当前位置:文档之家› 弯桥的设计要点

弯桥的设计要点

弯桥的设计要点
弯桥的设计要点

独柱支承的曲线梁桥设计

何维利

(北京市政工程设计研究总院)

【摘要】本文论述了曲线架桥设计过程中所遇到的一些实际问题,并提出了一些解决方法。介绍了曲线桥梁的受力特点论述了曲线梁桥调整墩柱偏心的平衡设计方法,分析了不同支承形式和预应力钢束对曲线梁桥受力的影响,另外对曲梁桥的施工和构造要求进行了论述。

【关键词】曲线梁桥平衡设计最大扭转角扭转变形预应力钢束径向力

一、概述

目前曲线梁桥在现代化的公路及城市道路立交中应用已非常普遍。尤其在立交的匝道设计中应用最广。由于受地形、物和占地面积的影响,匝道的设计往往受到多种因素限制。这就决定了匝道桥具有以下特点:首先匝道有别于主干道所以匝道桥的宽度比较窄,一般匝道多为一或两车道。宽度在6~11m左右。第二,由于匝道用来实现道路的转向功能在城市中立交往往受到占地面积的限制,所以匝道桥多为小半径的曲线梁桥,平曲线最小半径可在30m左右,曲线匝桥上多设置较大超高值。第三,在大型立交中匝道的规模有时也在增大,匝道桥往往设置较大纵坡,匝道不仅跨越下的非机动车道,有时还需跨越主干道,这就增大了匝道桥的长度。

在曲线梁桥下部结构设计时,为减少占用土地、改善下部结构布局、增加视野和桥形美观,其下部墩往往往采用独柱承方式。这种形式的曲线梁桥受力状态较为复杂,所以在设计过程中,必须对其结构受力特点有充分的了解,全面综考虑各种因素对主梁及撤往的不利影响。在全国范围内,此类桥型结构目前已出现多次因设计原因而在施工或使用过中发生事故;其中有的引起主梁开裂;有的引起墩柱开裂;还有的引起主梁向外偏转或向内偏转而使支座脱空;有的经全桥拆除;给国家造成巨大经济损失。

综上所述,对于独柱支承曲线梁桥的设计,必须引起充分重视,并使用空间分析程序对其上下部结构进行全面的整体计算。下面就曲线梁桥设计中遇到的一些实际问题进行分析与论述。

二、独柱支承曲线架桥结构受力特点

曲线梁桥受力特点是相对于直桥而言的,由于主梁的平面弯曲使得下部结构墩往的支承点不在同一条直线上,从而造曲线梁桥的受力状态与直桥有着很大差别。构成了其独有的受力特点。

首先对直桥而言,在主梁自重和预应力钢束作用下,由于荷载是对称的,对主梁并不产生扭矩和扭转变形。但是在曲

梁桥中,由于自重和预应力荷载作用所产生的扭矩和扭转变形是不容忽视的,预应力钢束径向力产生的扭转作用相当大在大曲率、较大跨径的曲线梁桥中,主梁组合最大扭矩值有时可达纵向最大弯矩值的50%以上。

由于桥梁下部结构采用独柱支承方式,因此交承点的位置对结构受力尤为重要。此外由于独柱支承曲线梁桥中门支点扭能力弱,所以必须在桥梁两端部设置抗扭支承,以增加桥梁的整体稳定性。由于主梁的扭转传递到梁端部时,会造端部各支座横向受力分布严重不均,甚至使支座出现负反力。还有汽车荷载的偏心布置及其行使时的离心力,也会造曲线梁桥向外偏转并增加主梁扭矩和扭转变形。

综合以上曲线梁桥受力特点,故在独柱支承曲线梁桥结构设计中,应对其进行全面的整体的空间受力计算分析,只采横向分布等简化计算方法,不能满足设计要求。必须对其在承受纵向弯曲、扭转和翘曲作用下,结合自重、预应力和车活载等荷载进行详细的受力分析,充分考虑其结构的空间受力特点才能得到安全可靠的结构设计。

三、下部支承方式对曲线梁桥内力影响

曲线梁桥的不同支承方式,对其上、下部结构内力影响非常大,根据其结构受力特点一般采用的支承方式为:

1.在曲线梁桥两端的桥台或盖梁处采用两点或多点支承的支座,这种支承方式可有效地提高主梁的横向抗扭性能,保证其横向稳定性。

2.在曲线梁桥的中墩支承处可采用的支承形式很多,应根据其平面曲率、跨径、墩柱截面和墩柱高度及预应力钢束作用力的不同来合理地选用支承方式。经常采用的支承方式有:

(1)墩顶采用方板或圆板橡胶支座,这种方式适用于中墩支反力10000kN以下曲线梁桥梁,板式橡胶支座能够提供一定的抗扭能力,对梁有较弱的扭转约束,水平方向容许有剪切变形。

(2)对于中墩支反力接近或超过10000kN的曲线梁桥可采用单向、多向活动或固定的盆式支座或球形支座。这种支座可根据其受力需要固定或放开某方向的水平约束,但是这种支座对主梁的扭转没有约束,这时主梁在横向和纵向可自扭转。

(3)采用双柱中墩,或在选用矩形宽柱上设置双点支承。这种支承方式对主梁可提供较大的扭转约束。

(4)采用独柱墩顶与梁固结的方式,墩柱可承担一部分主梁扭矩,对主梁的扭转变形有一定约束。

采取不同的支承方式对曲线梁桥的上、下部结构受力影响很大,针对不同的桥梁结构应选用对结构受力有利的支承方式通过以往的曲线梁桥设计经验发现不同的支承方式主要影响主梁的扭矩值和扭矩沿梁纵向的分布规律,以及主梁的扭变形和墩柱的受力状态。下面将举例说明不同支承方式对曲线梁桥的受力影响。

