当前位置:文档之家› (整理)风道设计

(整理)风道设计

(整理)风道设计
(整理)风道设计

3. 风道通用设计规范

3.1. 风道系统设计需考虑的因素

在汽车风道系统设计时,要保证将其制冷和采暖设备的出风均匀地送入车厢内。在满足该使用效果的前提下,尽可能地做到结构简单,制造方便,与车内内饰设计及附件相协调。风道系统设计时,需考虑以下因素:

1. 必须考虑车身总布置设计、内饰造型设计以及底盘设计中和风道设计相

关的情况;

2. 由于汽车车厢空间有限,空调汽车的风道压力损失问题较为严重,因此

在设计、布置风道时,应特别注意风道中的压力损失;

3. 要考虑风道各支管路之间的风量平衡,各支管路之间的空气流动的压力

损失差值不得超过15%,并要详细计算各支管路的沿程阻力损失;

4. 必须将风道的气流噪声控制在允许的范围内,因此要对风道的风速进行

控制。通常出风口风速控制在6.5~11m/s ,新风入口处风速5~6m/s ,主风道风速5.5~8m/s ,支风道风速4~5.5m/s ,过滤器风速1~1.5m/s ;

5. 风道不能有大的泄漏点,以保证空调系统功能的发挥;

6. 对风道要进行隔热保温处理,以减少空气在风道输送过程中的冷、热量

损失,并防止低温风道表面结露。常用的保温材料有聚苯乙烯泡沫塑料、玻璃棉、聚氨脂泡沫塑料等,为了防止火灾,车外风道最好用泡沫石棉隔热,并用石棉布包扎;

3.2. 风道中的压力损失

由于汽车车室内部的空气流动受有限的车厢空间的限制,汽车空调风道的压力损失问题较为严重,风道压力损失是由沿程压力损失和局部压力损失两部分组成。

3.2.1. 风道沿程压力损失

风道沿程压力损失是空气沿风道管壁流动时,由空气与管壁之间的摩擦、空气分子与分子之间的摩擦而产生。

风道单位长度的沿程压力损失p m (又称比摩阻)的计算式如下:

2

412ρυλs m R p =

式中:λ——摩擦阻力系数;

ν——风道内空气的平均速度(m/s );

R S ——风道的水力半径(m );

R S =A/P ;

A ——风道的过流横截面面积(m 2);

P ——风道的周长(m );

摩擦阻力系数λ是雷诺数Re 和管壁粗糙度n 的函数。若空气流动呈层流状态时(Re<2300),λ值与管壁表面粗糙度无关,只与Re 有关,即

λ=64/Re

当空气呈紊流状态时(Re >2300),有三种状态:

⑴当层流边界层覆盖住管壁凸起高度时,为水力光滑管,此时影响λ值的只有Re ,即

25.0e R 0.3164

≈λ

⑵当层流边界层只是覆盖住管壁一部分凸起高度,而另一部分凸起高度在边界层外时,为过渡状态,此时λ既与Re 有关,又与管壁粗糙度有关。

⑶如果层流边界层很薄,管壁凸起高度完全突出在边界层外部,属于水力粗糙管,λ只与管壁表面粗糙度有关而与Re 无关。

但是对于大部分风道而言,空气的流动处在紊流过渡区,λ值既与Re 有关,又与管壁表面粗糙度n 有关,λ值与Re 和n 的关系可参阅一般空调设计手册和管道设计手册中的有关图表。

风道内空气的平均速度ν对风道沿程压力损失的影响最大,如果在相同风量时,风道中风速选得过大,虽然可减小风道的尺寸,但同时也会使风道内空气流动的沿程阻力以速度的平方值增加,而且还需要配置高压风机来满足风道出口风速的要求;反之,在相同的风量条件下,把空气速度选得过小,虽然风道阻力损失减小,但同时使风道尺寸过大,造成安装不方便,风道在车厢里所占空间过多。为此,空调汽车风道的风速应控制在如表3.1所示的低速风道送风范围内:

风道摩擦阻力系数λ和单位长度的沿程压力损失p m 也可采用如下的简化计

算式计算:

①风道材料为薄钢板,风道内壁表面各凸出部分的平均高度为0.15mm 时,

0.210.0750.0175D λυ--=; 2

1.21 1.925

0.01052m p D D λρυυ-==

D ——圆形风道内径或风道当量直径(m );

适用范围:0.2m ≤D ≤2m ; 3 m/s ≤ν≤20m/s ;

②风道材料为塑料板或玻璃钢,风道内壁表面各凸出部分的平均高度(绝对粗糙度)为1mm 时,

0.190.1670.0188D λυ--=; 2

1.19 1.833

0.01132m p D D λρυυ-==

D ——圆形风道内径或风道当量直径(m );

适用范围:0.2m ≤D ≤2m ; 5 m/s ≤ν≤30m/s ;

要降低风道沿程压力损失,就要求风道内表面光滑平整,以降低风道表面的绝对粗糙度,从而减小摩擦阻力。

3.2.2. 风道的局部压力损失

局部压力损失是由于空气在风道中的流量、流动方向或速度骤然突变时,会在风道内发生涡流或速度的重新分布,从而使流动阻力大大增加,造成能量损失。例如当空气流过三通管、四通管等部件时,因流量改变而产生的局部阻力损失;当空气流过弯管、渐扩管、渐缩管、风门等部件时因气流速度或方向改变而产生的局部阻力损失。

不论哪类局部构件,其所引起的局部阻力损失

j p ?均可根据下式计算:

2

2j p ρνξ?=

——局部阻力系数,其取值根据相应的风道截面气流速度查阅有关的工程手册;

设计风道时,为了减小局部阻力,通常采取如下技术措施:

①避免风道截面突变

风道截面突然扩大,会使部分气流因流速的变化而脱离扩管的壁面,在扩大截面处产生涡流,形成局部阻力损失。因此,在风道布置长度允许的条件下,应采用渐扩或渐缩管道,使局部阻力损失和噪音减小。一般渐扩管中心角≤14°,渐缩管中心角<40°为宜(如图3.1)。

图3.1 风道截面突变角度

②风道应尽量减少转弯

由于空气流过弯管时,气流主流会因流向突变而脱离管壁表面,使局部区域出现真空,气流会在局部区域回旋,造成能量损失,而且产生噪音。为了减小转弯处的局部阻力系数,可以减小转弯处的曲率半径和减少弯管过渡的节数。矩形风道的弯头,除了减小曲率半径之外,还可在弯头内部设置导流板来减小局部阻力系数。

