 电机电角度的测定

精确获得了电机的初始相位之后,还需要在电机运动过程中方便、准确的确定其电角度。根据电机原理可知,电机一对极距对应的电角度为360°。对于直线电机,动子移动的距离和电角度的变化量成正比,因此可以根据增量式光栅尺反馈的位置信息来间接计算电机的电角度。

对于图1所示的永磁同步直线电机硬件系统,可以使用芯片LS7266的B通道测定电机的电角度,其电路原理如图5所示。把该通道的周期寄存器的值设为电机一对极距对应的光栅尺的脉冲数,并根据初始电角度设置计数器的初始值。如果电机电角度增大时,计数器的计数值也增大。根据图6,电机的电角度就可以用如下公式计算:

反之,如果电机电角度减小时,计数器的计数值也减小,那么电机的电角度应为:

4试验结果

试验用永磁同步直线电机的参数:动子质量为9 kg,永磁体有效磁链为0.106 wb,粘滞摩擦系数等于1.2 Ns/m,动子电枢电阻等于1.25 Ω,动子电感为5.25 mH,极距等于32 mm,极对数为3,相数等于3,电机额定电等于流25 A。对电机进行速度闭环测试,在速度调节器输入端上施加一个矩形波信号,幅值在一O.1m/s到O.1m/s之间变化,频率为O.9 Hz,观察系统的位置、速度、电流等的变化情况,如图7所示。试验时,电机空载,速度环的采样周期为:300μs。

试验所得的电角度、速度、d轴和q轴电流如图7所示。试验结果表明,采用上述初始寻相和电角度测定的方法能使永磁同步直线电机矢量控制系统取得较好的控制效果,系统能长时间稳定运行,不会发生因电角度测量误差积累而产生的失控现象。

5总结

本文根据永磁同步直线电机的特点,结合接近开关和光栅尺的z轴脉冲来确定机械零点,进而获得初始相位。以此为基础,再利用工控芯片I~$9266来计算电机在运行过程中的电角度。实验证明,本文提出的方法帮助直线电机矢量控制系统取得了良好的控制效果。

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

永磁同步电机矢量控制

永磁同步电机矢量控制 1 引言 永磁同步电机(PMSM)体积小,重量轻,转子无发热问题,具有损耗低、电气时间常数小、响应快等特点,因此在高控制精度与高可靠性等方面显示出优越的性能,永磁同步电动机调速系统正在成为近代交流调速领域中研究的一个热门课题。 2 基本原理 (1) PMSM 的数学模型 dq0 坐标系中,永磁同步电动机的基本电压方程通常可以表示为 d s d d q q s q q d u R i p u R i p ψωψψωψ=+-=++ 式中u d ,u q 为定子电压的直、交轴分量;R s 为定子绕组电阻;p 为微分算子;ω为电动机转子角频率。 定子磁链方程为 d d d f q q q L i l i ψψψ=+= 式中ψd ,ψq 为转子坐标系下直、交轴磁链;L d ,L q 为PMSM 的直轴、交轴电感;i d ,i q 为定子电流的直、交轴分量;ψf 为转子磁钢在定子上的耦合磁链。 永磁同步电机的转矩方程为 ()()33 22 e m d q q q m f q d q d q T p i i p i L L i i ψψψ??= -=+-?? 式中p m 为永磁同步电机的极对数。 (2) PMSM 的转子磁场定向控制策略 PMSM 的电磁转矩基本上取决于定子交轴分量和直轴电流分量,在矢量控制下,采用按转子磁链定向(i d =0)控制策略,使定子电流矢量位于q 轴,而无d 轴分量,既定子电流全部用来产生转矩,此时,PMSM 的电压方程可写为: d q q s q q d u u R i p ωψψωψ==++ 电磁转矩方程为: 3 2 e m f q T p i ψ= 此种控制方式最为简单,只要准确地检测出转子空间位置(d 轴),通过控制逆变器使三相定子的合成电流(磁动势)位于q 轴上,那么,PMSM 的电磁转矩只与定子电流的幅值成正比,即控制定子电流的幅值就能很好地控制电磁转矩,此时PMSM 的控制就类似于直流电机的控制。图1给出PMSM 调速控制系统原理框图。