例1某曲线梁桥(图1),桥梁跨径为30*2+33+30*2+20=173m,中段有R=33m(桥梁中线)的圆曲线段,最大圆角为183°,整个桥梁位于道路回头曲线内。桥梁横截面为单箱单室箱形预应力混凝土梁,梁高1.65m,中墩全部采独柱,墩柱顶部放置板式橡胶支座。设计中采用空间计算程序进行了详细的受力分析,其中对各中墩单点支承和双点

承(支

座间距2.5m)两种结构形式进行了计算比较,下面是两种结构的扭矩图(图2)。

从图中可以看出:①采用双点支承时,在主梁的自重作用下,扭矩值较单点支承时的值最大可小30%,说明双点支座有效减小主梁自重扭矩;②双点支承时,预应力作用下,扭矩值较单点支承的值增大很多,而且扭矩分布规律也发生变化,说明双点支承增大了主梁预应力所产生的扭矩;③在主梁自重与预应力荷载的合成扭矩仍然是双点支承的大。然这种规律对所有桥梁不一定有普遍性。

例2某立交匝道桥,此桥梁为一独柱支承的三跨预应力曲线梁桥,横截面为单箱单室的箱形,墩柱与梁固结,墩柱直1.5m。墩柱顶部为一扩大截面(图3),此桥在张拉完钢束拆除施工支架后墩柱出现大量裂缝,造成墩柱破坏,主梁然未有破坏但桥梁已无法使用,现以全部拆除。

分析其破坏原因,此桥在墩柱支承设计上存在着缺陷,由于墩柱高度在6m左右,墩往刚度较大,而且墩柱顶部又采用了扩大截面,使得墩柱有效长度变短,更加增大了墩柱刚度,同时由于顶部截面的扩大使得主梁扭转对墩柱更不利,以在预应力的径向力作用下,墩柱的弯矩超过了其本身的承受能力,造成墩柱破坏。设计时又未对桥梁进行空间计算析,形成了设计缺陷,造成桥梁事故。这可说是支承方式设计不合理的一个例子。

根据以往的曲线梁桥设计经验和对几座曲线梁桥事故的分析,在曲线梁桥选择支承方式时,提出以下几点意见,供设参考:

(1)对于轻宽的桥(约桥宽B>12m)和曲线半径较大(一般R>70m)的曲线梁桥,由于主梁扭转作用较小,桥体宽求主梁增加横向稳定性,故在中墩宜采用具有抗扭较强的多柱或多支座的支承方式,亦可采用墩柱与梁固结的支承形式(2)对于轻窄的桥(约桥宽 B< 12m)和曲线半径较小(一般约 R<70m)的曲线梁桥,由于主梁扭转作用的增加,其在预应力钢束径向力的作用下,主梁横向扭矩和扭转变形很大。由于桥窄因此易采用独柱墩,但在选用支承结构形时应视墩柱高度不同而确定。在较高的中墩(一般约H>8m)可采用墩柱与梁固结的结构支承形式。在较低的中墩(般约

H<8m)可采用具有较弱抗扭能力的单点支承的方式。这样可有效降低墩柱的弯短和减小主梁的横向扭转变形。但这两种交承方式都需对横向支座偏心进行调整。

(3)我国现行的桥梁规范还未对曲线梁桥最大扭转变形作出限制的规定。经过对几座曲线梁桥破坏的分析,为保证其安全,在设计曲线形梁桥时,应对其在恒载加酒载的最大扭转变形值加以控制。

(4)墩柱截面的合理选用。当采用墩柱与梁固结的支承形式时就必须注意墩柱的弯矩变化。在主梁的扭转变形过大同时墩柱弯矩也很大(一般墩柱较矮)的情况下,采用圆形截面墩柱固结是不经济的。首先,墩柱受力过大配筋不易通过仅仅加大墩柱直径,会使墩柱刚度增加很多,在预应力径向力作用下墩柱径向弯短和在温度荷载作用下纵向弯矩都会加,合成后的弯矩会更大,更不利于墩柱受力。其次,圆形截面墩柱对主梁的扭转约束相对较小,不利于减小主梁的转变形。

但对于上述情况的曲线梁桥如采用扁高矩形截面墩柱时,就可有效避免以上不利情况的发生。因为扁高矩形截面沿主纵向抗弯刚度较小,而沿主梁横向抗弯刚度较大,这样既减小了墩柱的配筋又降低了主梁的横向扭转变形,更适合其

力特点,从而达到墩柱与主梁两全其美的效果。

(5)在曲线梁桥的中墩和桥台处不应全部设置为活动支座,应至少设置两个中墩多向固定支座,在桥台于主梁侧面立设置防侧滑装置。这一点主要是因为采用没有水平位移约束的活动支座时,曲线梁在汽车活载的离心力和制动力长期复作用下容易产生主梁向曲线外侧及汽车制动力方向的水平错位(图4),一般匝道桥都是单方向行使,所以这种作力总是朝着固定方向。当中墩采用多向活动的盆式支座或球形支座时,在主梁纵坡的影响下,主梁易产生向下的滑动(5),这种滑动与汽车制动力一致时就更加剧了主梁的水平错位。这种变形如任其发展下去是十分危险的,由于主梁偏移改变了各支承与主梁的原有位置,使主梁向外偏转倾向更加严重,主梁扭矩也在增加,如不及时处理,严重时可主梁滑落。