在处理竖直风管与车内纵向风管的接头时,两者截面应尽量接近,并尽可能地增大90°弯头的圆角半径,若增设导流板,风阻可明显减小(如图3.2a)。在紧靠弯头的后面气流还未稳定(如图3.2b),不宜设置出风口,如果必须设置出风口,应在弯头或风口处加导流板。

图3.2 风道弯头

③处理好局部管件的形成与连接

局部管件不仅涉及局部阻力而且关系到噪音,如果处理不好局部管件的形成和连接,涡流的生成可能性大大增加。则不仅会大大增加局部阻力,而且会使局部管件成为噪声源。增设导流板和合理确定弯曲半径会改善局部管件的连接情况。(如图3.3)

图3.3 风道局部管件设计举例

④风道与风机连接应合理

气流在进出风机处要求均匀分布,不要有流向和流速的突然变化。气流出口的连接管应保持直管段,长度最好不小于出口边长的1.5~2.5倍,如果受空间限制,出口管必须折弯时,应在弯管中增设导流板,而且转弯的方向要顺着风机叶轮转动的方向(如图3.4a)。风机进口接管的连接要注意涡流,由于设计

不好,涡流损失大,使风量减少,加装导流板后,风量损失就减少到5%(如图3.4b)。

图3.4 风道与风机连接方式优劣对比

⑤出风口的局部阻力

为了减小出风口的局部阻力系数,应尽量降低出风口的出口流速。气流从风道排出时,当出口处无阻挡时,能量损失等于出口动压。当有阻挡,例如网罩、百叶、风球等,能量损失将大于出口动压,即局部阻力系数会大于1。因此,只有局部阻力系数大于1的部分才是出口局部阻力损失,等于1的部分是出口动压损失。将出口做成扩散作用较小的渐扩管,以减小局部阻力系数(如图3.5,ζ<0.1)。

图3.5 风道出风口的阻力系数

⑥进风口的局部阻力

气流进入风道时,由于产生气流与风道内壁分离和涡流而造成局部阻力。不同的进口形式,其局部阻力系数相差很大(如图3.6),因此,选择风道进口形式非常重要。

图3.6 风道进风口的阻力系数

⑦风道的截面要与车身总布置及内饰造型相协调

对于不同的车型,通过考虑内饰造型和车身总布置等因素,将风道截面设计成不同的形状。对于公共汽车类空调客车,往往采用榄核形截面的送风管道,能产生宽敞车厢的效果;对于长途空调客车,采用矩形截面的送风管道,有利于与车内行李架的紧密配合,与车厢内装饰更为协调(如图3.7)。

图3.7 风道截面形状

在确定了风道的基本形状后,根据空调设备的出风量和选定的风道内空气流速,参考车厢内装饰的要求,即可定出风道截面的具体尺寸。对于矩形断面的风道,当风道截面一定时,应尽量减小长宽比,以减小风道的阻力。

第六章风速、风道及风口设计(第二版)

第六章风速风道及风口设计 6.1 风速 6.1.1风速大小的确定 风速指通风管道内空气流动的速度。一般空调系统的风速在14m/s以下(低速风道)。 低速空调系统的风速因处于通风系统的不同位置而不同,可参照表6-1。 V=L/(F×3600) (m/s) (6-1) 式中,L——风量(m3/h);F——风道截面积(m2) 6.1.2风速查表法 以下几种风速表有助于设计人员确定风速。 用于各种场所的低速风管系统的流速见表6-2所示。 低速风管系统的最大允许流速见表6-3所示。以噪声标准控制的允许风速见表6-4所示。逗留区的送风流速见表6-5所示。 已知建筑条件空调场所及风道情况即可通过查表法求得不同的风速。 表6-2 用于各类场所的低速风管流速(m/s)

6.2风道 6.2.1风道截面积的确定 当空调房间送风量为已知时,确定送风管道截面尺寸的方法有两种:假定风速法和比阻法,假定速度法比较常用,现介绍之。 首先应已知空调送风量(参照前述的方法),然后根据建筑物的空调送风系统查出风速

值(假定风道中的风速,再通过下式计算出风道面积。 最后确定风道的管径(圆管直径或矩形管道的边长)。 风道截面积计算公式 F=L/(v ×3600) m 2 (6-2) 式中 L--风量 m 3/h v--风速 m/s F--风道面积 m 2 例如:某空调系统送风量L=7200m 3 /h ,属工业空调,现安装一主风管,试确定其风管尺寸。 假定风速,查表6-1可知,工厂空调系统主风道风速推荐值为6~9m/s ,现取8m/s 。 风道面积可计算求 F=L/v ×3600=7200/8×3600=0.25 m 2 若采用圆形风管,其直径可由下式计算出 π F d 4= m (6-3) 式中 π——圆周率 π=3.14 F ——风管面积 m 2 D=0.56m=560 mm 若采用方形风管,其边长应为 25.0= = F A =500 mm 若采用矩形风道,管道的长短边尺寸可参考表6-7选用。表中给出了矩形风道的流量当量直径,由圆管直径可变为矩形边长而维持管中空气的流量(风量)不变。 表中当量直径接近560mm 的有460mm ×580mm,440×600mm 两种规格。 6.2.2低压风管尺寸及材料选用表 低压风管尺寸选择见表6-6所示。当量直径见表6-7所示。 低速风道的结构要求见表6-16 所示。各类形状风管的钢板厚度见表6-16所示。圆形风管标准规格见表6-8所示。矩形风管标准规格见表6-9所示。 非金属玻璃钢风管与配件壁厚见表6-10所示。玻璃钢风管法兰规格见表6-11所示。不锈钢板风管和配件板材厚度见表6-12所示。不锈钢板风管法兰规格见表6-13所示。铝板风管和配件板材厚度见表6-14所示。铝板风管法兰规格见表6-15所示。低速矩形风管数据见表6-16所示。低速圆形风管数据见表6-17所示。矩形风量法兰见表6-18所示。矩形风管加强法兰和连接法兰见表6-19所示。安装风管用的吊卡和支架见表6-20所示。风管制作咬口宽度见表6-21所示。