永磁直线电机精确相变量建模方法(精)

第29卷第9期中国电机工程学报V ol.29 No.9 Mar.25, 2009 98 2009年3月25日 Proceedings of the CSEE ?2009 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2009 09-0098-06 中图分类号:TM 351;TM 359 文献标志码:A 学科分类号:470?40 永磁直线电机精确相变量建模方法 曾理湛1,陈学东1,李长诗2,农先鹏1,伞晓刚1 (1. 数字制造装备与技术国家重点实验室(华中科技大学,湖北省武汉市 430074; 2. 郑州轻工业学院机电工程学院,河南省郑州市 450002 Accurate Phase Variable Modeling of PM Linear Motors ZENG Li-zhan1, CHEN Xue-dong1, LI Chang-shi2, NONG Xian-peng1, SAN Xiao-gang1 (1. State Key Laboratory of Digital Manufacturing Equipment & Technology (Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China; 2. College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, China ABSTRACT: This paper proposes a general finite element (FE based phase variable modeling method of permanent magnet (PM linear motors for the accurate dynamic simulation of drive systems. A general phase variable model of PM linear motors is established taking account of the effects of the nonideal geometrical structure on the thrust force, in which the mover position dependent variables are obtained from FE

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

一种微小型永磁直流直线电机

第10卷 第1期2006年1月   电 机 与 控 制 学 报 EL EC TR IC MACH I N ES AND CON TROL   Vol 110No 11Jan .2006 一种微小型永磁直流直线电机 王坤东, 颜国正 (上海交通大学电信与电气工程学院820所,上海200030) 摘 要:针对永磁直流直线电机的微型化问题,提出了近似拼接的设计方案,优化了结构参数,并 加工出样机进行了试验。在尺寸所限下,该电机使用多个长方体永磁块拼接的正八边形来近似逼近全径向磁化管形磁铁励磁。利用有限元分析软件Max W ell910优化了气隙和磁铁厚度等结构参数。对样机进行了试验分析,结果表明电机驱动力和电流呈线性关系,在整个行程中,输出力均匀,驱动力在电流01004A 时可达0172N,线圈温度在5516°C 。关键词:微小型;永磁;直线电机;有限元优化 中图分类号:T M351 文献标识码:A 文章编号:1007-449X (2006)01-0070-04 A m i n i a ture per manent magnet li n ear DC motor WANG Kun 2dong, Y AN Guo 2zheng (School of Electrical and I nf or mati on Eng .,Shanghai J iaot ong Univ .,Shanghai 200030,China ) Abstract:This paper p resented a method based on j ointed per manents for m iniature of DC linear mot or .Structural para meters were op ti m ized .Pr ot otype was manufactured t o make s ome experi m ents .Under the constraint of m icr o di m ensi on,several rectangular per manent magnets were j oined t o be octagon,whose field app r oaches the filed of tube 2shaped per manent magnetized at radial directi on .Based on the FEA s oft w are Max W ell 910,the structural para meters such as dep th of air gap and per manent magnet were op 2ti m ized .The characters of mot or are analyzed thr ough experi m ents .Research de monstrates that driving f orce is p r oporti onal with the current,and driving force is stable in the whole str oke,and driving force reaches 0172N when the current strength is 01004A ,and the te mperature of coil rises t o 5516°C .Key words:m iniature;per manent;linear mot or;FE op ti m is m 收稿日期:2004-10-21;修订日期:2005-06-15 基金项目:国家高技术研究发展计划(863)资助项目(2001AA422210) 作者简介:王坤东(1978-),男,博士研究生,研究方向为微型特种机器人; 颜国正(1960-),男,博士后、教授、博士生导师,研究方向为特种机器人、仿生机械。 1 引 言 在微小空间进行作业的行走机构,如工业细小管道或人体消化道的检测机器人等,要求直径在10~15mm 之间,同时对驱动技术也提出了新的要求, 如驱动力大、控制方便、可靠等[1,2] 。微型旋转电机受尺寸的限制,加上将旋转运动变为直线运动的中间机构也占有一定空间,因此将外形尺寸控制在直径为10mm 以下比较困难 [3] 。压电驱动器行程较 短,一般都是在μm 量级,存在如何将位移进行放大 的问题,而且驱动力很难控制[4] 。形状记忆合金驱动器由于记忆合金的加热变形—冷却回复的时间较 长,因此速度较慢[5] 。直线电机是近年来出现的一种新型驱动技术,它将电能直接转换为直线运动的机械能,不需要运动转换的中间机构,因此结构尺寸上能够进一步减小。直线电机种类繁多,其中永磁直流直线电机由永磁励磁,结构简单,控制方便。从现有的产品看,还没有出现直径在10mm 以下的圆

