当前位置:文档之家› 氟离子选择电极法测定氟化物的有关技术

氟离子选择电极法测定氟化物的有关技术

氟离子选择电极法测定氟化物的有关技术
氟离子选择电极法测定氟化物的有关技术

氟离子选择电极法测定氟化物的有关技术

一、氟离子选择电极分析技术

二、氟电极法测定结果的影响因素及其消除方法

三、仪器测试装置的正确使用

一、氟离子选择电极分析技术

1、 有关电极的概念

? 离子选择性电极(ISE): 对某种特定的离子,具有选择性响应。它能将溶液中特定

的离子含量转换成相应的电位,从而实现化学量→电学量的转换,而对溶液中的离子浓度进行测量。

? 指示电极:电极电位与溶液中待测离子活度(或浓度)呈Nernst 响应的电极称为指

示电极。在氟化物测定的离子选择电极法中氟电极为指示电极。

? 参比电极:是指在温度一定的条件下,电极电位已知,且不随待测溶液的组成改变

而改变。在氟化物测定的离子选择电极法中甘汞电极为参比电极。

? 氟电极的膜电位是随试液中氟离子活度的变化而变化,这种响应在一定的活度区间

内电位和活度之间符合Nernst 方程。其方程 ……(1) ? T= 273.15 + t(被测液温度) ,ni =

? aF = r ·ρF , r 为活度系数,当在稀电解质溶液中r ≈1, ρF 为被测离子浓度。 ? 所以,在稀溶液中活度与浓度接近,由式(1)可见,电位E 与 -log aF 或 -log ρF

成直线关系,因此可以通过测定E 值,可求出aF 或ρF

2、 离子选择电极的特征参数

电极的选择性

? 事实上,所有的离子电极在不同程度上受到干扰离子的影响。只有那些对待测离子

具有选择性响应的电极才具有实际应用价值。因此,选择性是离子电极最重要的性能指标之一。电极的选择性用选择性系数来描述。

? 在考虑共存离子干扰影响时,可以由修正的Nernst 方程式来表示电极电位。

3、 线性范围和检测下限

⑴ 线性范围:各种离子电极在一定的条件下,其电极电位与待测离子活度间符合Nernst 关系。所得到的E -log(ai )曲线中直线部分所对应的浓度范围称为ISE 的线性范围。 ⑵ 检测下限:表明离子选择电极可进行有效测量待测离子的最低浓度。目前大多数商品电极的检测下限为1×10-7~1×10-5mol/L

影响检测下限的因素:

0 2.303log()i j n n i ij j i

RT E E a k a n F =±+

①主要因素是电极膜活性物质在溶液中的溶解度,即测定下限不能低于电极膜活性物质的溶解度。

②测试方法和溶液的组成。

③电极的预处理及搅拌速度等。

4、电极斜率s

?在线性范围内,当待测离子的活度变化一个数量级时所引起的电极电位变化值(mV)称为该电极对所给定离子的斜率,即为E-log ai曲线的斜率。

?理论值:表示为s = 2.303RT/(ni F)。反映了被测离子的活度变化10倍时,膜电极将其转换为电位的能力,25℃时一价离子为59.16mV。在实际应用时由于电极性能变化,电极的斜率会偏离理论值。若电极的斜率过低,将增大测量的误差。

?判断:一般认为电极的实测s达到理论值的90%以上可认为质量较好,小于70%则认为电极不合格。

5、响应时间及稳定性

响应时间:指电极浸入试液后达到稳定电位(±1mv )所需时间。一般几秒至几分钟不等。电极响应时间及稳定性的影响因素:

①与电极膜本身结构、性质、溶解度、厚度、光洁度等有关。

②与待测液的浓度有关。

③与被测离子到达电极表面的速度有关:搅拌溶液可加速被测离子到达电极表面的速率,从而加快电极达到平衡的时间。所以在测量为未知溶液时,应该与标准品在同一搅拌速度下进行。

④与共存离子的种类和浓度有关:当共存于被测液中的离子为不干扰离子时,它的存在能缩短响应时间,当共存离子为干扰离子时,将增加响应时间。

⑤温度:温度升高时,将缩短电极的响应时间。加快离子交换速度,降低内阻,加快电荷在膜内传导。

稳定性:是指电极保持在恒温条件下,E值可在多长时间内保持恒定。用漂移程度和重现性来衡量。

漂移:是指在恒定组成和温度的溶液中,膜电极与参比电极构成的电池的电位随时间而缓慢有序变化程度。

重现性:电极的重现性则是指多次测量之间电极电位重现程度。

6、电极的寿命

?电极的寿命:是指电极保持其符合能斯特方程功能的时间。

?电极寿命的影响因素:

①机械损伤。

②敏感膜受到化学腐蚀。

③连续使用在热或者腐蚀性溶液中使用,寿命可能只有几天甚至更短。正常使用通常可能达到1~2年。

7 、电极的老化和中毒

?电极的老化:是指电极使用一段时间后内阻增加,灵敏度下降的现象。表现为响应时间长,响应斜率降低,线性范围变窄等,敏感膜失去活性现象。

?原因:①敏感膜中离子逐渐地溶解到溶液中,引起载体减少,交换电流变小。

②“晶格缺陷”的逐渐减少。溶液和敏感膜的离子交换使结晶中的“缺陷“趋向消失。

?电极中毒:是指电极表面活性材料与试液中离子发生化学反应,导致电极对被测离

子活度不再具有能斯特响应功能的现象。

?对大多数的固膜电极可采用机械布轮抛光的办法更新电极表面。即可恢复电极的正常功能。

8、参比电极性能及使用:

参比电极(甘汞电极)性能

(1)装置简单,电极电位重现性好,在测量电势时,即使有微量电流通过,电极电位保持恒定。

(2)在甘汞电极使用过程中,为了形成良好的恒定的液接电势,要求氯化钾溶液以一定的速度通过液接部位进行渗漏。以多孔陶瓷为液接部的甘汞电极,其渗漏速度每6h小时约为1滴。渗漏过快将引起甘汞电极电位漂移,过慢不能保证在液接部有良好的离子接触,甚至增大甘汞电极的内阻。

(3)当甘汞电极与待测液接触时,若存在会浸蚀汞和甘汞,或能与KCl液起反应的物质,都将影响甘汞电极的电位。因此要防止待测液成分的回扩散,回扩散现象将使测定电位值漂移偏差。

防止回扩散方法:

?A、加置盐桥,使回扩散的有害离子只能扩散到盐桥溶液,而不能进入甘汞电极的内充液中。

?B、甘汞电极的内参液要高出待测液面2cm 以上。

使用甘汞电极注意事项:

(1) 使用前,应注意观察参比电极外观,有无裂痕、接线是否良好?内充液是否灌满至注入孔?有无气泡?管内为饱和KCl溶液(GR级,杂质少,否则引起漂移),并KCl溶液液面高于管内汞球体,管内有少量KCl结晶物。

(2) 使用前,应将电极注入孔的小橡皮塞取下,以维持一定的流速,并保持KCl 液面与待测液面的高度差。

(3) 用后立即清洗干净液接部位,以防止堵塞。不用时在加液口和液接部套上橡胶帽。长期不用,应充满内参液。在电极盒中或氯化钾溶液中静置保存。

二、氟电极法测定结果的影响因素

及其消除方法

1、影响因素

⑴温度:因温度对电极斜率有影响,

s =2.303RT/(ni F) ,

并影响甘汞电极的电位。

所以要在恒温下进行(被测溶液的温度要一致)。

⑵离子强度

?离子选择电极是根据能斯特方程测定溶液中离子的活度。而离子的活度等于活度系数与浓度的乘积。因此,电极电位与活度的校正曲线和电位与浓度的校正曲线是有差异的,这种差异性在高浓度范围内尤其明显。