副仪表板法规和设计规范要求

法规和设计规范要求 一:需要检查副仪表板本体和内部功能件,副仪表板本体和内部功能件满足人机工程要求,包括手部空间,头部空间,脚膝空间等。 参考布置要求: 1.操纵件尽可能布置在人手易于触摸区域 2.乘客头部和脚,膝部有足够的运动空间. 二副仪表板内部突出物符合国标关于轿车内部凸出物的要求 三扶手(Armrest) "参考布置要求:尽可能布置在人手易于触摸区域四:副仪表板总成定位安装和拆卸考虑副仪表板总成安装及拆卸的合理性和可行性。 五:副仪表板总成的零件分割:考虑副仪表板总成的制造工艺性, 以及总价. 六:副仪表板总成的A表面考虑各个零件之间的定义的合理性 八:副仪表板总成的刚度副仪表板总成的刚度需满足相关的要求 九:副仪表板总成的固有频率副仪表板总成的固有频率需大于等于25Hz 十:副仪表板总成能承受的静态载荷副仪表板总成能承受的静态载荷需满足。 十一:副仪表板子系统的固有频率副仪表板子系统的固有频率需大于等于45Hz。 十二:烟灰缸最小开口面积及容积 1、前烟灰缸(主烟灰缸):长方形宽度100毫米,圆形直径80毫米,开口面积5000平方毫米,容积200立方厘米

2、后烟灰缸(辅助烟灰缸):长方形宽度75毫米,圆形直径50毫米,开口面积2000平方毫米,容积80立方厘米 3、烟灰缸刚度烟灰缸在完全打开状态下,盖板中点受力11N,烟灰缸Y向的变形最大5mm, Z向的变形最大3mm 4、关于倒烟灰要求烟灰缸缸体可以在车内不使用任何工具从烟灰缸中取出,取出时手不碰到灭烟处,并倾斜小于10度 5、杯托尺寸驾驶员使用的杯托可以放入直径90毫米到110毫米的容器,设计目标值为90毫米,放入深度为75到100毫米,设计目标为80毫米。日本车要求可放入直径52.5毫米,放入深度为104毫米。 6、杯托刚度在完全打开状态下,杯托盖板中点Y向受力11N的杯托最大Y 向变形.5mm, 盖板中点Z向受力22N的杯托最大Z向变形6mm 7、硬币的尺寸"需要3种中国硬币,尺寸如下: 1元直径25毫米厚度1.8毫米 5角直径20.5毫米厚度1.6毫米 1角直径19毫米厚度1.8毫米" 8、CD盒参考CD尺寸: 125X132X11 1、空调出风口尺寸仪表板必须提供最少4个空调出风口,有效面积要求在SDS Detail25014中定义,最大和最小出风口面积不能超过10%。有效面积是指在叶片平行于气流方向时,未被出风口零件(叶片,关闭阀门,运动连接件…)阻挡的面积。 9、空调出风口布置出风口的布置和吹风方向的规定 10.变速杆与上面板间隙最小为4至6毫米

汽车空调出风口及风道设计的要求规范

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份有限公司

目录 第1章风道及出风口介绍 (4) 1.1 风道介绍 (4) 1.2 出风口介绍 (4) 1.3 相关法规/标准要求 (5) 1.3.1 国家/政府/行业法规要求 (6) 1.3.2 FCC相关标准要求 (6) 第2章风道及出风口设计规范 (7) 2.1风道及出风口结构 (7) 2.1.1风道结构 (7) 2.1.2出风口结构 (7) 2.1.3出风口及风道实例 (8) 2.1.4材料 (8) 2.2风道及出风口整车布置 (8) 2.2.1风道整车布置 (8) 2.2.2出风口整车布置 (9) 2.3通风性能 (10) 2.3.1 风道中的压力损失 (10) 2.3.2出风量 (10) 2.3.3通风有效面积 (10) 2.4 出风口水平叶片布置方式 (11) 2.4.1叶片数量 (11) 2.4.2叶片尺寸要求 (11) 2.5.3叶片间距 (13) 2.5 出风口垂直叶片布置方式 (13) 2.5.1叶片数量 (13) 2.5.2叶片尺寸要求 (13) 2.5.3叶片间距 (13) 2.6 气流性能 (13) 2.6.1气流方向性 (13) 2.6.2泄漏量 (17) 2.7 出风口手感 (17) 2.7.1拨钮操作力 (17) 2.7.2拨轮操作力 (17) 第3章试验验证与评估 (18) 3.1 设计验证流程 (18) 3.2 设计验证的内容与方法 (18) 第4章附录 (19)

4.1 术语和缩写 (19) 4.2 设计工具 (19) 4.3 参考 (19)

第1章风道及出风口介绍 在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱内,以完成驾驶舱内通风,制冷,加热,除霜除雾,净化空气等的功能。 图 1 某车型空调通风系统及周围环境结构爆炸图 1.1 风道介绍 风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。目前空调系统由空调厂商提供,作为空调系统一部分的风道设计,需汽车整车设计部门做匹配设计,车厢内的空气流场与温度场不仅与车厢结构以及空调制冷系统有关,还与空调风道的结构形状密切相关。风道的布置走向、风道占用空间(截面积)以及风道中空气的流速等均影响车厢内的制冷效果,影响系统的经济性和外观造型。 图 2 奔腾B90通风风道 1.2 出风口介绍

矿井通风系统的优化设计与应用

矿井通风系统的优化设计与应用 鉴定材料 临沂矿业集团邱集煤矿

二?一?年四月 1、鉴定大纲 2、计划任务书 3、工作报告 4、技术研究报告 5、社会经济效益分析报告 6、用户使用报告

矿井通风系统的优化设计与应用 鉴定大纲 临沂矿业集团邱集煤矿 二?一0年四月

矿井通风系统的优化设计与应用 鉴定大纲 一、鉴定条件 《矿井通风系统的优化设计与应用》项目是临沂矿业集团公司2010 年度科技计划,由山东省邱集煤矿研究实施,经过应用测试,各项性能指标均达到设计要求。目前,技术文件已经齐全,应用后效果明显才,具备了鉴定条件。特申请鉴定。 二、项目名称 矿井通风系统的优化设计与应用 三、项目来源及编号 临沂矿业集团公司2010年度科技计划 四、鉴定目的 通过专家评议做出结论,以便进行推广应用。 五、鉴定形式 会议鉴定 六、鉴定内容 1、审查技术文件是否齐全、完整、正确、统一。 2、评价系统是否科学、合理、先进。 3、审查改造后的系统是否满足安全生产需要。 七、鉴定资料文件 1、计划任务书; 2、工作报告; 3、技术研究报告; 4、经济效益分析报告; 5、用户使用报告。

八、鉴定程序 1、成立鉴定委员会; 2、讨论并通过鉴定大纲; 3、项目完成单位向鉴定委员会汇报研究开发情况; 4、专家质疑; 5、专家评议,通过鉴定意见; 6、专家、评委签字。 鉴定委员会二0—0年四月

编号 类另U 二O一O年科学技术项目 计划任务书 项目名称:矿井诵风系统的优化设计与应用 负责单位:临沂矿业集团邱集煤矿起止年限:2006 年5月?2010 年4月

仪表板设计指南

仪表板设计指南 编制: 审核: 批准:

1. 适用范围 本设计指南适用于注塑仪表板、吸塑仪表板、搪塑仪表板。 2.简要说明 2.1 简介 仪表板是汽车中非常独特的部件,集安全性、功能性、舒适性与装饰性于一身。除了要求有良好的刚性及吸能性,人们对其手感、皮纹、色泽、色调的要求也愈来愈高。 仪表板因其得天独厚的空间位置,使愈来愈多的操作功能分布于其中,除反映车辆行驶基本状态外,对风口、音响、空调、灯光等控制也给予行车更多的安全和驾驶乐趣。因此,在汽车中,仪表板是非常独特的集安全性、功能性、舒适性与装饰性于一身的部件。首先,它需要有一定的刚性以支撑其所附的零件在高速和振动的状态下保证正常工作;同时又需要有较好的吸能性使其在发生意外时减少外力对正、副驾驶员的冲击。随着人们对车的理解愈来愈超出其功能,对仪表板的手感、皮纹、色泽、色调也逐渐成为评判整车层级的重要标准。 仪表板通常包含仪表板本体(壳体)、仪表、空调控制系统、风道/风管、出风口、操作面板、开关、音响控制系统、除霜风口、除雾风口、手套箱、左盖板、装饰板等零件。大部分仪表板还包含:储物盒、驾驶员侧手套箱、扬声器等饰件和时钟、金属加强件、烟灰盒、点烟器、杯托等功能性零件;部分中高档汽车设计有卫星导航系统、手机对讲系统、温度传感系统,USB-SD卡接口等高端产品。 仪表板简称IP(Instrument panel),是汽车内饰的重要组成部分。 2.2 仪表板的分类 仪表板按安全性可分为无气囊仪表板和副气囊仪表板。随着人们对安全性的重视,客户对带PAB仪表板需求加大,主机厂也将此作为卖点之一。但是气囊打开在保护乘客的同时,也可能伤害乘客,尤其是儿童。因此,现在设计仪表板气囊已开始加装PAB屏蔽开关。为气囊的正常开启,在气囊上方多设计有气囊盖板,在其打开时释放气囊。但其与仪表板匹配处存在可视装接线,影响整车美观。为此,近年愈来愈多车型的仪表板设计为无缝气囊仪表板。既能保证气囊正常开启,又无可视装接线。

移动空调风道选型设计

移动空调风道选型设计 发表时间:2018-08-13T14:52:44.667Z 来源:《基层建设》2018年第20期作者:张博翔[导读] 摘要:本文提出静音风道技术应用于移动空调产品的风道设计,通过对风道曲线和相应风轮的优化设计,针对蜗舌导流部分优化设计,以及改进风道进风口的位置,改善气流场分布等,在转速不变的情况下提升整机风量,提高整机的性能及能效,同时为整机降噪提供可行性方案。 TCL德龙家用电器(中山)有限公司广东中山 528427 摘要:本文提出静音风道技术应用于移动空调产品的风道设计,通过对风道曲线和相应风轮的优化设计,针对蜗舌导流部分优化设计,以及改进风道进风口的位置,改善气流场分布等,在转速不变的情况下提升整机风量,提高整机的性能及能效,同时为整机降噪提供可行性方案。 关键词:移动空调;水轮;噪声;水泵 1 前言 移动空调是一种集室内与室外侧于一体的整体式空调器,因其使用的便利性而广泛应用与欧美、东南亚等家庭,主要用作局部制冷的家用电器。伴随人们生活水平的提升,对整机的噪音问题也日益突出,现阶段移动空调运行时的整机噪音一般在53~56分贝,整体高于现有环境噪声基本标准(城市1类环境标准:白天为55分贝,夜间为45分贝)的要求。 为此提出低噪音移动空调的需求,结合移动空调产品的风道特点,一般采用离心风道设计,而针对离心风道的风道曲线和相辅配的离心风轮结构设计方面,已有相当成熟的技术沉淀和经验,本文仅就分析方法和技巧做简要分析,而重点介绍静音风道技术中蜗舌的结构形式及进风口位置对离心风道系统的影响,以及在移动空调产品风道设计中的应用与测试情况。 2 实验结果与讨论 2.1 风道曲线和风轮优化设计 针对风道曲线和风轮的优化设计,我司已有专职的风道研究人员,已有相当成熟技术沉淀和经验,本文不做赘述,仅将优化方案做简单介绍。基于现有移动空调内外侧风道系统进行摸底测试,由于室内外侧风道一般以离心风道为主,以其中一个离心风道的风道曲线做研究对象,进行对比分析,一般分为两步走,逐步来分析。 第一步,以现有同一个离心风轮,在不同风道曲线中的比较。通过对比测试,同一风轮在不用风道曲线中测试结果。从结果不难看出,在风量一定的情况下,新设计的M曲线在前、后测试声压级噪音,功率及转速方面均优于现有P曲线和新设计的N曲线,故而优选新设计的M曲线作为下一步进行优化研究的对象。 第二步,以同一风道曲线,对不同叶形相同直径风轮做对比分析。 通过对比测试,同直径不同叶型风轮在同一风道曲线中的测试结果。 从测试结果不难看出,两个不同的风轮,在同一风道曲线中测试,前侧噪音均降低为1.0dB左右,但采用现有K风轮时的功率较低,优选现有K风轮。 2.2 蜗舌结构形式的优化设计 风道蜗舌,可以说是一个风道系统的咽喉,对系统的风量和噪音有直接的关联和影响,由于叶轮出口气流对蜗舌的冲击非常剧烈,使得蜗舌区域成为主要的噪声源。蜗舌部位对叶轮机械气动性能及噪声特性影响非常明显,蜗舌形状和安装间距的微小变动就会引起风机性能及噪声的很大变化,据国内外相关文献,采用斜蜗舌对离心风道噪音改善有较为显著的影响,为此特在移动空调产品离心风道上应用倾斜蜗舌结构形式进行实验研究。 结合上述风道曲线和风轮的优化设计,优选新设计的M曲线和现有的K风轮,在此基础上将M曲线的风道蜗壳设计成斜蜗舌,与常规蜗舌做对比测试。 采用斜蜗舌后,进行对比测试。 经频谱分析发现,斜蜗舌使噪音频率错开,避免相互干涉,起到降噪和改善音质的作用,同时斜蜗舌设计关键在于风轮与蜗舌等间隙设计(区别于常规斜蜗舌设计),增加蜗舌倾角,有利于错开噪音频率降低噪音,增加蜗舌间距,有利于减小了气流对蜗舌的冲击,从而降低了噪音。为此应用斜蜗舌后,同比噪音降低了约1dB。 2.3 偏心进气口结构设计 进气口的大小及分布对风道的出风量和噪音有较大影响,有文献5]分析,针对离心风道的进风口偏心设计对改善风道内气流分布具有一定的影响,为此结合移动空调风道特点,特选进气口30°偏心和180°偏心各10mm进行对比测试。 经过对比测试结果,两种偏心设计的进气孔形式均对降噪有利,可能与结构布局和风道流场特征有关,为此接下来将结合斜蜗舌与进气口偏心设计综合考虑。 2.4 斜蜗舌+偏心进气口结构设计 为进一步探究离心风道斜蜗舌和偏心进气口对整机风量和噪音的影响,在上述研究基础上增加斜蜗舌设计,同样选取进气口30°偏心和180°偏心各10mm进行对比测试。通过实验结果,显而易见偏心进气孔和斜蜗舌的降噪效果叠加,其中偏心180°进气口与斜蜗舌结构的结构效果更佳,优先偏心180°进气口与斜蜗舌结构的结构,对比优化前声压级噪音,同比优化后前后侧声压级噪音降低约4.5~5.0dB。 2.5 仿真分析 通过离心风道的模拟仿真分析。离心风道蜗壳的主要噪声位置集中在一、四象限的渐扩段,如果风道蜗壳结构空间允许的情况下,建议蜗壳在轴向做渐变的倒圆角处理,从出风口蜗舌处逐渐加大圆角,有利风道内气流排出,从而达到消音降噪的效果 3 结束语:通过对风道曲线和相应风轮的优化设计,并对蜗舌导流及风道进风口偏心的研究测试,静音风道技术应用与研究结论如下:(1)风道曲线和相应风轮的优化设计,是离心风道降噪的常用技术与应用手段;(2)斜蜗舌和偏心进气口对离心风道的降噪具有显著效果,两者叠加效果更明显,此技术应用不仅对风道风量有所提高,而且成本保持不变;(3)如果风量足够的情况下,从降噪的角度考虑,进风口偏心应向噪声源反方向偏心;(4)如果风道蜗壳结构空间允许的情况下,建议蜗壳在轴向做渐变的倒圆角处理,从出风口蜗舌处逐渐加大圆角,有利于消音降噪。