永磁同步电机矢量控制原理

永磁交流同步电机矢量控制理论基础 0、失量控制的理论基础是两个坐标系变换,这是每一个学习过交流调速的人应 该熟记的两种变换。介于目前市面上流行的各类书籍的这一部分总有些这里那里的问题(也就是错误)。为了自己不被误导,干脆自己推导一边,整理如下。所有的推导针对3相永磁同步电机的矢量控制。 1、永磁交流同步电机的物理模型。 首先看几张搜集的图/照片,图1~7: 现分别说明如下: a.图1~3可以看出电机定子的情况。我和大家都比较熟悉圆圈中间加个“叉” 或者“点”的定子,通过这几张图应该比较清楚地认识定子的结构了。 b.图1中留出4个抽头,其中一个应该是中线,但是,在伺服用的永磁同步 电机,只连接3根线的。 c.图2是一个模型,红蓝黄三色代表三相绕组,在定子齿槽中上下穿梭,形 成回路的。 d.定子绕线连接可以从图7很清楚地看到,从A进入开始,分别经过1(上), 7(下),2(上),8(下),14(上),8(下),13(上),7(下),

13(上),19(下),14(上),20(下),2(上),20(下),1(上), 19(下)然后到X。一相绕组经过8个齿槽,占全部齿槽的1/3,每个齿 槽过两次,但每次方向是相同的。最后上上下下的方向如同图6所示。 e.三相绕组通电后,形成如同图6所示的电流分布,每相邻的6根是电流同 方向的。这样,如果把1和24像纸的里面拉,将这一长排围城一个圆, 则,1和7之间向里形成N(磁力线出)极的中心,12和13之间形成S (磁力线入)极的中心。这里,个人认为图6中的N、S分段有些错误, 中心偏移了,不知道是不是理解错误,欢迎指正,这图是我找的,不是我 画的,版权不属我:)。 f.同极磁场的分布有中心向两侧减弱的,大家都说是正弦分布,我是没分析 过,权且认同吧,如图5所示。 g.如图1同步电机的运转就是通过旋转定子磁场,转子永磁磁极与定子的磁 极是对应的N、S相吸,可以同步地运行。 h.实际电机定子槽数较多,绕线方式也有不同。旋转磁场的旋转是通过如图 6中的一个磁极6个齿槽一起向右/左侧移位 2、永磁同步电机数学模型 这才是本文的重点。学习这部分,先不要考虑电机,直接死记两种变换。 这两个变换都是定子侧的电流旋转,旋转的原则是,不论怎么变换都是其实都是一种假想的坐标系,一种变换游戏,都只有原始的三相绕线,通三相电流。 变换的目的是从中找出另外一个与电机转矩又直接关系的“状态量”——转矩电流,来控制转矩。实际矢量控制时,这一切变换都是在计算机里完成,最后又通过控制三相电流的,但此时的三相电流给定值可以保证这个“状态量”是我想要的那个数值。为什么非要变换?因为要对电机进行控制(速度控制),使电机按照你的意图运转,必须控制加到电机转子上的转矩,而转矩与三相电流之间的直接对应关系是没法直接写出来的,(如同质量与重量之间的关系,速度与位移之间的关系这么简单)。只有通过变换,才可以清楚地找出这个对应关系,其实, 图8定子静止三相到静止两图9 静止两相到旋转两相的变换