(6)曲线梁桥在进行边墩盖梁和支座设计时,由于其横向各支座反力相差较大,所以对边墩各支座反力应进行结构空间计算后确定,这样才能计算出反力的最不利值,同时避免边支座产生负反力,才能满足设计要求。只使用平面杆系序计算出支点总反力后横向平均到各个支座上的方法,不适合曲线梁桥。

四、调整支座偏心改善曲线梁桥受力的平衡设计

平衡设计的原理适用于任何结构体系,一个结构首先要到达自身的平衡。这样它才会处于最稳定状态,才有能力抵抗

不稳定的活荷载。反之当结构本身就处于一种不稳定状态时,再遇到不利的活荷载,那么,结构的安全性就会受到挑战对于一个横桥向对称的正直桥来说,在对称的下部结构支承的情况下,其本身已经处于自身的平衡状态。在自重和预力荷载作用下,各个梁的内力分布和位移变形是一致的,虽然数值上有差别但是微小的,只有在活载的作用下对各梁会产生横向不均匀的内力和位移,对主梁才会产生扭矩和扭转变形。活载消失后主梁又恢复其平衡状态。

对于曲线梁桥,情况就不一样了,如果中间各墩的支承位置也像直桥那样布置在桥梁中线上,那么,由于平面曲率的响,曲线梁在自重和预应力荷载作用下,内外梁(肋)会产生向上或向下的不均匀变形,也就是说会使主梁发生扭转形,实践证明这种变形是相当大的,是用肉眼能直接观察到的变形,有的可使梁端部支座脱空几厘米。在活载作用下种变形

会加大,虽然有足够的抗扭配筋,对这种结构如不进行处理,也会造成重大桥梁事故。但是这种情况可在设计时采取施加以避免,其中最经济而又有效的方法就是调整中间交座的横向位置,使支座向与曲梁扭矩相反的方向偏移一定的离,以使曲线梁达到类似直梁的平衡状态。

如何调整墩柱偏心才算是合理的设计呢?首先分析在桥梁在活载作用之前,产生主梁扭转变形的因素主要有两种:一曲线梁的自重(包括铺装和栏杆),二是预应力钢索平弯的径向力作用。一般的文献推荐的方法为,通过调整支座偏从而调整主梁扭矩峰值和扭矩分布,使主梁最大扭矩与最小扭矩接近相等。这种方法认为主梁扭矩调整到满足以上要时即是墩柱偏心调整到位。本文作者认为此种方法有其不妥之处:首先是主梁扭矩值的大小主要取决于主梁的跨径、面抗扭刚度和主梁的平面曲率大小。通过计算分析支座偏心值在一定范围内变化时,对于主梁扭矩值影响不大。例如于某曲线梁桥中墩支座分别偏心20cm和25cm时,主梁扭矩值的变化不足5%。其次只调整主梁扭矩而忽略了主梁的转变形这一重要因素是不全面的。一根曲线梁虽然扭矩值满足设计要求,但是并不一定达到了其真正的平衡状态,仍会使主梁产生很大的扭转变形。现在有很多曲线梁桥在施工阶段就产生主梁向外偏转或向内偏转,主要就是这种原因成的,在设计中只注意到了梁的扭矩而忽略了控制它的扭转变形。

调整墩柱支承位置使主梁在自重和预应力荷载作用下的扭转变形最小,同时注意梁端的支座处不产生脱空现象,这样会使主梁整体上达到一个平衡状态。具体调整方法既是计算出曲线梁在自重和预应力荷载作用下的扭转角,通过调整柱偏心,使支点和跨中截面的扭转角接近相等(一般方向相反),同时控制主梁各截面的扭转角和扭矩值,这样可使梁被调整到最佳平衡状态。

墩柱偏心的方向对于不同结构形式的曲线梁桥是不一样的。偏移值应按桥梁曲率、跨径和预应力钢束在主梁内的布置过空间结构计算确定。对于预应力混凝土曲线梁桥来说,由于预应力产生的扭矩(详见五)与自重扭矩方向一致都是曲线外侧(远离圆心方向)偏转,所以墩柱应向曲线外侧偏移。例如,某曲线梁桥各个墩柱分别向外偏移不同的值(图1)。对于钢箱-混凝土组合梁来说情况就复杂一点,因为墩柱偏心要平衡的是主梁恒载和预应力荷载合成后的扭矩钢箱-混凝土组合梁的预应力扭矩是向曲线内侧偏移(详见五),而恒载扭矩是向外偏转,两者方向相反。当合成后的

扭矩是向内偏转时墩柱应向曲线内侧偏移,反之则墩柱应向曲线外侧偏移。

五、预应力钢束对曲线桥梁内力的影响

相对于主梁来说预应力钢束的作用力是作为外力施加在主梁上,那么主梁既然受到外力作用自然会产生相抵抗的内力由于主梁的几何形状和预应力钢束的几何线形是多样的不规则的,所以曲线梁桥在预应力荷载作用下的内力也是非常杂的。预应力对桥梁结构的作用有些是有利的,而有些是有害的。如设计失误严重时预应力也可造成桥梁结构的破坏所以分析清楚预应力对桥梁结构尤其是对更复杂的曲线梁桥结构的影响是极其重要的问题。