汽车仪表板设计浅谈

汽车仪表板设计简介 一、造型 仪表板是全车控制与现实的集中部位,仪表板的造型重点是对驾驶员操作区域的设计。现代轿车设计中,绝大多数的操纵开关都是供驾驶员专用的,所以,仪表板造型首先以驾驶员为之对仪表的可视性和对各种操作件的操作方便性为依据。在视觉效果上,仪表板位于市内视觉集中的部位,其形体队成员也有很强的视觉吸引力,应强调其造型的表现效果。 1.仪表板的布置 在不至仪表板是要根据相关标准来选用和确定所有仪表、显示器和主要操纵控制间的位置,此外还要从结构空间进行人机工程验证,其中包括视野性、手、脚活动范围、肘部空间、手伸及界面、按钮区布局等诸多方面。同时,在形体设计时,还要注意仪表板面的反光效果,既要提高仪表的可见度,又要通过表罩的漫反射方法减少炫光,还要防止仪表板上的高光点在风窗玻璃的内表面形成反射影像,以免干扰驾驶员的视觉。必须对仪表板的表面进行消光或亚光处理,已获得舒适安全的驾驶感觉。 仪表板上安装的仪表和各种器件大都来自不同的厂商,涉及时要保证个不同厂商器件的颜色、质感、纹理的统一,还要注意仪表表面、指针、屏显、数字、警示灯、刻度盘等的形体、颜色及灯光效果的统一,这些在方案设计初期都要处理妥当,为后期的细化和局部设计做好准备。 2.仪表板的造型分类 仪表板的器件按其功能一般划分为驾驶操控区、乘用功能区、保安区等几个部分 A区:驾驶员和副驾驶员共用的区域 B区:驾驶员座位操作区 C区:唯有驾驶员操作区 D区;A、B、C区以外的区域 现代汽车的仪表板造型概念以趋于多元化,通过不同的仪表指示区、中置控制区、按键功能区的划分和形体的连接可以组合成多种形式。按照仪表板的大的体面关系和结构分块形式基本可以分为以下几种类型:

风管设计注意事项

(一)系统设计问题 1、水泵在系统的设计位置: 一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。 2、冷却塔上的阀门设计: 2、1冷却塔进水管上加电磁阀(不提倡使用手动阀) 2、2管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻) 3、电子水处理仪的安装位置 放置于水泵后面,主机前面。 4、过滤器前后的阀门 过滤器前后放压力表。 5、水泵前后的阀门 5、1水泵进水管依次接:蝶阀-压力表-软接 5、2水泵出水管依次接:软接-压力表-止回阀-蝶阀 6、分\集水器

6、1分\集水器之间加电动压差旁通阀和旁通管(管径一般取DN50) 6、2集水器的回水管上应设温度计. 7、各种仪表的位置:布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2-1.5m,高于此高度时,应设置工作平台。 8、机组的位置:两台压缩机突出部分之间的距离小于1.0m,制冷机与墙壁之间的距离和非主要通道的距离不小于0.8m, 大中型制冷机组(离心,螺杆,吸收式制冷机)其间距为1.5-2.0m。制冷机组的制冷机房的上部最好预留起吊最大部件的吊钩或设置电动起吊设备。 (二)、水路设计问题点汇总 问题点一:水管的坡度要合理 1、水平支、干管,沿水流方向应保持不小于0.002的坡度; 2、机组水盘的泄水支管坡度不宜小于0.01。 3、因条件限制时,可无坡度敷设,但管内流速不得小于0.25m/s。 问题点二:冷凝水干管的设计 1、冷凝水应就近排放,一般排于卫生间地漏 2、凝水干管的长度设计要考虑因坡降引起的高度,管两端高低落差距离不能大于吊顶高度