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

机械毕业设计954交流永磁直线电机及其伺服控制系统的设计

摘 要 直线电机在各行各业中发挥着越来越重要的作用,特别是在机床进给驱动系统中。本 文以平板式交流永磁同步直线电机为研究对象,从电机机体到伺服驱动系统的软、硬件设 计作了深入研究。 本文首先介绍了交流永磁同步直线电机机体设计过程中电枢绕组、铝芯和定子磁钢的 设计和改进方法,较大程度上减小了推力波动,并且结合大推力直线电机的特点设计了方 便有效的装配过程。 建立交流永磁同步直线电机的数学模型,在此基础上分析了当今最通用的伺服控制策 略,选择了矢量控制方法。确定0 d i 的矢量控制实现形式。通过SVPWM 方法进行脉宽调 制,合成三相正弦波。选用TI 公司2000系列最新DSP TMS320F2812,深入研究了以上算法 在DSP 中的实现形式。采用了C 语言和汇编语言混合编程的实现方法。在功率放大装置中, 以智能功率模块IPM 为核心,设计了功率伺服驱动系统。还包括电流采样、光电隔离、过 压欠压保护和电源模块等。 由于知识和能力的限制,本次课题只对直线电机做一些理论研究。 关键词:永磁同步直线电机 DSP SVPWM 矢量控制

Abstract Line motors are playing a more and more important role in all kinds of trade , especially in machine tool feed system. We carry out our study in motor , software and hardware servo system based on flat AC permanent magnet synchronous linear motor(PMSLM). First introduce the design method of armature ,core of al and magnet which can minish the thrust ripples, then introduce the means of assembly base on high thrust permanent magnet synchronous motors. To ensure the accuracy to a high requirements and get a wide speed range, we choose the dsp of Texas Instruments named TMS320F2812 which is the core of the servo system .In the paper we set up mathematical model of PMSLM, then analyse the current control strategies and choose the vector control method which is realized by the method of 0 d i .The three phase sine wave is compounded by space voltage pulse width modulation(SVPWM).The arithmetic realized by C language and assembly language in DSP. Intelligent Power Model (IPM) is the core of the power amplification circuit system which also contains current sampling circuit, photoelectric-isolation circuits, over-voltage protection circuits, under-voltage protection circuits and power supply. As a result of the knowledge and ability limit, this topic only does a fundamental research to the linear motor. Key words: permanent magnet synchronous linear motor(PMSLM), DSP, SVPWM, vector control

基于MTPA的永磁同步电动机矢量控制系统分解

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

交流永磁同步直线电机介绍及其控制系统设计

交流永磁同步直线电机介绍及其控制系统设计 制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换环节,动力是在气隙磁场中直接产生的,可获得比传统驱动机构高几倍的定位精度和快速响应速度。 本文是在我系研制的同步直线电机基础上进行基于矢量变换控制的驱动系统设计应用。 2. 交流永磁工作原理 直线电机的工作原理上相当于沿径向展开后的旋转电机。交流永磁同步直线电机通入三相交流电流后,会在气隙中产生磁场,若不考虑端部效应,磁场在直线方向呈正弦分布。行波磁场与次级相互作用产生电磁推力,使初级和次级产生相对运动。图1所示为开发设计的交流永磁同步直线电机。 3. 永磁同步直线电机矢量控制原理 由于矢量控制动态响应快,相比较标量控制,在很快的时间内就能达到稳态运行。经过30多年工业实践的考验、改进与提高,目前已经达到成熟阶段[3],成为交流伺服电机控制的首选方法。因此,直线电机采用了交流矢量控制驱动的方法。