预应力钢束与曲线梁的相互作用形成了一个空间的受力体系。在主梁竖向和水平面方向预应力钢束对主梁的作用力可化为两种,一种是轴向压力Ny,另一种是曲线形钢束对主梁的均布力Qy(图6)。对于预应力钢束的竖向弯曲这里不赘述,只分析钢束平面弯曲对桥梁的内力影响。预应力钢束任意一点的径向分布力Qy= Ry /R,所以钢束径向力与钢张拉力和其平曲线半径有关。可以看出曲线半径越小的桥梁,钢束产生的径向力就越大,但对具有较大半径配有大量应力钢束的曲线梁桥,也不能忽视预应力的影响。

曲线梁桥的预应力钢束不仅有平面弯曲同时还有沿梁高度方向的竖向弯曲,这样预应力钢束径向力的作用点总是沿梁度方向在变化。当其作用点位于主梁截面剪切中心以上或以下时,钢束径向力就会对主梁产生扭转作用(图7),位截面剪切中心以上的钢束径向力产生的扭矩方向与位于截面剪切中心以下的钢束径向力产生的扭矩方向是相反的。两的扭矩之和构成了预应力钢束对曲线梁的整体扭转作用。当M T上大于M T下时,主梁就产生向圆心方向的扭转,反之主则产生背离圆心方向的扭转。这样预应力钢束就会引起曲线梁的向内偏转或向外偏转的情况。

预应力混凝土曲线梁往往产生向外偏转的情况,这是其结构特点造成的。任何桥梁的主梁都是以受弯为主的构件,所预应力钢束应首先满足纵向弯矩的受力要求。从连续梁的设计弯矩包络图(图8)可以看出正弯矩区段的长度远大于弯矩区段的长度,所以相应的预应力钢束重心位于主梁底部的长度远大于位于主梁顶部的长度。这使得预应力径向力生的扭矩M T下大于M T上,所以预应力产生的总扭矩是向曲线外侧翻转的。

预应力钢箱-混凝土组合曲线梁往往产生向内偏转的情况。因混凝土桥面板位于梁顶部,预应力钢束全部配置在桥面板内,所有钢束重心均位于剪切中心上方,使得预应力径向力产生的扭矩只有M T上,所以预应力产生的总扭矩是向曲线侧翻转的(图9)。

六、曲线梁桥其他问题及构造要求

在曲线梁桥设计中,计算分析是十分必要的,但是构造要求和施工方法是使桥梁达到安全使用的可靠保证。

曲线箱梁桥的横隔板的设置要比相应的直桥有所加强,如果不适当的设置内横隔板、横截面的畸变引起的畸变应力可会超过受弯正应力。

曲线梁桥的预应力钢束径向力是很大的,尤其对小半径曲线梁桥作用更大。设计时必须考虑其对主梁腹板曲线内侧混土的压力,这种压力可引起腹板崩裂和钢束崩出主梁。必须在腹板内设置足够数量的防崩钢筋。

对于大曲率的曲线梁,调整墩柱偏心后仍不能消除主梁扭转引起支座负反力时,可根据扭转方向采取在主梁内侧或外加配重混凝土的方法予以解决,配重混凝土为大容重钢渣混凝土,容重可达40~50kN/立方米。也可采用拉力支座。桥宽较窄的曲线梁桥宜加大箱体宽度缩小悬臂宽度,以增加主梁抗扭性能。

曲线梁桥在温度作用下的位移由于梁的平面弯曲已不是按直线变化,梁端伸缩缝也要求既能沿纵向伸缩又能沿横向伸缩,选用伸缩缝的伸缩量应比相同跨径的直桥要大。

曲线梁桥的钢筋布置要求使截面具有抗扭能力,箱梁底板上下层横向筋、顶板上下层横向筋及腰板箍筋要相互搭接从构成一个封闭的抗扭矩形。

由于曲线梁桥的预应力损失较大,所以,它在主梁中段处增配短预应力钢束。

曲线梁桥的施工要按曲线梁桥的受力特点来设计,对分段施工的主梁,由于其在形成整体前还不具有抗扭能力,所以在曲线梁分段处和支点处使用具有抗扭能力的强力支架。对整体现浇的混凝土曲线梁应在其外侧箱体范围进行支架加强,以抵抗张拉预应力钢束后引起的支架反力的增加。为避免悬臂根部下缘在主梁扭转时产生裂缝,因此在箱梁的悬处不宜使用强力支架。