?溶液中某种离子的活度主要决定于溶液的离子强度。显然,在温度一定,离子强度一定时,离子的活度系数是一定的。

?在实际工作中,采用在标准溶液和未知溶液中加入等量的高浓度惰性电解质,使标准溶液和试液的总离子强度相等,求得待测物质浓度。如在F-的测定中采用加入总离子强度调节缓冲液(TISAB)的方法。在加入TISAB后,可使电极在低浓度时响应时间缩短。

?(total ion strength adjustment buffer ,TISAB)

⑶溶液的pH值

?对于氟离子选择电极,较佳的试剂酸度条件为pH 5 ~ 6。

?pH<5时,溶液中会发生下述弱酸配位反应:2F-+H+=HF+F-=HF2-,使溶液中的F-减少,会影响电极的灵敏度,使分析结果偏低。这是由于氟电极只对F-响应对HF或HF2-无响应,而且氟电极的氟化镧电极膜会增大被溶解,影响测定。

?当pH>8 时,OH-对电极的响应,将严重影响测定结果,使分析结果偏高。有研究表明,OH-对氟电极的干扰还由于OH-与膜表面发生化学反应,而引入试液额外的F-。其反应式为:LaF3+3OH-=La(OH)3+3F-

⑷干扰物质

?干扰物质有两种表现形式:

?待测液中所含成分与LaF3单晶作用,与La3+或F- 形成络合物或某种结合物,影响电位测定。如前面所述的OH-,使测得结果偏高。

?待测液中存在与F-络合的离子,如Fe3+ 、Al3+ Be2+ 、Th4+等,使测得结果偏低。

2、干扰消除方法

消除这些影响因素的方法是在标准溶液和试样溶液中加相同体积的总离子强度调节缓冲液(TISAB)。

?⑴TISAB 的主要成分及作用:

?络合剂(惰性电解质):如柠檬酸盐、CDTA等。这些离子是一些比F-更强的络合剂,优先与上述干扰离子相结合,从而使氟离子从络合物中游离出来。

?离子强度调节剂:NaCl等,高浓度电解质用以维持溶液具有相同的活度系数,消除溶液间离子强度差异对电位的影响。

?pH调节剂:醋酸、盐酸、氢氧化钠等,形成柠檬酸盐、醋酸盐的pH缓冲体系。

⑵使用TISAB应注意问题:

?作为TISAB的试剂应达到所要求的纯度,否则能引入干扰杂质,增加空白的本底。?配制TISAB的试剂刚混合时会明显放热使溶液温度升高,此时不宜用pH计直接边测边调最终所需的pH。

?在测定液中柠檬酸盐的浓度不能大于0.5mol/L,浓度过高时柠檬酸盐可能会与电极的膜材料发生反应。

LaF(固)+Cit3-(水)=LaCit(水)+3F-(水)

使膜相中的氟离子转移到溶液中造成测量误差。

例:尿氟测定的TISAB液:称取58g氯化钠,4g柠檬酸三钠溶于500mL水中,加入57ml冰乙酸,用5mol/L氢氧化钠调节pH为5.0~5.5后,用水稀至1000mL。

3、氟电极法的误差来源

?⑴离子选择电极误差主要是电极响应特性引起的误差,来自膜电位随时间与温度变化引起的漂移及斜率变化,电极老化及电极绝缘性能不良或静电感应对膜电位的影响,以及干扰离子及离子强度变化影响膜电位的数值。

?(2)参比电极误差主要来自参比电极电位漂移,温度波动及液接电位漂移引起的误差。

?(3) 离子计的误差主要来自输入阻抗,输入电流,电子元器件的质量以及这些元器件随温度变化和电磁干扰等引起的漂移。

?(4) 标准溶液误差来自配置过程中的试剂、天平、容量器皿或试剂放置过久储存不当等。

?(5) 操作误差包括电极的洗涤和预处理,电极校正的方法或使用不当,搅拌速率

过快,平衡电位的读数不准,数据记录作图与计算上的不当以及取样和预处理等。

三、测试装置的正确使用

⑴离子计或酸度计的精度要求±0.1mV。在进行测试之前,先要检查一下使用的仪器和电极对是否处于使用状态,仪器开机预热。

⑵电极活化:氟离子选择性电极使用前应置于相应的标液中浸泡活化一段时间(尿氟、水氟测定时的电极活化可用~10μg/mL氟标液),1~2h或几十分钟。新的长久未用的时间长些,经常使用的活化时间短或不活化。(较长时间不用的氟电极宜采用干存放,不要泡在纯水中)

?(3) 根据前述参比电极使用注意事项检查甘汞电极,临用前预先竖插在纯水中,使液接电位达到稳定。

?(4) 检查氟电极,若发现其内充液中有气泡附于氟电极内膜表面,应采取措施排除,否则也会造成电极内导体接触不良而影响电位正确测量。

?(5) 测量过程中应注意:搅拌的速率稳定;电极对置入试液的深度基本相同;固膜电极测量时,一般搅拌速度为中慢速为佳,可在搅拌中读取数值。

(6) 在测量过程中如何判断电极是否达到平衡电位是极其重要的,根据IUPAC推荐响应时间定义,电位变化≤1mV/min可认为响应达到平衡。重要的是,在标准液与样液测量中,应按完全一样的方式进行。尿氟测定方法中的规定是电位读数稳定后读取(即30s内电极电位变动小于0.1mV),同时记录测定时的温度。

(7) 磁力搅拌器长时间运转后,可能造成搅拌器机体温度升高并传入测量杯,给测定带来误差,故测量杯下常加绝热垫,并在测量间隔中替换绝热垫。

?(8) 注意仪器的屏蔽与接地及避免电磁干扰。如果开机后仪器电位读数不停变动(抖动),可能原因之一是仪器接地不良。

?(9) 由于电极有“记忆”效应,在测含较高氟的样品后,一定要将氟电极洗至要求的空白电位。

?(10) 标准加入法计算所用的电极斜率(s),要用被测液加标前、后所测得的E1和E2所对应的氟标准液浓度范围内的电极实测斜率。即电极的实测斜率s取与被测液相接近的浓度范围的标准液的测定值,而不能以理论斜率或实测的标准系列的平均斜率(指全区间)的s值计算。

?计算回归方程:

以氟化物标准系列测得的mV值为x,

以标准液氟质量浓度的对数(log C F-)为y,

建立y = a + b x 方程,或x = a’ +b’ y 方程

输入电子计算机器内,求a、b值;