直线电机初级的三相电压(U、V、W相)构成了三相初级坐标系(a,b,c 轴系),其中的三相绕组相角相差120?,即在水平方向上互差1/3极距。参照旋转电机矢量变换理论,设定两相初级坐标系(α-β轴系),由三相初级坐标系到直角坐标系转换称为Clark变换,见式(1)。 从静止坐标系到旋转坐标系的变换称为Park变换,见式(2)。反之称Park 逆变换。 θ是d轴与轴的夹角。根据旋转电机的Park变换理论和两电机结构比较。由于电机运动部分的不同,故直线电机动子相当于旋转电机定子,直线电机定子相当于旋转电机动子。所以在旋转电机中旋转坐标系固定在动子上,旋转坐标系随着电机转子一起同步旋转。在直线电机中,由运动相对性原理,动子的直线运动,

稀土永磁材料及其在直线电机中的应用展望

本文1996年12月10日收到 煤炭科学基金项目(94电10817) 综 述 稀土永磁材料及其在直线电机中的应用展望 焦留成 禹 沛 禹 涓 (焦作工学院 焦作454000) (焦作教育学院 焦作454151) (焦作工学院 焦作454000) Prospects for Rare -earth Permanent Magnet Materials and their Application in Linear Motors J iao L iucheng (Jiaozuo Institute of T echnolo gy ,Jiaozuo 454000)Yu P ei (Jiaozuo Educational Colleg e ,Jiao zuo 454151) Yu J uan (Jiaozuo Institute of T echno logy ,Jiaozuo 454000) 【摘 要】 介绍了稀土永磁材料的发展、磁性能及其在直线电机中的应用,指出稀土永磁直线电机将成为直线电机的一个重要发展方向。 【关键词】 稀土永磁材料 直线电机 永磁直线电机【Abst ract 】 Rar e -ear th perma nent magnet mater ials'development,per for mance and applicatio n in lin-ear mo tor s is intr oduced.Rar e -eart h per manent magnet linear mo to rs w ill be an impo rtant dev elo pment t rend of linear mo tor s . 【Keywords 】 rar e -eart h permanent magnet mater i-als linear moto rs perma nent mag net linear mo tor s 1前 言 稀土永磁材料以其优异的磁性能得到了广泛 的应用和开发。其中钕铁硼永磁材料尤以价格相对低廉,日益成为应用最广泛的稀土永磁材料。在钕铁硼永磁材料中,将近40%被用于电机行业。由于直线电机的应用范围不断扩大,稀土永磁材料在直线电机方面的应用也日益受到重视。稀土永磁材料在直线电机方面的应用,有着广阔的前景。 2稀土永磁材料 2.1稀土永磁材料的发展 永磁材料属基础材料,目前有铝镍钴金属永磁,铁氧体永磁和稀土永磁三大类。稀土永磁是稀土元素(镧、镨、钇、钐、镐……)与铁族元素的金属间化合物。第一代稀土永磁合金(SmCo 5)诞生于 60年代后期,70年代第二代稀土永磁合金(Sm 2Co 17)问世。这两种永磁材料虽然磁性能好,但 钐与钴价格昂贵,限制了它们的应用。1983年6月,日本住友特殊金属公司制成了第三代稀土永磁合金(NdFeB)。钕铁硼永磁材料具有优异的磁性能,同时由于钕资源丰富,又以廉价的铁代替钴,所以其价格相对低廉,市场竞争力强,便于推广应用。钕铁硼永磁材料的问世被列为1983年世界十大重要科技成果之一。 2.2钕铁硼永磁材料的磁性能 钕铁硼永磁材料的磁性能优异,兼有铝镍钴和铁氧体永磁的优点,具有很高的剩磁和矫顽力,以及很大的磁能积。目前,常用的稀土永磁材料的磁能积,Sm Co 5为127.36~183.08kJ/m 3,试验最高值达227.7kJ/m 3 ;Sm 2Co 17为159.2~238.8kJ/m 3 ,试验最高值达263kJ /m 3,NdFeB 为238.8~318.4kJ /m 3;试验最高值415.5kJ /m 3。在各种永磁材料中,钕铁硼的磁能积最高,其最大磁能积比铝镍钴的大5~8倍,比铁氧体大10~15倍,在同样的有效体积下,比电励磁的大5~8倍,仅次于超导励磁。 钕铁硼磁钢的剩磁B r 和矫顽力H c 均很高。商品钕铁硼的B r 为1.02~1.25T ,最高可达14.8T ,约是铁氧体永磁的3~5倍,约是铝镍钴永磁的1~2倍。商品钕铁硼的磁感应矫顽力H CB 为764.2~915kA/m ,内禀矫顽力H CM 为876~1671.6kA /m ,最高可达2244.7kA /m ,相当于铁氧体的5~10倍,铸造铝镍钴的5~15倍。各种永磁材料的 32 微特电机 1997年第2期