六、结束语

影响曲线梁桥结构的因素很多,还有很多难题尚有待进一步研究。以上仅为本人在参加曲线梁桥设计和处理一些曲线

桥工程问题中学习和总结出的几点体会,仅供设计同行参考,不对之处,恳请指正。

本文在编写过程中得到北京市政设计研究总院总工程师罗玲,副总工程师沈中治、包琦玮和北京工业大学赵超燮教授热心指导与鼓励,特此向他们表示衷心的感谢。

参考文献

[1]邵容光.混凝土弯梁桥.北京:人民交通出版社, 1996.5

[2]孙广华.曲线梁桥计算.北京:人民交通出版社,1997.11

高效的十字路口立交桥设计方法

高效的十字路口立交桥设计方法 用于解决十字路口道路交通的一种高架桥的架设或道路隧道设置的方案,尤其能够减少占土地面积,更高效的让车辆顺畅通行。 设计方案是:在相交的横向道路上架设一座可以让车辆通行的高架桥,并留出可以让纵向车道的车辆通过的桥洞。在纵向的道路上于横向道路的两侧,分别架设一座能够让左行进车道的车辆进入右行进车道的高架桥,并留有让右车道车辆通过并进入左道的桥洞。并分别在横向车道和纵向车道两侧留有互通的侧道。 效果是可以直接在现有的十字路口实施改进,相对于其他类型的方案占用土地面积少,造价成本低,就可以实现车辆顺畅通行的效果。 附图说明 [0005] 下面结合附图和实施例对本发明进一步说明。 [0006] 图1是横向车道高架桥面的车道及车流方向标示示意图。 [0007] 图2是纵向车道路面车道及车流方向标示示意图。 在图1中:1.右行进车道,3.左右行进车道区分线,4.侧道,5.高架桥,6.车流向箭头标示,8.高架桥起始点9.车道标示线。 [0008] 在图2中:1.右行进车道,2.左行进车道,3.左右行进车道区分线,4.侧道,5.高架桥,6.车流向箭头标示,7.高架桥桥墩位置示意点,8.高架桥起始点,9车道标示线。 具体实施方式 [0009] 在道路上设置左右行进车道区分线(3),并设置左行进车道(2)和右行进车道(1),在相交的横向道路上架设一座可以让车辆通行的高架桥(5),并留出可以让纵向车道的车辆通过的桥洞。在纵向的道路上于横向道路的两侧,分别架设一座让左车道的车辆可以进入右车道路的高架桥(5),并留有让右车道车辆通过并进入左道的桥洞。并分别在横向车道和纵向车道两侧留有侧道(4),行进车道(1,2)可以进入侧道(4),侧道(4)也可进入行进车道的交通系统。 [0010] 让横向右行进车道(1)的车辆能够直行越过纵向车流,或从侧道(4)进入纵向道路的右行进车道(1)。并可以左转向进入左行进车道(2),也可以做180度调头行驶进入横向右侧道(4),通过纵向车道上的高架桥(5)进入右行进车道(1)。 [0011] 让纵向车辆进入该交通系统时可以使用侧道(4)右转,或穿过纵向左右车道转换的高架桥(5)洞,做180度调头行进,或直行在横向高架桥(5)下做左转向进入横向侧道(4)行进,或继续顺行通过左右车道转换的高架桥(5),回到原来的右行进车道。以上方案将高架桥撤除,用隧道替换也可达到相同的效果。 [0012] 以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。 -----------福建漳州陈卫煌

浮桥设计与分析要点说明

浮桥设计与分析要点 一.浮桥设计和分析的要点 目的是为了说明浮桥设计和分析的程序。 由于浮桥仅是桥梁的一种特殊形式,所以浮桥的设计也应该遵循通用桥梁的一般设计原则,但也需要提出一些针对浮桥的具体标准。 日本防腐蚀工程学会JSCE(是The Japan Society of Corrosion Engineering的英文缩写)基于性能设计格式已经出版了设计指导书。 表4是根据指导书概括出主要设计程序。 二.浮桥设计基本方案考虑要点 路况: 路况的细节,如分类、设计速度、宽度、净空界限、车道等应按道路组织

规划图来设计。 性能: 浮桥最终性能应由在自然载荷作用下,如风、水波、流速、车辆交通等,浮桥的动力学响应特征来判断。 浮桥结构: 对于浮桥结构设计,应该考虑桥体结构,支撑结构,如在高潮汐、低潮汐时或在最大流速情况时水位变化和浮桥结构的运动情况。 浮桥图纸: 桥的设计图,如浮桥位置和类型,应遵循治理该水域的一些原则。设计图还应包括日常维护和管理要求,以确保浮桥高性能运转,同时还应有耐用结构、检查和管理设施说明书。 环境: 在浮桥设计过程中,通过充分观测和研究现场水位来合理地确定河床的高度。 重视桥周围的环境因素,这些因素包括黄河水深度,潮汐变化,流速,风速,风向,水波,渗盐情况,地基条件,浮流物,动物和植物。 浮桥的位置和类型设计应考虑区域规划,包括在自然灾难条件下的疏散路线等。如果需要设置航道通过浮桥段,需考虑航道的宽度,余隙,深度等条件。 浮桥在现场环境的建筑因素也要研究,以尽可能降低其影响。这些因素包括水的流速,动植物及其他环境因素。 三.浮桥基本设计原理 遵循的原则:性能目标与用途,安全,耐用性,质量,易于维修和管理,与环境相和谐,经济性等指标相一致。 选择结构类型:应考虑地形,地质和地理等条件. 浮桥结构数量和全局系统都要满足强度,变形和稳定性等指标要求。 浮桥的使用寿命对环境条件和自然载荷(如风,水波,水流,潮汐变化,湖面次波动)和腐蚀等因素非常敏感。在低循环成本条件下,浮桥的使用寿命一般期望是75-100年。 按照重要性分类,浮桥分为标准型和特别重要型,也即A型浮桥和B型浮桥。表5根据其重要型分别进行了分类。