仪表台结构设计

仪表板结构设计 1、简要说明 1.1 该部分综述 仪表板总成似一扇窗户,随时反映出车子内部机器的运行状态,同时它又是部分设备的控制中心和被装饰的对象,是轿车车厢内最引人注目的部件。可以这样说,仪表板总成既有技术的功能又有艺术的功能,它反映出各国轿车制作工艺和风格上的差异,是整车的代表作之一。 现代轿车的仪表板总成一般分成两部分,一部分是指方向盘前的仪表板和仪表罩及平台,另一部分是指司机旁通道上的副仪表板。其中仪表板是安装指示器的主体,集中了全车的监察仪表,通过它们揭示出发动机的转速、油压、水温和燃油的储量,灯光和发电机的工作状态,车辆的现时速度和里程积累。有些仪表还设有变速档位指示,计时钟,环境温度表,路面倾斜表和地面高度表等。按照现时流行的款式,现代轿车多数将空调,音响等设备的控制部件安装在副仪表板上,以方便驾驶者的操作,同时也显得整车布局紧凑合理。 仪表板总成在车厢里处于中心的位置,非常引人注目,它的任何疵点都会令人感到浑身不舒服,因此汽车制造商是非常重视轿车仪表板总成的制作水平,从制作工艺上可以表现出制造公司的设计与工艺水平,从装饰风格上可以表现出这个国家或地区的文化传统。一种成功的轿车仪表板总成,既要融入轿车的整体,体现出它是轿车不可分割的一部分;又要体现出轿车的个性,使人看到仪表板就会想到车子的形象。 仪表板简称IP(Instrument panel),是汽车内饰的重要组成部分。 1.2 设计该产品的目的 由于仪表板的特殊位置,处于正副驾驶员的前方,在整个坐舱系统占用了很大的空间和视野,所以设计好该产品对于提高整车内饰质量有很直接有效的作用。仪表板的面积很大,故对造型的影响起了举足轻重的作用,对于新车型的开发,从实用新型方面来讲,对造型提出了较高的要求;仪表板的外面装有仪表和各类操纵件,里面装有空调等各类车身附件,对空间和结构的要求都很复杂,在设计中应特别精心,对于仪表板的布置和结构设计尤其要考

仪表板出风口结构设计规范

出风口的结构设计 目录 1. 出风口的总布置要求 (3) 1.1 概述 (3) 1.2 出风口对气流方向的控制 (3) 1.2.1 出风口对气流的纵向调节: (4) 1.2.1.1 输入条件 (4) 1.2.1.2 向上吹风角度 (4) 1.2.1.3 向下吹风角度 (5) 1.2.1.4 Nominal 位置 (5) 1.2.1.5 通用体系中的纵向吹风要求 (5) 1.2.2 出风口对气流的横向调节 (6) 1.2.2.1 输入条件 (6) 1.2.2.2 横向调节要求 (6) 1.2.2.3 宽车的特殊性要求 (7) 1.2.3 出风角度分析与实际情况相悖的情况。 (7) 1.2.3.1 窄口造成的吹风角度异常 (7) 1.2.3.2 柯恩达效应 (8) 1.3 风量要求 (8) 1.3.1.1 有效出风面积的定义 (8) 1.3.1.2 极限位置下的有效出风面积要求 (9) 2 运动机构设计 (10) 2.1 概述 (10) 2.2 铰链四杆机构的设计 (10) 2.2.1 压力角与传动角 (11) 2.2.2 死点 (11) 2.2.3 四铰链机构的布置 (12) 2.3 摆动导杆机构的设计 (16) 2.3.1 摆动导杆机构的布置 (17) 2.3.2 制造死点 (17) 2.4 齿轮机构的设计 (18) 2.4.1 圆柱直齿轮机构的初步设计 (18) 2.4.2 模数的选择 (19) 2.4.3 柔性结构 (19) 2.5 双风门控制机构 (19) 2.5.1 双风门机构的基本形态 (20) 2.5.2 双风门控制机构的设计 (20) 2.6 拨轮转轴与风门转轴呈角度时的机构设计 (22)

空调系统风道设计word文档

https://www.doczj.com/doc/7613954238.html,/zykt/2/2.1.html 第8章空调系统风道设计 §8.1风道设计的基本知识 一、道的布置原则 风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1.空调系统的风道在布置时应考虑使用的灵活性。 2.风道的布置应符合工艺和气流组织的要求。 3.风道的布置应力求顺直,避免复杂的局部管件。 4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。 5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、管材料的选择 用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。 需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。

为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。

三、风管断面形状的选择 风管断面形状: 圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统; 矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。 常用矩形风管的规格如下表所示。为了减少系统阻力,进行风道 设计时,矩形风管的高宽比宜小于6,最大不应超过10。 表8-1矩形风管规格 §8.2风道设计的基本任务

风速、风道及风口设计(第二版)

风速风道及风口设计 6.1 风速 6.1.1风速大小的确定 风速指通风管道内空气流动的速度。一般空调系统的风速在14m/s以下(低速风道)。 低速空调系统的风速因处于通风系统的不同位置而不同,可参照表6-1。 若已知空调房间的送风量和风管的尺寸,即可用下式求出该风道内的风速。 V=L/(F×3600) (m/s) (6-1) 式中,L——风量(m3/h);F——风道截面积(m2) 6.1.2风速查表法 以下几种风速表有助于设计人员确定风速。 用于各种场所的低速风管系统的流速见表6-2所示。 低速风管系统的最大允许流速见表6-3所示。以噪声标准控制的允许风速见表6-4所示。逗留区的送风流速见表6-5所示。 已知建筑条件空调场所及风道情况即可通过查表法求得不同的风速。

表6-4 以噪声标准控制的允许风速(m/s)

6.2风道 6.2.1风道截面积的确定 当空调房间送风量为已知时,确定送风管道截面尺寸的方法有两种:假定风速法和比 阻法,假定速度法比较常用,现介绍之。 首先应已知空调送风量(参照前述的方法),然后根据建筑物的空调送风系统查出风速值(假定风道中的风速,再通过下式计算出风道面积。 最后确定风道的管径(圆管直径或矩形管道的边长)。 风道截面积计算公式 F=L/(v ×3600) m 2 (6-2) 式中 L--风量 m 3/h v--风速 m/s F--风道面积 m 2 例如:某空调系统送风量L=7200m 3/h ,属工业空调,现安装一主风管,试确定其风管尺寸。 假定风速,查表6-1可知,工厂空调系统主风道风速推荐值为6~9m/s ,现取8m/s 。 风道面积可计算求 F=L/v ×3600=7200/8×3600=0.25 m 2 若采用圆形风管,其直径可由下式计算出 π F d 4= m (6-3) 式中 π——圆周率 π=3.14 F ——风管面积 m 2 D=0.56m=560 mm 若采用方形风管,其边长应为 25.0== F A =500 mm 若采用矩形风道,管道的长短边尺寸可参考表6-7选用。表中给出了矩形风道的流量当量直径,由圆管直径可变为矩形边长而维持管中空气的流量(风量)不变。 表中当量直径接近560mm 的有460mm ×580mm,440×600mm 两种规格。 6.2.2低压风管尺寸及材料选用表 低压风管尺寸选择见表6-6所示。当量直径见表6-7所示。 低速风道的结构要求见表6-16 所示。各类形状风管的钢板厚度见表6-16所示。圆形风管标准规格见表6-8所示。矩形风管标准规格见表6-9所示。 非金属玻璃钢风管与配件壁厚见表6-10所示。玻璃钢风管法兰规格见表6-11所示。不锈钢板风管和配件板材厚度见表6-12所示。不锈钢板风管法兰规格见表6-13所示。铝板风管和配件板材厚度见表6-14所示。铝板风管法兰规格见表6-15所示。低速矩形风管数据见表6-16所示。低速圆形风管数据见表6-17所示。矩形风量法兰见表6-18所示。矩形风管加强法兰和连接法兰见表6-19所示。安装风管用的吊卡和支架见表6-20所示。风管制作咬口宽度见表6-21所示。

通风空调风道设计常见问题_百度文库.