氟化物浓度(F-mg/L)= y的反对数值。

实验六氟离子选择性电极测定水中微量F-

实验六、氟离子选择性电极测定水中微量F-离子 一、实验目的 1.熟悉酸度计的使用方法; 2.了解电位测定法的基本原理与应用; 3.学习并掌握氟离子选择性电极测定微量F-离子的原理和测定方法; 4.了解总离子强度调节缓冲溶液的意义和作用。 二、实验原理 离子选择电极是一种电化学传感器,又叫膜电极,它是将溶液中特定离子的活度转换成相应的电位。氟离子选择电极,简称氟电极,它是LaF3单晶敏感膜电极(掺有微量EuF2,利于导电),电极管内放入NaF + NaCl混合溶液作为内参比溶液,以Ag-AgCl作内参比电极。当将氟电极浸入含F-离子溶液中时,在其敏感膜内外两侧产生膜电位△φM,在一定条件下膜电位△φM与氟离子活度的对数值呈线性关系。 △φM= K-0.059 lg a F-(25 ℃) 以氟电极作指示电极,饱和甘汞电极为参比电极,浸入试液组成工作电池:Hg,Hg2Cl2 | KCl(饱和)‖F- 试液| LaF3 | NaF,NaCl(均为0.1mol/L) | AgCl,Ag 工作电池的电动势: E = K ′- 0.059 lg a F-(25 ℃) (式中K ′值包括内外参比电极的电位、液接电位等的常数。通过测量电池电动势可以测定氟离子的活度。) 在测量时加入以HAc-NaAc,柠檬酸钠和大量NaCl配制成的总离子强度调节缓冲液(TISAB)。由于加入了高离子强度的溶液(本实验所用的TISAB其离子强度I >1.2),可以在测定过程中维持离子强度恒定,因此工作电池电动势与F-离子浓度的对数呈线性关系: E = k - 0.059 lg C F- 本实验采用标准曲线法测定F-离子浓度,即配制成不同浓度的F-标准溶液,测定工作电池的电动势,并在同样条件下测得试液的E x,由E - lg C F-曲线查得未知试液中的F-离子浓度。当试液组成较为复杂时,则应采取标准加入法或Gran

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

离子选择性电极法测定氟离子

自来水中氟含量的测定(氟离子选择性电极法) 一、实验目的 1、掌握氟离子选择电极测定水中氟离子含量的原理、方法。 2、了解总离子强度调节缓冲溶液的组成和作用。 3、熟悉用标准曲线法和标准加入法测定水中氟的含量。 二、实验原理 用氟离子选择性电极测定水样时,以氟离子选择电极作指示电极,以饱和甘汞电极作参比电极,组成的测量电池为 氟离子选择性电极︱试液‖SCE 如果忽略液接电位,电池的电动势为: E=b-0.0592loga F- 即电池的电动势与试液中的氟离子活度的对数成正比。由此可采用标准曲线法和一次性标准加入法测定氟含量或浓度。 三、仪器与试剂(自己整理) 四、实验步骤(自己整理) (1)电极的准备 (2)标准曲线制作 (3)水样中氟含量的测定 ①标准曲线法②标准加入法 五、实验数据结果处理(自己整理) 六、思考题: 1用离子选择性电极法测定氟离子时加入TISAB的组成和作用各是什么? TISAB的组成成分对应的作用 0.1 mol/L氯化钠溶液控制离子强度,加快平衡响应时间 控制溶液的酸度,使pH=5-6 0.25 mol/L HAc-0.75 mol/L NaAc 溶液 0.001mol/L柠檬酸钠溶液掩蔽自来水中含有的Al3+、Fe3+、Sn4+等干

2标准曲线法和标准加入法各有何特点,比较本实验用这两种方法测得的结果是否相同,如果不同说明原因。 答:⑴.标准曲线法:可以适用于多次测量,并且要求标准溶液和样品具有恒定的离子强度,并维持在适宜的pH 范围内.调节离子强度所用电解质不应对测定有干扰,调节离子强度的溶液,也常加入适当的络合剂或其他试剂以消除干扰离子的影响。 ⑵.标准加入法:是在其他组分共存情况下进行测量的,因此实际上减免了共存组分的影响,古这种方法适合于成分不明或是组成复杂的试样的测定。 标准加入法比标准曲线法操作简便,这两种方法测得的实验结果在排除误差的影响时基本相同。 3为什么控制PH5.0—6.0原因? 较高碱度时,主要的干扰物是-OH 。在膜的表面发生如下反应: -3-33F La(OH)3OH LaF +====+ 反应产生的氟离子干扰电极的响应,同时使氟离子浓度偏高; 在较高酸度时由于形成HF 2-而降低F -的离子活度,测定结果偏低。 扰离子,防止F - 与金属离子形成配合物

实验六 氟离子选择电极测定自来水中的氟含量

实验六 氟离子选择电极测定自来水中的氟含量 一、实验目的 1.了解氟离子选择性电极的基本性能及其使用方法。 2.掌握用氟离子选择性电极测定氟离子浓度的方法。 3.学会使用离子选择性电极的测量方法和数据处理方法。 二、基本原理 饮用水中氟含量的高低,对人的健康有一定的影响。氟含量太低,易得牙龋病,过高则会发生氟中毒,适宜含量为0.5~1.0 mg/L 。 目前测定氟的方法有比色法和直接电位法。比色法测量范围较宽,但干扰因素多,并且要对样品进行预处理;直接电位法,用离子选择性电极进行测量,其测量范围虽不及前者宽,但已能满足环境监测的要求,而且操作简便,干扰因素少,一般不必对样品进行预处理。因此,电位法逐渐取代比色法成为测量氟离子含量的常规方法。 氟离子选择性电极 (简称氟电极) 以LaF 3单晶片为敏感膜,对溶液中的氟离子具有良好的选择性。氟电极、饱和甘汞电极 (SCE) 和待测试液组成的原电池可表示为: Ag│AgCl ,NaCl ,NaF│LaF 3膜│试液‖KCl (饱和),Hg 2Cl 2│Hg 一般pH/mV 计上氟电极接 (-) ,饱和甘汞电极接 (+),测得原电池的电动势为: - -=F SCE E ?? SCE ?和- F ?分别为饱和甘汞电极和氟电极的电位。当其他条件一定时 - -=F K E αlg 059.0 (25℃) (1) 其中,K 为常数,0.059为25℃时电极的理论响应斜率;-F α为待测试液中- F 活度。 用离子选择性电极测量的是离子活度,而通常定量分析需要的是离子浓度。若加入适量惰性电解质作为总离子强度调节缓冲剂 (TISAB),使离子强度保持不变,则(1)可表示为: pF K c K c K E F F ?+=?+=?-=-- 059.0)lg -(059.0lg 059.0 - F c 为待测试液中-F 浓度,- -=F c pF lg 。

实验 4 水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为 1.0mg·L-1 。测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。 一.实验目的和要求 1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。 二.仪器 1.氟离子选择电极(使用前在去离子水中充分浸泡)。 2.饱和甘汞电极。 3.精密pH计或离子活度计、晶体管毫伏计,精确到 0.1mV。 4.磁力搅拌器和塑料包裹的搅拌子。 5.100mL、50mL容量瓶。 6.10.00mL、 5.00mL移液管或吸液管。 7.100mL聚乙烯杯。

三.试剂 所用水为去离子水或无氟蒸馏水。 1.氟化物标准贮备液: 称取 0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2.乙酸钠溶液: 称取15g乙酸钠(CH 3COONa)溶于水,并稀释至100mL。 3.盐酸溶液:2mol·L-1。 4.总离子强度调节缓冲溶液(TISAB): 称取 58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。 5.水样①,②。 四.测定步骤 1.仪器准备和操作: 按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 2.氟化物标准溶液制备:

实验四 用氟离子选择性电极测定水中微量F

实验三用氟离子选择性电极测定水中微量F- 离子----标准曲线法[教学时间]:6学时 [教学方法]: 讲授法与实验法相结合 [教学重点、难点]: 分析化学实验具体要求、安全知识、玻璃仪器的洗涤[教学要求]: 1、要求了解分析化学实验课的任务和具体要求 2、要求了解分析化学实验的一般知识; 3、掌握玻璃仪器的洗涤方法。 [示范操作]: 分析化学实验用玻璃仪器的洗涤 [课堂提问]: 1、移液管、容量瓶、玻璃量具为什么不能用刷子刷洗? 2、已洗净的玻璃器皿是什么样子? [可能出现的问题]: 去污粉用量较大,水槽里面到处都是。 [实验结果要求]: 洗净的玻璃器皿的器壁能被水完全润湿,不挂水珠。 [教学内容] 一、实验目的 1、学习氟离子选择性电极测定微量F-

离子的原理和方法; 2、学习应用最小二乘法处理数据。 二、实验仪器及药品 仪器: 高输入阻抗的电子毫伏计(离子计)、氟离子选择性电极、饱和甘汞电极、电磁搅拌器。 药品: F- 标准溶液 三、实验原理 电位分析法是通过在零电流下测定两电极间的电位差(即构成原电池的电动势)进行测定。将指示电极和参比电极浸入试液中,组成化学电池,电池的电动势为: E = E 指-E 参+E接式中E 指、E 参和E 接分别为指示电极的电极电位、参比电极的电极电位和液接电位。 在某确定的电化学体系中,参比电极的电极电位和液接电位为常数,用K 表示,则: E = E

指+ K 指示电极的电极电位与电活性物质活度的关系服从Nernst方程,在25℃时,E 指= K + 0.0591/n lga ox/Red 表明: 电池的电动势是电活性物质活度的函数,电动势的值反映了试液中电活性物质的大小。 本实验中以氟离子为指示电极,饱和甘汞电极为参比电极,浸入试液组成工作电池。 工作电池的电动势为:E指= K - 0.0591 lga F- 实验测量时,通过加入总离子强度调节缓冲液(TISAB)维持离子强度恒定不变,工作电动势与F- 浓度的对数成线性关系:E指= K - 0.0591 lgc F- 本实验采用标准曲线法测定F- 浓度: 配置不同浓度的F-

实验一 水中微量氟的测定

实验一水中微量氟的测定(离子选择性电极法) 一、实验目的 1.了解氟离子选择电极测定水中微量氟的原理和方法; 2.掌握离子计的使用方法。 二、实验原理 离子选择电极是一种电化学传感器,它将溶液中特定离子的活度换成相应的电位。当氟离子选择电极(简称氟电极)插入溶液时,其敏感膜对Fˉ产生响应,在膜和溶液间产生一定的膜电位: j n= K-2.303RT/FlgɑF- 在一定条件下膜电位?膜与Fˉ活度的对数成直线关系。当氟电极与饱和甘汞电极插入被测溶液中组成原电池时,电池的电动势E在一定条件下与Fˉ活度的对数成直线关系:E= K'-2.303RT/FlgɑF- 式中K'为常数,通过测量电池电动势可以求出Fˉ的活度。当溶液的总离子强度不变时,离子活度系数为一定值,则有 E= K''-2.303RT/Flgc F- E与Fˉ的浓度c F-的对数成直线关系。因此,为了测定Fˉ的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的中性电解质作总离子强度,调节缓冲溶液(TISAB),保持较高的离子强度,使它们的总离子强度近似一致,不再受样品或标准溶液中原有离子含量的影响。因而样品溶液和标准溶液中待测离子的活度系数可认为相等。 当Fˉ浓度在1.0~1.0?10-6mol/L范围时,氟电极电位与pF成直线关系,可用标准曲线法或标准加入法进行测定。 氟电极只对游离的Fˉ有响应。在酸性溶液中,H+与部分Fˉ形成HF或HF2ˉ,会降低Fˉ的浓度。在碱性溶液中,LaF3薄膜与OHˉ发生交换作用而使测定结果偏高。因此,溶液的酸度对测定有影响。氟电极适宜于测定的pH范围为5-7. 氟电极的最大优点是选择性好。能与Fˉ生成稳定配合物或生成沉淀的元素(如Al、Fe、Zr、Th、Ca、Mg、Li及稀土元素)会干扰测定,通常可用柠檬酸、DCTA、EDTA、磺基水杨酸及磷酸盐等掩蔽。其他阴离子(如Clˉ、Brˉ、Iˉ、SO42ˉ、NO3ˉ、Acˉ、C2O42ˉ等)均不干扰测定。加入总离子强度调节缓冲液,可以起到控制一定的总离子强度和酸度,以及掩蔽干扰离子等多种作用。 三、仪器与试剂 仪器:国产PXD-270型数字离子计(见附图),氟离子选择性电极,饱和甘汞电极,电磁搅拌器,塑料烧杯(50ml),容量瓶(50ml),移液管(25ml),吸量管(10、1ml)。 试剂: ①100.0μg?mL-1氟标准溶液:准确称取于1200C干燥2h并冷却的分析纯NaF0.2210g,溶于去离子水中,转入1000mL容量瓶中,稀释至刻度,贮于聚乙烯瓶中。 ②10.0μg?mL-1氟标准溶液:吸取上述溶液10.0ml,用去离子水稀释成100mL即得。 ③总离子强度调节缓冲溶液:于1000mL烧杯中,加入500mL去离子水和57mL冰醋酸、58gNaCl、12g柠檬酸钠(Na3C6H5O7?2H2O),搅拌至溶解。在冷水溶液中缓慢加入6.0mol?L-1NaOH溶液约125mL,用1%溴甲酚绿作指示剂滴至呈蓝绿色,冷却至室温,稀释至1L。 ④去离子水:用普通蒸馏水经离子纯水器交换一次而得去离子水,用电导仪测量电阻值在1MΩ以上。 1%溴甲酚绿溶液,NaOH(0.1mol?L-1), HNO3(0.1mol?L-1)。

离子选择性电极法测定水中微量氟

实验一 离子选择性电极法测定水中微量氟 实验日期:______ 同组人:________________ 成绩:____ 一、实验目的 (1)掌握离子选择性电极法测定离子含量的原理和方法; (2)掌握标准曲线法和标准加入法的适用条件; (3)了解使用总离子强度调节缓冲溶液的意义和作用; (4)熟悉氟电极和饱和甘汞电极的结构和使用方法; (5)掌握酸度计的使用方法。 二、实验原理 饮用水中氟含量的高低对人体健康有一定影响,氟的含量太低易得龋齿,过高则会发生氟中毒现象,适宜含量为0.5mg ·L -1 左右。因此,监测饮用水中氟离子含量至关重要。氟离子选择性电极法已被确定为测定饮用水中氟含量的标准方法。 离子选择性电极是一种电化学传感器,它可将溶液中特定离子的活度转换成相应的电位信号。氟离子选择性电极的敏感膜为LaF 3单晶膜(掺有微量EuF 2,利于导电),电极管内装有0.1mol ·L -1 NaCl-NaF 组成的内参比溶液,以Ag-AgCl 作内参比电极。当氟离子选择电极(作指示电极)与饱和甘汞电极(参比电极)插入被测溶液中组成工作电池时,电池的电动势正在一定条件下与F -离子活度的对数值成线性关系: - -=F S K E αlg 式中,K 值在一定条件下为常数;S 为电极线性响应斜率(25℃时为0.059V)。当溶液的总离子强度不变时,离子的活度系数为一定值,工作电池电动势与F -离子浓度的对数成线性关系: - -=F c S K E lg ' 为了测定F - 的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的惰性电解质以固定各溶液的总离子强度。 试液的pH 对氟电极的电位响应有影响。在酸性溶液中H +离子与部分F -离子形成HF 或HF 2-等在氟电极上不响应的形式,从而降低了F - 离子的浓度。在碱性溶液中,OH -在氟电极上与F -产生竞争响应,此外OH -也能与CaF 3晶体膜产生如下反应:

离子选择性电极法测定水中氟离子

离子选择性电极法测定溶液中氟离子 一、实验目的 1、了解电位分析法的基本原理。 2、掌握电位分析法的操作过程。 3、掌握用标准曲线法测定水中微量氟离子的方法。 4、了解总离子强度调节液的意义和作用。 二、实验原理 一般氟测定最方便、灵敏的方法是氟离子选择电极。氟离子选择电极的敏感膜由LaF 3单晶片制成,为改善导电性能,晶体中还掺杂了少量0.1%~0.5% 的EuF 2和1%~5%的CaF 2。膜导电由离子半径较小、带电荷较少的晶体离子氟 离子来担任。Eu 2+、Ca 2+代替了晶格点阵中的La 3+,形成了较多空的氟离子点阵,降低了晶体膜的电阻。 将氟离子选择电极插入待测溶液中,待测离子可以吸附在膜表面,它与膜上相同离子交换,并通过扩散进入膜相。膜相中存在的晶体缺陷,产生的离子也可以扩散进入溶液相,这样在晶体膜与溶液界面上建立了双电层结构,产生相界电位,氟离子活度的变化符合能斯特方程: --=F a F RT K E lg 303.2 氟离子选择电极对氟离子有良好的选择性,一般阴离子,除OH -外,均不干扰电极对氟离子的响应。氟离子选择电极的适宜pH 范围为5-7。一般氟离子电极的测定范围为10-6~10-1mol /L 。水中氟离子浓度一般为10-5mol /L 。 在测定中为了将活度和浓度联系起来,必须控制离子强度,为此,应该加入惰性电解质(如KNO 3)。一般将含有惰性电解质的溶液称为总离子强度调节液 (total Ionic strength adjustment buffer ,TISAB)。对氟离子选择电极来说,它由KNO 3、柠檬酸三钠溶液组成。 用离子选择电极测定离子浓度有两种基本方法。方法一:标准曲线法。先测定已知离子浓度的标准溶液的电位E ,以电位E 对lgc 作一工作曲线,由测得的未知样品的电位值,在E-lgc 曲线上求出分析物的浓度。方法二:标准加人法。首先测定待分析物的电位E1,然后加人已知浓度的分析物,记录电位E2,通过能斯特方程,由电位E1和E2可以求出待分析物的浓度。本实验测定氟离子采用标准曲线法。 三、仪器与试剂 氟离子选择电极一支;饱和甘汞电极一支;恒温水浴锅一台。100mL 烧杯若干个,50mL 容量瓶若5个,25mL 移液管、10mL 移液管,1mL 和10mL 有分刻度的移液管各一支,100mL 容量瓶一个。 NaF(基准试剂);KNO 3(分析纯);柠檬酸三钠(分析纯);NaOH(分析纯)。 氟标准溶液0.5g/L :称取于120°C 干燥2小时并冷却的NaF 1.106g 溶于去离子水中,而后转移至1000 mL 容量瓶中,稀释至刻度,摇匀,保存在聚乙烯塑料瓶中备用。 氟标准溶液0.2g/L :移取0.5g/L 氟离子标准溶液20mL 稀释到50mL 。实验前随配随用,用完倒掉洗净容量瓶。 依照上述方法依次配制0.01g/L 、0.04g/L 的氟标准溶液。

仪器分析实验-氟离子选择电极测定天然水中氟离子含量

仪器分析实验氟离子选择电极测定天然水中氟离子含量2017 年 5 月 12日氟离子选择电极测定天然水中氟离子含量 许诗赫 PB14007321 【实验目的】 1、熟悉电位法的基本原理和一般分析方法; 2、了解离子计的结构并掌握其基本操作技术; 3、了解氟离子选择电极的基本功能,掌握离子计的使用方法。 【基本原理】 0原理概述:氟离子选择电极对F-有选择性响应,并且在一定条件下,电池电势与试液中的氟离子浓度的对数呈线性关系。通过氟离子选择电极可以定量测出自来水中的氟离子浓度。 0氟离子选择电极:电极底部敏感膜由LaF3单晶片制成,单晶中常加入少量的EuF2以增加其导电性,当电极插入含有F-的溶液时,F-在敏感膜与溶液界面扩散及在晶格的空穴中移动产生膜电位,电极电位的能斯特方程为: E F?= k ?2.303RT F lg a F?=k?s lg a F? (k 为常数;s=2.303RT F为电极的斜率) 实际测量时,F-选择电极与一支参比电极(如饱和甘汞电极)一同插入被测溶液中组成测量电池,电池的图解表示式为: 氟离子选择电极︱试液(c=x)︱饱和甘汞电极(SCE) 该电池的电池电势为: E = E SCE? E F?= E SCE? k s+lg a F? 将E SCE和k合并,用E0表示有: E = E0+s lg a F? 当溶液中加入较高浓度的TISAB溶液(总离子强度调节缓冲液)以维持恒定的离子强度时,可改写为: , E = E0+s lg c F? , 25℃时,电池电势E为:E=E0+ 0.0592 lg c F? 可见,在一定条件下,电池电势与试液中的氟离子浓度的对数呈线性关系。 0可以采用的实验方法:工作曲线法、标准加入法、仪器直读等其他方法。

氟离子选择电极法测自来水中氟离子含量

离子选择电极法测定氟离子实验报告 一.实验目的 ⑴了解氟离子选择电极的构造及测定自来水中氟离子的实验条件。 ⑵掌握离子计的使用方法。 二.实验原理 1.氟离子选择电极是目前最成熟的一种离子选择电极,将氟化镧单晶封在塑料管的一端,管内装有0.1mol/L NaF和0.1mol/L NaCl溶液,以Ag-AgCl电极为参比电极,构成了氟离子选择电极。 2.测量电极:氟离子选择电极|试液||SCE 电池电动势为E=b-0.0592()1F a log- 3.TISAB溶液的构成乙酸缓冲溶液排除OH-的干扰 柠檬酸钠溶液掩蔽Fe+3、Al+3、Sn(IV)配位离子 氯化钠溶液增加导电性 三.实验仪器与试剂 离子计,氟离子选择电极,饱和甘汞电极, 离子计 100mL容量瓶,50mL烧杯,100mL烧杯, 10mL移液管,50mL移液管。 0.1000mol/L F1-标准溶液,TISAB。 四.实验步骤 ㈠氟离子选择电极的准备