桥梁设计要点

桥梁设计要点 1、结构形式及方案比选 1)构造物选址 (1)大桥、特大桥桥位一般服从路线的基本走向,并作为路线走向的重要控 制点。路线设计时,应尽量正交布设或左右幅错孔正交布设。条件受限 制时也可采用斜交布置,但斜交角一般不宜大于30°。 (2)桥位应尽量避开断裂带、滑坡、泥石流、强岩溶以及其它不良地质地段, 选在河岸稳固和基岩、坚硬土层外露或埋深较浅、地质条件良好的稳定 地段。 (3)跨越不通航的行洪、排涝流量较大的季节性河道的桥梁纵轴线宜与洪水 主流方向正交。若必须采用斜交跨越时,其桥墩应布置为洪水主流方向 一致。 (4)桥梁及构造物选址尚应与国家有关部门(如水利、航运、铁路、大型管 道、电站、高压电缆、重要通信线路)协调,获得相关审批。 (5)桥位比选应综合考虑工程造价、施工条件、对周围环境影响等因素,择 优选用。 2)桥梁型式选择与上部结构设计 (1)初步设计阶段,凡特大桥、大桥和特殊桥梁形式,应做桥型方案比较,择优选用。比选应当从桥位、桥型、跨径组合、造价控制、施工组织等诸多方面进行深入、细致和全面地比较分析,为每座桥寻求最为恰当的桥型和桥式。 (2)桥型应根据所在区域的自然地理条件、材料来源、施工方法、高跨比和使用要求综合考虑后选定。 ①常规桥梁尽量做到标准化、定型化、工厂化,装配化。一般桥梁宜优先选用装配式预应力混凝土先简支后结构连续T梁。 ②对于存在滑坡和泥石流的沟谷,采用大跨桥梁直接跨越,既能避免自然灾害对结构的破坏,又能减轻对本已十分脆弱的环境的不利影响。 ③斜坡上桥梁基础施工困难,且施工对坡面植被及边坡稳定影响大,宜采用稍大的跨径。 ④本项目具有多处典型的“V”型河谷,沟底两侧的岸坡十分陡峭,两岸地

市政工程立交桥测量方案

第一章编制依据及工程概况 一、编制依据 1、根据攀枝花市炳草岗至仁和城市主干路Ⅲ段工程施工图设计文件,设计说明所提供的数据等有关资料。 2、《GB50026—93》测量规范要求。 3、以本工程执行的施工规范中的有关规定作为精度标准。 4、建设单位、设计单位提供的导线点成果表控制点I794、I79 5、I796和D1-10、D1-11。 二、工程概况 1、工程内容 本工程为炳草岗至仁和城市主干路后段四十九立交至渡仁西线段道路,里程K11+800~K13+207.21包含道路(一条主线和两条匝道)和桥梁(一座主线桥和两座匝道桥)两部分,主线桥桥梁全长272.3米,桩号:K12+038.500~K12+310.800;A匝道桥桥梁全长203.8米,桩号:AK0+030.200~AK0+234.000;B匝道桥桥梁全长103.8米,桩号:BK0+120.927~BK0+334.727。 主线路基宽度为22米(有人行道)和16米(无人行道)两种断面: 有人行道路段:(人行道)+0.25(平面石)+7.5(车行道)+0.5(双黄线)+7.5(车行道)+0.25(平面石)+3(人行道)=22.0米 无人行道路段:25(硬路肩)+7.5(车行道)+0.5(双黄线)+7.5(车行道)+0.25(硬路肩)=16.0米 桥梁标准断面布置: 主线桥:0.5(防撞护栏)+0.25(路缘带)+2×3.75(车行道)+0.5(双黄线)+2×3.75(车行道)+0.25(路缘带)+0.5

(防撞护栏)=17米,双向四车道; 匝道桥:净7.5(车行道)+2×0.5(防撞护栏)=8.5米,单向两车道。 平曲线:主线平曲线最下半径70米,匝道98.14米。主线桥第一、二联位于直线段,第三联位于R=500m圆曲线上;A匝道桥第一联位于直线段,第二联位于R=103m、R=98.145m的圆曲线上;B匝道桥:全桥位于R=103m、R=98.145m的圆曲线上。 线路纵坡:道路主线最大纵坡6.97%,匝道4.8%。主线桥全桥位于-0.325%的坡道上;A匝道桥位于4.796%、0.32%的坡道上;B 匝道桥位于3.581%、0.32%的坡道上。 2、水准点、导线点的校核和使用 对于业主方提供的控制点进行复核测量、复核成果应经监理工程师批复认可,按复核成果作为施工定线依据。并对桩标志加以妥善保护。 3.重点控制对象 本工程轴线控制作为控制的主要部分,主要是挖孔桩的中心线、桥梁台墩、梁的轴线及平面坐标位置(详见控制方法部分)。 三、质量技术要求 1.执行的标准:平面控制和高程控制应符合GB50026—93《工程测量规范》的标准。 2.精度要求:应符合GB50026—93《工程测量规范》的精度要求进行测量的实施。 3.复核要求: (1)水准点闭合差符合GB50026—93《工程测量规范》中四等水准测量技术要求往返校差20√L(L为往返测段,附合或环线的水准路线长度(Km)。

桥梁设计要点

一、桥梁设计要点 1、本设计图预应力混凝土连续T梁的设计基准期为100年,设计安全等级为二级,适用环境类别为Ⅰ(对应环境条件为温暖或寒冷地区的大气环境、与无侵蚀性的水或土接触的环境)。 2、T梁结构设计 (1)本设计连续T梁,采用先简支后连续方法架设。预制T梁在连续墩上先简支临时支座上,结构连续施工完成后,解除连续墩上临时支座转换为支承于位于墩中心线的永久支座上。 (2)梁长与支点:(单位:m) 本设计图中,主梁各部分结构尺寸所对应构件温度为20℃。标准尺寸见下表: 正交T梁 跨径 标准预制梁长预制梁支点距墩中心(或台背线)边跨中跨联端永久支座连续墩临时支座 25 24.74 24.6 0.51 0.55 斜交30度T梁 跨径 标准预制梁长预制梁支点距墩中心(或台背线)边跨中跨联端永久支座连续墩临时支座 30 29.68 29.5 0.61 0.70 曲线桥各墩位横桥向中心线按径向布置,斜交桥各墩位横桥向中心线按与路线横断面方向夹角30度布置,梁肋按直线预制,每片梁预制长度随曲率半径变化。梁长在两端梁肋等厚度段调整。平面曲线线型由边梁翼板悬臂长度变化或防 撞栏位置变化调整。 (3)主梁断面: 单幅桥横向5片T梁。A.25米T梁:主梁高度 1.75m,梁间距2.45m,其中内梁预制宽度 1.8m、边梁预制宽度 2.0m,翼缘板中间湿接缝宽度0.65m。主梁跨中肋厚0.2m,马蹄宽为梁两端部均匀加厚段0.6m、中部均匀段0.46m。b.斜交30米T梁,半幅五片梁布置,主梁高度 2.0m,T梁梁间距 2.45m,其中内梁预制宽度1.70m、边梁预制宽度 1.95m,翼缘板中间湿接缝宽度0.75m。主梁跨中肋后0.2。30米T梁马蹄宽为梁两端部均匀加厚段0.6m、中部均匀段0.46m。