通风空调风道设计常见问题 一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于建筑空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图 2.6.6-1(a。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图 2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。

为了保持上述斜度,变径管的长度L可按下法求得: (1单边变径时,如图2.6.6-2(a。 当(W1-W2 ≥(h1-h2时L=(W1-W2×7 当(W1-W2≤(h1-h2时,L=(h1-h2 ×7 双边均变径时,如图2.6.6-2(b 当(W1-W2 ≥(h1-h2时,L=(W1-W2×3.5 当(W1-W2 ≤(h1-h2时,L=(h1-h2 ×3.5 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度。一般以1W为宜。

2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6-1及图2.6.6-3(a、(b。 表2.6.6-1 N R/W X X1X2X3 (叶片数 0.35~0.7010.35W0.65W

仪表板设计规范初版--20170413

1.1 附件1:ace与GBT19011-2008标准主要差异性分析 Q/JT 江苏金坛汽车工业有限公司企业标准 Q/JTT00.0XX—2017 仪表板设计规范简介 2017-04-30发布2017-05-10实施

前言 本标准依据GB/T 1.1-2009给出的规则起草。 本标准由江苏金坛汽车工业有限公司产品中心提出。 本标准由江苏金坛汽车工业有限公司产品中心技术开发三部归口。本标准由江苏金坛汽车工业有限公司产品中心技术开发四部起草。本标准主要起草人: 本标准于2017年4月首次发布;

仪表板设计规范简介 一、简要说明 1.1 简述现代轿车的仪表板总成一般分成两部分,一部分是指方向盘前的仪表板和仪表罩及平台,另一部分是指司机旁通道上的副仪表板。其中仪表板是安装指示器的主体,集中了全车的监察仪表,通过它们揭示出发动机的转速、油压、水温和燃油的储量,灯光和发电机的工作状态,车辆的现时速度和里程积累。有些仪表还设有变速档位指示,计时钟,环境温度表,路面倾斜表和地面高度表等。按照现时流行的款式,现代轿车多数将空调,音响等设备的控制部件安装在副仪表板上,以方便驾驶者的操作,同时也显得整车布局紧凑合理。 仪表板总成在车厢里处于中心的位置,非常引人注目,它的任何疵点都会令人感到浑身不舒服,因此汽车制造商是非常重视轿车仪表板总成的制作水平,从制作工艺上可以表现出制造公司的设计与工艺水平,从装饰风格上可以表现出这个国家或地区的文化传统。一种成功的轿车仪表板总成,既要融入轿车的整体,体现出它是轿车不可分割的一部分;又要体现出轿车的个性,使人看到仪表板就会想到车子的形象。 仪表板简称IP(Instrument panel),是汽车内饰的重要组成部分。 1.2 设计该产品的目的 由于仪表板的特殊位置,处于正副驾驶员的前方,在整个坐舱系统占用了很大的空间和视野,所以设计好该产品对于提高整车内饰质量有很直接有效的作用。仪表板的面积很大,故对造型的影响起了举足轻重的作用,对于新车型的开发,从实用新型方面来讲,对造型提出了较高的要求;仪表板的外面装有仪表和各类操纵件,里面装有空调等各类车身附件,对空间和结构的要求都很复杂,在设计中应特别精心,对于仪表板的布置和结构设计尤其要考虑充分,校核全面;仪表板的设计要充分考虑到人机工程学,主要为仪表板上各种开关件及杂物盒、点烟器等的布置要尽量满足人体工程学的要求,既要美观,又要方便实用;仪表板需要满足国家强检项目,主要是除霜的要求,前方视野的要求和燃烧特性要求,除霜对空调和仪表板同时提出要求,并借助CAE分析及样件制作来满足条件,前方视野对方向盘、仪表板等同时提出要求,要求在造型和总布置阶段就对视野校核完整,关于燃烧特性及气味性等其他要求,我们必须在仪表板的材料上下功夫,争取在相应价位的车上采用物美价廉的材料。总之,一款较好的仪表板可以使人无论从感观还是使用上对整车的满意度提高许多。 1.3 适用范围 该设计规范适用于金坛汽车所有仪表板总成,包括注塑仪表板、吸塑仪表板、搪塑仪表板及麻纤维仪表板。

空调系统风道系统设计【共23页】

空调系统风道系统设计 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 第六章空调系统的风道设计通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。 § 6、1 风道设计的基本知识一、风道的布置原则风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1、空调系统的风道在布置时应考虑使用的灵活性。当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。 2、风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。 3、风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。

4、风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量装置应设在便于操作和观察的地方。 5、风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6、风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、风管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种。镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。其钢板厚度,一般采用0、5~ 1、5mm左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。它节省钢材,结合装饰,经久耐用,但阻力较大。在

仪表板设计规范

. 商密×级▲ 仪表板总成开发规范 2006-03-10发布200×-××-××实施长安汽车(集团)有限责任公司发布

—200× 前言 本规范按照长安汽车(集团)有限责任公司技术规范的标准格式的规定进行编写。 本规范由长安汽车(集团)有限责任公司提出。 本规范由长安汽车(集团)有限责任公司科技委管理。 本规范起草单位:长安汽车工程研究院 本规范主要起草人:苏忠、王晓、苏童 本规范批准人: (五号宋体)Ⅰ —200×

引言 汽车的自主开发是中国汽车业健康发展的必经之路。也是长安车的生存之本。在汽车内外饰开发设计中,仪表板总成设计是最难的,它代表着内外饰件自主开发设计的水平和标准。在此,特编写此规范——《仪表板总成设计规范》,希望将自己多年来对仪表板设计的理解及经验与大家共同分享,更希望对对那些刚刚接触到仪表板开发的人员和对长安公司的自主开发有一些帮助。本规范尚有许多不足之处,希望大家能给予指正。