氟离子选择电极在使用前在含104-mol/L F1-中浸泡约30min,直至测定去离子水 时电位为277mV左右,氟离子活化完成。 ㈡线性范围及能斯特斜率的测量 在5只100mL容量瓶中,用10mL移液管移取0.100mol/L F1-标准溶液于第一只100mL容量瓶中,加入TISAB10mL,去离子水稀释至标线,摇匀,配成1.00*102-mol/L F1-溶液;在第二只100mL容量瓶中,加入1.00*102-mol/L F1-溶液10.00mL和TISAB10mL,去离子水稀释至标线,摇匀,配成1.00*103-mol/L F1-溶液。按上述方法依次配制1.00*106-~1.00*104-mol/L F1-标准溶液。 将适量F1-标准溶液分别倒入5只塑料烧杯中,放入磁性搅拌子,插入氟离子选 择电极和饱和甘汞电极,连接好离子计,开启电磁搅拌器,由稀到浓测量,等读数稳定后读电压值,稳定后每隔5秒读取一个数,读取3个数,再分别测其他 F1-浓度溶液的电位值。 ㈢氟含量的测定 ①标准曲线法 吸取50mL自来水于100mL容量瓶中,加入10mL TISAB,去离子水稀释至标线,摇匀。全部倒入一烘干的烧杯中,测电位,记为E1。平行测定3次。 ②标准加入法 实验①测量后,再分别加入1.00mL 1.00*103-mol/L F1-溶液后,再测定其电位值,记为E2。 五.实验数据记录及处理 1.制作E-logaF1-标准曲线,计算求自来水中氟离子浓度。 F1-浓度mol/L 1.00*102-mol /L 1.00*103-mol /L 1.00*104-mol /L 1.00*105-mol /L 1.00*106-mol /L F1-浓度的 对数 -2 -3 -4 -5 -6 电位mV 95.1 95.1 95.1 154.1 154.1 154.1 212.7 212.7 212.6 266.7 266.7 266.6 286.3 286.4 286.5 电位平均值 mV 95.10 154.10 212.67 266.67 286.40

氟离子检测-氟电极法

TLT/QMO08-08- 氟离子检测—氟电极法 1 a.原理:利用氟离子选择电极测定水样,以氟离子选择电极作指示电极,以饱和甘汞电 极作参比电极,组成电池,电池的电度势与溶液中氟离子活度的对数成正比。 b.干扰:对于氟离子选择电极,常见阴离子NO3-,SO42-,PO43-,Ac-,Cl-,Br-,I-,HCO3- 等不干扰。主要干扰物是OH-,所以,最好保持pH=5~6之间,通常是加入缓冲溶液; 常见的阳离子干扰是Fe3+、AL3+、Sn4+,对于这几种阳离子是加入柠檬酸钠进行掩蔽。由 于用氟离子选择电极测定的是溶液中氟离子的活度,因此必须加入大量电解质控制溶液 中离子强度。 c.实验仪器:氟离子选择电极、饱和甘汞电极、电磁搅拌器、聚四氟容量瓶100ml的七 个。聚四氟乙烯烧杯7个。 d.试剂:1.氟标准溶液:称去0.221g氟化钠,溶于水,移入1000毫升容量瓶,稀释到 刻度,贮存于聚四氟乙烯瓶中。该溶液每毫升含氟100微克。 2.总离子强度调节缓冲液:分别称取5.844克氯化钠、15.01克冰乙酸、102.06 克乙酸钠和0.2941克柠檬酸钠溶于水中,移入1000毫升容量瓶,稀释到刻度。倒入塑 料瓶中。 实验步骤:1.绘制标线:首先确定待测液的氟含量大致范围,使该溶液的氟含量在所绘制 的标线上。这里所测水溶液一般在4ppm以下,所以分别从氟标准溶液中分别已取0.00ml、 1.00ml、 2.00ml、 3.00ml、 4.00ml到聚四氟容量瓶中,分别加入10ml的总离子强度调节缓冲 液。用去离子水稀释到刻度。然后按照浓度由小到大,分别用氟离子电极测定其电压。以电 压为横坐标,氟离子浓度的对数为纵坐标绘制曲线。 其中mV o为空白时的电压。 2.测量样品:移去样品50ml,用氨水和盐酸将pH调到7左右。移入100ml 聚四氟乙烯容量瓶中,加入10ml总离子强度调节缓冲液,用去离子水稀释到刻度。用 氟离子电极测定其电压。然后通过曲线,计算出相应的氟离子浓度值。 (注:该样品相当于稀释了一倍。最后的浓度值需要乘以2)

水中氟离子的测定

离子选择性电极法测定水样中氟离子的含量 一、氟元素简介 人体必需的微量元素之一,可以坚固骨骼和牙齿,预防龋齿。 轻度氟中毒症状:氟斑牙,牙齿变黄,变黑。 重度氟中毒症状:氟骨症,骨头变形,丧失劳动和生活自理能力。 二、预备知识 电分析化学(electroanalytical chemistry)是以溶液中物质的电化学性质及变化来进行分析的方法。电化学性质主要包括以电导、电位、电流、电量等电化学参数作为研究对象,从而找出其与被测物质含量间的关系。 电位分析是在零电流条件下测定两电极间的电位差来确定物质浓度或含量的一类方法,它是一种重要的电化学分析法。 三、测定目的 掌握离子选择电极法的测定原理及测定方法 学会正确使用氟离子选择性电极 四、测定原理 氟离子选择性电极是以氟化镧(LaF3)单晶片敏感膜的电位法指示电极,对溶液中的氟离子具有良好的选择性。晶体膜的响应机理一般用晶体离子传导原理及膜表面上相同离子见的扩散作用来解释。 离子在晶体中的导电过程,是借助于晶格缺陷而进行的。挨近缺陷空穴的导电离子,能够运动至空穴中:LaF3+空穴→LaF2++F-由于晶体膜表面不存在离子交换作用,所以电极在使用前不需浸

泡活化,其电位的产生,仅是由于溶液中的待测离子能扩散进入膜相的缺陷空穴,而膜相中的晶格缺陷上的离子也能进入溶液相,因而在两项界面上建立双电层结构而在敏感膜两侧形成膜电位所致。 五、消除干扰 对晶体膜电极的干扰,主要不是由于共存离子进入膜相参与响应,而是来自晶体表面的化学反应,即共存离子与晶格离子形成难溶盐或络合物,从而改变了膜表面的性质。对于氟电极而言,主要的干扰是OH-,这是由于在晶体表面存在下列化学反应: LaF3(固体)+3OH- LaOH(固体)+3 F- 实验表明,电极使用时最适宜的溶液pH范围为5-5.5。 六、定量依据 1. 氟电极与饱和甘汞电极组成的电池可以表示为: Hg, Hg2Cl2︱KCl(饱和)‖F-试液︱LaF3(10-3mol·L-1), NaF(10-1mol·L-1), NaCl(0.1 mol·L-1) ︱AgCl 2. 电池电动势E与氟离子活度的关系式为 E=K-2.303RT/F·lgaF-=K-0.059 lgaF-(25℃) 3. 其中0.059为25℃时电极的理论响应斜率,其他符号具有通常意义。用离子选择性电极测量的时溶液中离子活度,而通常定量分析需要测量的时离子的浓度,不是活度。所以必须控制试液的离子强度。如果测量试液的离子强度维持一定,则上述方程可表示为: E=K′-0.059lg[F-] (K′为常数) 4. 电动势E与lg[F-]成线性关系。因此作出E对lg[F-]的标准曲线,

实验十五氟离子选择性电极测定饮用水中的氟(精)

实验十五氟离子选择性电极测定饮用水中的氟 授课次序:55 总学时:2学时 一、实验目的 1、学习直接电位法测定水中氟离子浓度的方法及实验操作。 2、学会使用离子计。 3、了解TISAB的构成和作用。 二、实验原理 以氟离子选择电极为指示电极(作正极),饱和甘汞电极为参比电极,可测定溶液中氟离子含量。工作电池的电动势E在一定条件下(25℃): E=K—0.059 1gc F- 因此在一定条件下,电池电动势与试液中的氟离子浓度的对数呈线性关系。 温度、溶液pH、离子强度、共存离子均会影响测定的准确度。因此为了保证测定准确度,需向标准溶液和待测试样中加入TISAB,以使溶液中离子平均活度系数保持定值,并控制溶液的pH和消除共存离子干扰。 使用离子计也可以对氟离子进行浓度直读测量(即测溶液的pF-值),其方法与测定溶液中pH的方法相似。但要注意保持标准溶液和水样的离子强度基本相同。 三、实验仪器及试剂 1、仪器821型数字式离子计(或其他型号离子计,或精密酸度计);饱和甘汞电极;电磁搅拌器。 2、试剂 ①1.000×10-1mol·L-1F-标准贮备液 配制方法:准确称取NaF(120℃烘1h)4.199 g溶于1000 mL容量瓶中,用