弯桥研究现状综述

弯桥研究现状综述

目录 1.1弯桥概述 (1) 1.2研究现状 (2) 参考文献 (7)

弯桥研究现状综述 1.1弯桥概述 弯桥通常指桥面中心线在平面上为曲线的桥梁。在各类桥梁结构中,平面弯桥是特殊的一类,无论梁桥、拱桥、斜拉桥还是悬索桥,都有弯桥的工程实例。在各类弯桥结构中,以梁式弯桥最多,斜拉桥次之,拱桥和悬索桥较少。梁式弯桥多的原因是大多数弯桥跨径都在100m以下,这种跨径采用梁式结构无论设计、施工还是经济性都具有优势。超过100m跨径的弯桥,斜拉桥则加入竞争。拱式弯桥多见于低等级路线上的小桥或涵洞,以石桥为主。悬索桥则特殊少见。 图1-1 北京四元桥图1-2 杭州上石立交桥 弯桥,目前大致可分为五种情况:①以直代曲弯桥;②现浇结构弯桥; ③高墩弯桥;④砟道小半径弯桥;⑤钢混结构弯桥。 弯桥的出现大致归为两个原因:①跨越地形地物的需要。山区道路的展线一般要顺应地形,因此路线设计以曲线为主,尤其是高等级公路对线型要求较高,不可避免地要出现大量弯桥斜桥。②线路设计的需要。在高速公路或城市立交的出口或转向,会将常出现弯桥或砟道弯桥。弯桥的出现时桥梁设计发展的必然结果,它一方面给桥梁设计增加了难度,另一方面也使桥梁与自然更为融合,增加了视觉美感。弯桥的发展某种意义上体现了一个国家经济及交通的发展。在国外交通发达的国家中,不仅城市出

现多层次立交枢纽,而且在高速公路、快速干道上,多层次立交桥比比皆是。目前国内交通基础建设也是如此,不仅公路上采用弯桥,铁路上同样采用弯桥。与直桥相比,弯桥的建设并不经济,且在施工工艺方面还有其特殊要求。但就整条线路而言,采用弯桥使线形美观流畅,行车舒适,避免了桥和线路成直角接线,减少了车辆急拐弯造成的行车事故,这种社会效益是不可估量的。 1.2研究现状 据资料显示,最初的曲线梁桥是德国1914年建成的一座铁路钢桁架桥。上世纪70年代以来,曲线梁桥随着钢筋混凝土、预应力混凝土结构的广泛应用在国外城市立交及公路桥梁建设得以大量修建,其中最具代表性的如1972年建造的加拿大西尔维尓路桥、1974年建成的瑞士Cailon桥、法国于1976年完成的Let Naweiliai桥、1982年建成的加拿大弓河桥、美国于1983年建成的北卡罗莱纳州莱茵海湾高架桥等。另外1987年竣工的日本Aomori Bridge为三跨预应力混凝土连续箱梁桥,全桥长496m,其最小半径仅有40m。20世纪90年代后西方发达国家应用的曲线梁桥材料主要以钢板、钢箱梁和钢-混凝土组合梁为主。随着曲线梁桥的大量修建,应运而生发展的施工方法也多种多样,如现浇、悬臂施工、顶推等方法在曲线桥的设计和施工中均得到了较多应用并日趋成熟,表1-1为部分国外已建成的曲线梁桥。 对于曲线梁桥的研究以及应用方面我国起步都晚于国外,因此与国外比存在不小差距。国际上曲线梁桥在70年代得到大发展,而国内是在80年代以后才慢慢赶超;特别是在1979年美国著名的汉斯教授第一次被邀请来到国内介绍了弯梁桥的设计理论后,我国对弯桥的研究及应用才有了迅猛的发展,在之后的公路和城市工程建设中,曲线梁桥开始得以大量修建,而这其中又尤以城市立交发展最快,特别是北京、天津、广州、深圳等一线大城市的立交、高架工程及高速公路工程中,修建了诸多具有代表性的曲线梁桥,使得我国的曲线梁桥的理论研究和工程实践中取得了丰硕的成果。如北京市四元桥、东便门立交桥、天津市蝶形立交桥等。90年代以后,由于对曲线桥理论研究的日趋深入,从而设计和施工水平得到进一步的提高,更是修建了大量的曲线梁桥。