基于SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真 随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定 摘要:介绍了永磁同步直线电机的结构。根据矢量控制的特点和要求,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法,并经试验加以验证。 关键词:初始寻相;电角度测定;矢量控制;永磁电机;同步电机;直线电机;实验 O 引言 永磁同步交流直线电机由于其行程长、推力大、响应快等优点,在机械装备中越来越受到重视。 永磁交流直线电机系统存在多个电磁变量和机械变量,在这些变量之间存在较强的耦合作用。为了提高控制效果,获得良好的动态调速特性,矢量控制技术成为永磁直线电机系统中重要的控制手段。 对于永磁同步直线电机矢量控制系统,初始寻相和电角度的测量是影响系统性能的关键之一”如果系统上电时无法精确测定电机的初始相位或者在运行时不能精确测定电机的电角度,系统将无法正确完成直线矢量控制的一系列算法,导致直线电机运动混乱,甚至无法起动。本文针对这个问题,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法。 1永磁同步直线电机及其矢量控制系统 根据永磁体的安装位置,永磁同步直线电机分为表面磁极型和内部磁极型。用于伺服目的的一般采用表面磁极的结构;其凸极效应很弱,气隙均匀且有效气隙大。图1为其结构简图。 在定子表面交错排列着不同极性的铷铁硼磁体。 对于永磁同步旋转电机,矢量控制的中的d轴方向沿着转子上永磁体的磁极方向,q轴超前d轴90。 电角度。永磁同步直线电机可以看成是将永磁同步旋转电机沿轴向剖开而形成的。据此可以确定永磁同步直线电机的d轴和q轴的位置,如图1所示,电角度θ就是d轴和q轴间的夹角。

永磁同步直线电机的矢量控制系统的完薹结构则如图2所示。矢量控制一般采用id=O的控制策略,即控制初级电枢电流矢量在d—g坐标系中的d轴分量为零。此外由于电机的d轴和q轴电压分量仍然存在耦合,需要采用前馈补偿的方法进行接耦。由图2可以看出,电角度θ主要用在2s/二R和2R/2s 变换中。由此可见,直线电机在起动对的初始相位以及在运行时的电角度,是实现矢量控制的重要参数。两参数能否精确测定,关系到矢量控制系统能否实现。 2 电机初始寻相的实现 直线电机在起动时,动子的位置具有不确定性。直线伺服系统中一般采用增量式光栅尺作为位置传感器,无法确定动子的绝对位置及电机的初始相位角。对于直线伺服系统一般还需要一个确定的机械零点;对于增量式系统,每次上电后都需要进行回零点操作,之后才能建立起坐标系统。 为了让直线电机有一个确定的机械零点,可以在直线电机端部安装一个接近开关,并保证在接近开关能检测到的范围内光栅尺有一个z轴脉冲。将光栅尺的z轴脉冲和接近开关的输出信号进行逻辑与,用