蒸馏水稀释至刻线,摇匀。贮于聚乙烯瓶中待用。 ②总离子强度调节缓冲溶液(TISAB) 配制方法:称取氯化钠58 g,柠檬酸钠10g溶于800 mL蒸馏水中,再加冰 醋酸57 mL,用6 mol·L-1NaOH溶液调至pH 5.0~5.5之间,然后稀释至1000 mL。 ③含F-自来水样。 四、实验注意事项、特别提示 1、测量时浓度应由稀至浓。每次测定前要用被测试液清洗电极、烧杯及搅拌子。 2、绘制标准曲线时,测定一系列标准溶液后,应将电极清洗至原空白电位值,然后再测定未知液的电位值。 3、测定过程中更换溶液时“测量”键必须处于断开位置,以免损坏离子计。 4、测定过程中搅拌溶液的速度应恒定。 5、氟电极晶片上如有油污,用脱脂棉依次以酒精、丙酮轻拭,再用蒸馏水洗净。为了防止晶片内侧附着气泡,测量前,让晶片朝下,轻击电极杆,以排除晶片上可能附着的气泡。 五、思考题 1、为什么要加入总离子强度调节剂? 2、在测量前氟电极应怎样处理,达到什么要求? 3、试比较标准曲线法和标准加入法的测定结果。 六、教学实施经验小记 1、通过实验,学生知道了总离子强度调节缓冲溶液(TISAB)的配制和用途。 2、为了做好实验,必须给学生介绍清楚标准曲线法和标准加入法的原理和之间的不同。

离子选择电极法测定氟离子

离子选择电极法测定氟离子 一、实验目的 1.了解氟离子选择电极的构造及测定自来水中氟离子的实验条件和方法。 2.掌握离子计的使用方法。 二、实验原理 氟离子选择电极是目前最成熟的一种离子选择电极。将氟化镧单晶(掺入微量氟化铕(Ⅱ)以增加导电性)封在塑料管的一端,管内装0.1 moL·L-1NaF和0.1 moL·L-1NaCl溶液,以Ag-AgCl电极为参比电极,构成氟离子选择电极。用氟离子选择测定水样时,以氟离子选择电极作指示电极,以饱和甘汞电极作参比电极,组成的测量电池为:氟离子选择电极︱试液‖SCE 如果忽略液接电位,电池的电动势为: 即电池的电动势与试液中氟离子活度的对数成正比,氟离子选择电极一般在1~10-6mol·L-1范围符合能斯特方程式。 氟离子选择电极性能: ①选择性 阴离子: OH- LaF 3 + 3OH-= La(OH) 3 + 3F- 阳离子: Fe3+、Al3+、Sn(Ⅳ) ( 易与F-形成稳定配位离子) ②支持电解质------控制试液的离子强度。 ③总离子强度调节缓冲液-----控制试液pH和离子强度以及消除干扰。 三、仪器与试剂 离子计或pH计,氟离子选择电极, 饱和甘汞电极,电磁搅拌器, 容量瓶(100 mL 7只),烧杯(100 mL 2个), 10 mL移液管 F-标准溶液(0.1000 mol·L-1); 离子强度调节缓冲液(TISAB) 四、基本操作 1. 氟离子选择电极的准备

使用前浸泡于10-4mol·L-1 F-或更低F-溶液中浸泡活化。使用时,先用去离子水吹洗电极,再在去离子水中洗至电极的纯水电位,一般在300 mV左右。 2. 线性范围及能斯特斜率的测量通常由稀至浓分别进行测量。 3. 自来水中氟含量的测定。 五、实验步骤 1. 氟离子选择电极的准备: 2. 线性范围及能斯特斜率的测量: 在5只100 mL容量瓶中,用10 mL移液管移取0.100 moL·L-1 F-标准溶液于第一只100 mL容量瓶中,加入TISAB 10 mL,去离子水稀释至标线,摇匀,配成1.00×10-2mol·L-1 F-溶液;在第二只100 mL容量瓶中,加入1.00×10-2 mol·L-1 F-溶液10.00 mL和TISAB 10 mL,去离子水稀释至标线,摇匀,配成1.00×10-3mol·L-1 F-溶液。按上述方法依次配制1.00×10-6~1.00×10-4 mol·L-1 F-标准溶液。将适量F-标准溶液(浸没电极即可)分别倒入5只塑料烧杯中,放入磁性搅拌子,插入氟离子选择电极和饱和甘汞电极,连接好离子计或酸度计,开启电磁搅拌器,由稀至浓分别进行测量,在仪器指针不再移动或数字显示在±1 mV内,读取电位值。再分别测定其他F-浓度溶液的电位值。 3. 氟含量的测定: (1) 试液的制备自来水样可在实验室直接取样。 (2) 标准曲线法准确吸取自来水样50.0 mL于100 mL容量瓶中,加入TISAB 10 mL,去离子水稀释至标线,摇匀。全部倒入一烘干的烧杯中,按上述实验方法测(此溶液继续做下一步实验),平行测定三份。 定电位值,记为E 1 (3) 标准加入法在实验②测量后,再分别加入1.00 mL 1.00×10-3mol·L-1 F- 。 溶液①后,再测定其电位值,记为E 2 (4) 空白试验以去离子水代替试样,重复测定。 六、数据处理 标准曲线,确定该氟离子选择电极的线性范围及实际能斯特响1. 绘制E~logC F- 应斜率。并从标准曲线,查出被测试液F-浓度(c ),计算出试样中氟含量。 x ①②③平均值