—200× 仪表板总成开发规范 1 范围 本规范规定了汽车仪表板总成在开发设计过程中应遵守一些要求和标准,规定了仪表板总成开发的一般过程、材料的选择、结构及生产工艺等。 本规范适用于注塑成型为主、搪塑、吸塑软化生产工艺的M1、N1类车辆。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB 4094-1999 汽车操纵件、指示器及信号装置的标志 GB 11552-1999 轿车内部凸出物 GB 11555-1994 汽车风窗玻璃除霜系统的性能要求及试验方 GB 11556-1994 汽车风窗玻璃除霜系统的性能要求及试验方法 GB 11562-1994 汽车驾驶员前方视野要求及测量方法 CM VR A01-01 车辆识别代号(VIN)管理规则 QC/T 29089-92 汽车软化仪表板表皮 GB8410 汽车内饰材料燃烧特性试验方法 GBT1040 塑料拉伸试验方法 HG 2-167 塑料撕裂强度试验方法 GB7141 塑料热空气老化试验方法(热老化箱法)通则 GB 9344 塑料氙灯光源曝露试验方法 GB 2410 透明塑料透光率和雾度试验方法 CM VR A01-01 车辆识别代号(VIN)管理规则 GB/T 15585-1995 热塑性塑料成型收缩率的测定 GB1634.1-2004 塑料变形温度的测定(通用试验方法) GB/T1843-1996 塑料悬臂梁冲击试验方法 GB9342-1988 塑料弯曲性能试验方法

仪表板设计指导书

汽车车身仪表板设计作业指导书

2. 仪表板件设计的基本要求 2.1)仪表板件应执行国家标准和企业标准。 2.2)仪表板件应满足技术协议中相关要求。 2.3)仪表板设计应符合造型设计的要求和效果。 2.4)仪表板设计应符合总布置方案和结构尺寸应满足设计硬点要求。 2.5)仪表板设计应满足人机工程等要求,提高舒适性。 2.6)在对样车充分了解的基础上,制定沿用件、新件和改制件。 2.7)产品设计中尽量采用系列化、标准化、通用化。尽量采用标准件、通用件; 各种设计数据尺寸应准确无误。 2.8)产品设计中应考虑到加工、装配、安装调试、维修的方便性和经济性。2.9)表面光顺质量:高可见区,A级曲面,局部相切连续。少可见区,B级曲 面,相切连续。不可见区,C级曲面,位置连续。 2.10)逆向工程中测绘的孔径及位置尺寸要圆整,公差和形位公差标注正确。 完整3D数模应有公差数据表。 3.检查分析 3.1)提交仪表板设计的光顺数模要准确反映出样件或油泥模型上的 a)各个特征的形状,大小,位置和方位。 b)各特征之间过渡曲面的形状和走向。 c)各特征的丰满度及其变化规律。 d)各开缝线的走向及其与附近特征的相对位置关系。 如发现所提交的光顺数模不符合以上要求,甚至有遗漏特征、风格变化等严重问题,应退回光顺所返工。 3.2)仪表板设计首先检查分析仪表板外表面光顺是否符合光顺要求。 3.3)注塑、压型零件根据光顺的仪表板外表面特点和边界条件确定拔模方向, 以作为以后结构设计的依据。发现有难出模的局部特征,应退回光顺所修改光顺数模。 4. 设计要点

4.1)仪表板边缘要光顺,与其他件间隙要均匀。 4.2)孔径形状及位置尺寸要圆整,孔径符合标准化,系列化。 4.3)产品设计中尽量做到系列化和通用化,尽量采用标准件,通用件。 4.4)各种设计数据尺寸应准确无误,结构强度可靠,安装稳定牢固。 4.5)设计过程中应尽量借用其它车型的成熟附件和结构,以降低本车的设计成 本。 4.6)仪表板设计应充分考虑制造工艺可行性,装配工艺可行性,维修的可行性,经济性和 方便性。注塑、吸塑、压型零件应合理选择拔模方向。 5.上表皮部分设计 设计过程: 第一步:熟悉效果图,领会造型师设计意图和造型风格。分析各部分安装结构及实现的可能性。如结构不能实现或有疑问,则立即反馈给造型师,让造型师修改造型或作出解释。 图1 效果图 第二步:熟悉油泥模型、熟悉参考样车零件,注意其安装形式、壁厚以及与边界的搭接关系。 第三步:确定结构分块及固定方式、确定主断面、硬点 硬点:仪表板下骨架,分块线A柱护板、前风挡玻璃,门框密封条、前风窗

主电动机风道优化仿真

主电动机风道优化仿真 利用试验设计,通过对影响风量分配比、直(弯)腿的沿程压力损失等考核指标的多组设计变量进行了灵敏度分析,指出了入口处导流板与风道的夹角是影响风量分配比和直腿压力损失最敏感因素,为后续主风道的优化重点指明了方向。 标签:灵敏度分析;风量分配比;压力损失 1 前言 目前,已经完成了主电动机风道(下文简称主风道)的流动特性及两分支风量分配特性的CFD仿真分析。在此基础上,为了进一步提高主风道的性能,可尝试进行主风道结构优化,使两分支风量的分配比例更接近1:1,同时两分支沿程压力损失更小。解决此类工程结构优化问题通常采用基于试验设计(DOE,Design of Experiment)的响应面(Response Surface)优化设计[1],如果问题涉及的设计变量(也称为设计变量或因子)较多,还需先对各变量进行灵敏度分析,以确定各变量对响应影响程度的主次顺序,为下一步细致拟合主要设计变量与考核指标的近似响应面奠定基础。 文章基于主风道的CFD模型,利用试验设计(DOE,Design of Experiment)进行风道内导流板的结构对风量分配比和两分支沿程压力损失的灵敏度分析,各导流板编号如图1所示。涉及的设计变量有各导流板的长度(其中忽略导流板4的长度变化)及其与风道的夹角,共计11个设计变量。所有相关的CFD仿真在Star-CCM+ 中完成,DOE分析在Hyperstudy 中完成。 图1 主风道及各导流板的原结构示意图 2 部分变量试验设计方法 2.1 灵敏度分析 灵敏度分析是最优化设计的重要组成部分,是研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化敏感程度的方法。通过灵敏度分析,可以研究原始数据不准确或发生变化时最优解的稳定性,还可以决定哪些参数对系统或模型有较大的影响。对文章而言,直接利用DOE获取11个设计变量对考核指标的近似响应面需要进行大量的试验仿真(除去用于校验和修正的辅助计算,拟合二次响应面至少需要计算77次,拟合三次响应面则至少需要计算198次)。而通过灵敏度分析找出影响考核指标最大或较大的设计变量,可极大节省计算耗费,提高计算效率和精度。

相关主题
文本预览
相关文档 最新文档