基于FPGA 的永磁同步电动机矢量控制IP 核的研究

基于FPGA的永磁同步电动机矢量控制IP核的研究 赵品志 摘要 论文首先分析了永磁同步电动机的数学模型及矢量控制的原理。研究了使用现代EDA工程设计方法,在FPGA上实现单芯片交流伺服控制系统的结构和具体实现方法。其次,详细分析了空间矢量脉宽调制(SVPWM)原理,利用Verilog HDL硬件电路描述语言,编写了SVPWM、坐标变换、串行通信、位置检测等IP模块,并进行了仿真和验证。最后,将本文编写的主要SVPWM IP模块、串行通信、位置检测等IP模块在Quartus II 3.0软件中进行综合编译,并通过ByteBlaster II下载电缆将生成的网络表配置到NIOS II开发板上的Cyclone 系列FPGA EP1C20F400C7芯片中,经过实验测试,验证了所编写的IP模块的正确性。 关键词:矢量控制,空间矢量脉宽调制,FPGA,IP 引言 为满足现代数控系统技术与市场发展需求,伺服系统出现交流化、数字化、智能化三个主要发展动向。伺服系统按其采用的驱动电动机的类型来分,主要有两大类:直流伺服系统和交流伺服系统,其中交流伺服系统又可分为感应电动机伺服系统和永磁同步电动机交流伺服系统[1]。以直流伺服电机作为驱动器件的直流伺服系统,控制电路比较简单,价格较低。其主要缺点是直流伺服电机内部有机械换向装置,碳刷易磨损,维修工作量大,运行时易起火花,给电机的转速和功率的提高带来较大的困难。交流异步电机虽然价格便宜、结构简单,但早期由于控制性能差,所以很长时间没有在伺服系统上得到应用。随着电力电子技术和现代电机控制理论的发展,1972年,德国西门子的Blaschke提出了交流异步电动机的矢量控制理论。该理论通过矢量旋转变换和转子磁场定向,将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,得到类似直流电动机的解耦的数学模型,使交流电动机的控制性能得以接近或达到他励直流电动机的性能。1980年,德国人Leonhard为首的研究小组在应用微处理器的矢量控制的研究中取得进展,使矢量控制实用化[2]。90年代以来,随着永磁材料性能的大幅度提高和价格的降低,永磁同步伺服电动机得到了长足的发展。交流伺服系统采用永磁同步伺服电机作为驱动器件,可以和直流伺服电机一样构成高精度、高性能的半闭环或全闭环控制系统,由于永磁同步伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前永磁同步交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,伺服技术取得的突破可以归结为:交流伺服取代直流伺服、数字控制取代模拟控制[3][4]。 最初,交流伺服电机的变频调速都是由分立器件实现的,不可避免地存在温漂、老化等问题。这种方法所使用的器件数目非常多,而且结构也很复杂,这就使得系统的可靠性、精度很难保证在一个较高的水平。另外,用分立元件实现数字脉宽调制需要使用波形发生器,而分立元件的工作频率有限,因而很难实现高性能高精度的数字脉宽调制。利用分立元件实现较复杂的脉宽调制技术(如SVPWM)有很大的困难,复杂的逻辑关系难以实现。这些都驱使人们寻求其它实现数字脉宽调制的方法。其中单芯片系统(SOPC)使这种想法成为可能,在单芯片上可以实现复杂而精确的逻辑运算,运算速度比分立元件高得多,因而越来越受到人们的重视。本文对实现SOPC有很大帮助,利用Quartus软件生成的网络表可以直接用于芯片的生产[5]。

相关主题
文本预览
相关文档 最新文档