氟离子选择电极测定饮用水中的氟

图5-1 氟离子电极示意图 1.0.1mol/LNaF,0.1mol/L,NaCl 内充液 2.Ag-AgCl 内参比电极 氟离子选择电极测定饮用水中的氟 一、实验目的 1、了解离子选择电极的主要特性,掌握离子选择电极法测定的原理、方法及实验操作。 2、了解总离子强度调节缓冲液的意义和作用。 3、掌握用标准曲线法、标准加入法和Gran 作图法测定未知物浓度。 二、方法原理 氟离子选择电极(简称氟电极)是晶体膜电极,见示意图5-1。它的敏感膜是由难溶盐LaF 3单晶(定向掺杂EuF 2)薄片制成,电极管内装有0.1mol ?L -1NaF 和0.1mol.L -1NaCl 组成的内充液,浸入一根Ag-AgCl 内参比电极。测定时,氟电极、饱和甘汞电极(外参比电极)和含氟试液组成下列电池: 氟离子选择电极 | F -试液(c =x )║饱和甘汞电极 一般离子计上氟电极接(-),饱和甘汞电极(SCE )接 (+),测得电池的电位差为: j a AgCl Ag SCE E ?????++--=-膜电池 (5.1) 在一定的实验条件下(如溶液的离子强度,温度等),外 参比电极电位?SCE 、活度系数 、内参比电极电位?Ag-AgCl 、氟电极的不对称电位?a 以及液接电位?j 等都可以作为常数处理。而氟电极的膜电位?膜与F -活度的关系符合Nernst 公式, 因此上述电池的电位差E 电池与试液中氟离子浓度的对数呈线 性关系,即 -+=F a F RT K E log 303.2电池 (5.2) 因此,可以用直接电位法测定F -的浓度。式(2)中K 为常数,R 为摩尔气体常数8.314J ·mol -1· K -1,T 为热力学温度,F 为法拉第常数96485C ·mol - 1。 当有共存离子时,可用电位选择性系数来表征共存离子对响应离子的干扰程度: )log(303.2/,m z j Pot j i i a K a zF RT k E ++=电池 (5.3) 本实验用标准工作曲线法、标准加入法测定水中氟离子的含量。测量的pH 值范围为5.5-9,加入含有柠檬酸钠、硝酸钠及HAc-NaAc 的总离子强度调节缓冲溶液(TISAB Total Ionic Strength Adjustment Buffer ;)来控制酸度、保持一定的离子强度和消除干扰离子对测定的影响。 三、仪器和试剂 仪器 PHS-3C 型pH 计或其他型号的离子计;电磁搅拌器;氟离子选择电极和饱和甘汞电极各一支;玻璃器皿一套。 试剂 TISAB 溶液:称取氯化钠58g ,柠檬酸钠10g ,溶于800mL 去离子水中,再加入1

水中氟化物的测定

4 试剂 所用水为去离子水或无氟蒸馏水。 (1)氟化物标准贮备液:称取0.2210 g基准氟化钠(NaF)(预先于105~110℃烘干2 h 或者于500~650℃烘干约40 min,冷却),用水溶解后转入1000 mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100 μg。 (2)乙酸钠溶液:称取15 g乙酸钠(CH3COONa)溶于水,并稀释至100 mL。 (3)盐酸溶液:2 mol/L。 (4)总离子强度调节缓冲溶液(TISAB):称取58.8 g二水合柠檬酸钠和85 g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000 mL容量瓶中,稀释至标线,摇匀。 (5)水样1,2。 5 步骤 (1)仪器准备和操作 按照所用测量仪器和电极使用说明,首先接好线路,将各开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 (2)氟化物标准溶液制备 用氟化钠标准贮备液、吸液管和100mL容量瓶制备每毫升含氟离子10μg的标准溶液。 (3)标准曲线绘制 用吸液管取1.00、3.00、5.00、10.00、20.00 mL氟化物标准溶液,分别置于5只50 mL 容量瓶中,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。分别移入100 mL 聚乙烯杯中,放入一只塑料搅拌子,按浓度由低到高的顺序,依次插入电极,连续搅拌溶液,读取搅拌状态下的稳态电位值(E)。在每次测量之前,都要用水将电极冲洗净,并用滤纸吸去水分。在半对数坐标纸上绘制E-lgcF-标准曲线,浓度标于对数分格上,最低浓度标于横坐标的起点线上。 (4)水样测定 用无分度吸液管吸取适量水样,置于50 mL容量瓶中,用乙酸钠或盐酸溶液调节至近中性,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。将其移入100 mL聚乙烯

氟离子选择电极

离子选择电极法测定含氟牙膏中氟的含量 一 目的要求 1.掌握用标准曲线法测定未知物浓度。 2.学会使用离子计和离子选择性电极。 二 原理 氟离子选择电极的电极膜由LaF 3单晶制成,电极电位(25o C )为: F a b log 0592.0-=? 测量电池为: 氟离子选择电极│试液(c=x )‖SCE 测定时试液中应加入离子强度调节剂TISAB 。 标准曲线法,配制一系列标准溶液,以电位值φ对logC 作图,然后由测得的未知试液的电位值φ,在标准曲线上查得其浓度。 标准加入法,首先测量体积为V x 、浓度为c x 的被测离子试液的电位值φx ,若为一价阳离子: X X X X c f s b a s b log log +=+=? 接着在试液中加入体积为V X ,浓度为c X 的被测离子的标准溶液,并测量其电位值φ1: X S X X S S V V c V c V f s b +++=log ? 若V S

试剂 1.0×10-1mol/L F—标准贮备液:准确称取NaF(120o C烘1h)4.199g溶于1000mL容量瓶中,用蒸馏水稀释至刻度,摇匀。贮存于聚乙烯瓶中待用;1.000×10-2—1.00×10-5mol/L F—标准溶液用上述贮备液配制;配制离子强度调节剂(TISAB):称取NaCl 58克,柠檬酸钠10克,溶解于800毫升蒸馏水中,再加入冰醋酸57毫升,用固体氢氧化钠(或40%氢氧化钠溶液)调节到pH=5,最后稀释到1升。样品(日用牙膏)。 四实验步骤 1氟离子选择电极的准备 将氟离子选择电极泡在1×10-4mol/L 氟离子溶液中约30min,然后用蒸馏水清洗数次直至测得的电位值约为-300mV(此值各支电极不同)。若氟离子选择电极暂不使用,宜于干放。 2绘制标准曲线 在5只100mL容量瓶中分别配制内含5mL离子强度调节剂的1.000×10-2—1.00×10-5mol/L 氟离子标准溶液。将适量标准溶液(浸没电极即可)分别倒入5只塑料烧杯中,插入氟离子选择和饱和甘汞电极,边接线路,放入搅拌子,由稀至浓分别测量标准溶液的电位值(为什么) 测量完毕后将电极用蒸馏水清洗直至测得电位值-300mV左右待用。 3试样中氟的测定 试样用自来水或牙膏,若用牙膏,用小烧杯准确称取约1g牙膏,然后加水溶解,加入5mL TISAB。煮沸2min,冷却并转移至100mL容量瓶中,用蒸馏水稀释至刻度,待用。 若用自来水,可直接在实验室取样。 (1) 标准曲线法准确移取自来水样50mL于100mL容量瓶中,加入5mL TISAB,用蒸馏水稀释至刻度,摇匀。然后全部倒入一烘干的塑料烧杯中,插入电极,连接线路。在搅拌条件下待电位稳定后读取电位值φx(此溶液别倒掉,留作下步实验用)。 (2) 标准加入法在实验(1)测得的电位值φx后,准确加入1mL1.00×10-4mol/L 氟离子标准溶液,测定电位值φ1 (若读得的电位值变化小于20mV,应使用1mL1.00×10-3mol/L 氟离子标准溶液,此时实验需重新开始)。 (3) 空白试验以蒸馏水代替试样,重复上述测定。 牙膏试样同样可按上述方式测定。 注意事项: 1. 测量时浓度应由稀至浓,每次测定后用被测试液清洗电极、烧杯以及搅拌子。 2. 绘制标准曲线时测定一系列标准溶液后,应将电极清洗至原空白电位值,然后再测定未知试液的电位值。 3. 测定过程中更换溶液时,“测量”键必须处于断开位置,以免损坏离子计。 4. 测定过程中搅拌溶液的速度应恒定。搅拌5-8分钟后,停止搅拌测量,测量结束后用水冲洗,再用滤纸吸干。 5.本实验中氟ISE接负极,所以测出的电池电动势E是负值,随浓度增加,E增加(绝对值下降)。 6.氟电极不用时干燥保存。氟离子储备液要用聚乙烯瓶子装。 7.注意参比电极内是否有气泡,若没充满,应补充饱和氯化钾溶液。

相关主题
文本预览
相关文档 最新文档