桥梁设计要点

桥梁设计要点 一、?结构计算要点 3、?抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值加速度为0.05g。其他 地区及有特殊要求桥梁根据《建筑抗震设计规范》(GB?50011-2001 )附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 5、?混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土 桥涵设计规范》(JTG?D62-2004 )第9.1条,当受拉区主筋保护层厚度大于50mm时, 应在保护层内设置直径不小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、?护栏防撞等级根据《公路交通安全设施规范》 (JTG?D81-2006 )和《公路交通安全设施设计细则》(JTG/T?D81-2006)确定,中央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中列出。 7、?桥涵应进行承载能力极限状态和正常使用极限状态设计,其中正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、?预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验算,并满足《公 路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG?D62-2004 )第6.3条的规定。 15、?上部结构计算应根据实际情况考虑支座不均匀沉降,并复核基础是否满足设定的沉降要求。 16、?全预应力箱梁计算不应考虑普通钢筋效应,预应力张拉控制应力 3 con < 0.75fp k 仃、?预应力布置必须考虑纵向钢束与横向钢束以及钢束与钢筋之间的交叉影响(横梁处顶底板横向普通钢筋取消),预应力箱梁均采用塑料波纹管,计算参数口、k选取规范上限(采用塑料波纹管,口= 0?仃,k = 0.0015 ),具体采用值应在设计说明中声明,并强调

(整理)顶进立交桥设计的基本理论、方法和内容

顶进立交桥设计的 基本理论、方法和内容 Ⅰ、顶进立交桥的结构形式 基本形式——钢筋混凝土封闭结构。 特点: 自重较轻而底面积大,对地基承载能力的要求较低; 比较轻巧而美观的外型,可以获得较小的梁高,缩+短引道的长度; 超静定结构,内力可以互相调节,对意外外力具有较强的抵抗能力,可以适应一般地质变化的要求; 由于墙板间的刚性 联结,可以承受顶进时巨大剪力。 Ⅱ、顶进立交桥的总体设计 下穿铁路的立交桥要满足两个条件:在结构方面必须具有足够承受铁路荷载的能力;桥下净空必须满足交通功能的要求。所以在设计中必须同时遵守铁路和公路或城市道路的有关规范和规定。 设计所依据的规范: ①铁路桥涵设计基本规范 ②铁路桥涵钢筋混凝土和预应力混凝土结构设计规范 ③公路桥涵设计规范 ④城市道路设计规范 ⑤城市桥梁设计准则 总体设计的任务:确定桥位、交叉角、规模。 桥位——立交桥轴线与铁路中线交点的位置。理想的交叉点是在区间直线段;若需要在车站通过,宜避开咽喉区。 交叉角——立交桥轴线与铁路中线的夹角,标注锐角。所有规范都规定两条道路的交叉角不应下于45°,但在实际执行中都做不到。在城市道路中,拆迁是一个最主要的因素。以前曾经力图把交叉角控制在60°以上。但是强调大交角往往造成大量的拆迁和道路平面的恶化,一般在城市道路的立交桥中都只能服从城市规划的要求。

立交桥的规模——净宽、孔数、净高 立交桥的净宽是指每孔中两墙间的垂直距离,这个距离必须满足行车道或人行道宽度及各种“带”宽的要求,行车道的宽度是与设计行车速度、车道数和车辆类型有关的: 例如:每个机动车道的宽度: 大型汽车和小型汽车混行 V≥40KM/H 3.75m <40KM/H 3.50m 小型汽车专用线 3.50m 公共汽车停靠站 3.0m 净高: 有轨电车 5.5m 无轨电车 5.0m 汽车 4.5m 孔数要与道路设计横断面相匹配; 净高是指由路面至顶板底的高度。 每孔的净宽和净高都必须满足公路和城市道路限界的要求。 关于规模问题,有一段时间过分强调铁路规范的要求,曾经造成铁路和地方地方部门的不协调。 在近三十年来,铁路规范规定的标准净宽系列没有做过任何改变,标准系列中的净宽目前已经明显地不能适应道路设计的要求。例如:北京一些城市快速路和干道都设计为“四块板”断面,设计速度都在40KM/H以上,机动车道为上下各3车道,而且中间和两侧隔离带也比较宽。行车道本身要求的宽度就达到11.25m,加上路缘带、安全带的要求就13m以上,再由于较宽的隔离带,要求的净宽就更大了。而标准系列中,四跨断面只有(9—12—12—9)m一种,明显地不能满足现行规划的要求。所以在近年设计的方案中,特别是在北京和天津,基本上已经冲破了规范的限制。如北京中轴路立交桥为(17.5—20—20—17.5)m,总宽度81.2m;玉泉路立交桥为(12—17—17—12)m,总宽度63m;廊坊K83立交桥为(8—14.5—14.5—8)m,总宽度近49m。其他双孔和单孔净宽也有类似的情况。 目前已有的设计:

桥梁设计要点

桥梁设计要点 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

桥梁设计要点 一、结构计算要点 1、根据《公路桥涵设计通用规范》(JTGD60-2004)第条要求,公路桥涵结构的设计基准期为100年,市政桥涵据此采用设计基准期100年,各类主要构件及其使用材料应保证其设计基准期要求。 2、汽车荷载根据道路、公路等级分别采用公路-I级、公路-II级,特殊荷载根据业主要求确定。桥梁设计安全等级根据《公路桥涵设计通用规范》(JTGD60-2004)第条,分为一级、二级、三级,重要性系数根据设计安全等级确定。设计中注意按照单孔跨径确定,对多孔不等跨径桥梁,以其中最大跨作为判断标准,同时在设计中结构重要性系数应大于等于。 3、抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值加速度为。其他地区及有特殊要求桥梁根据《建筑抗震设计规范》(GB50011-2001)附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 4、环境类别根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第条确定,并按照要求提出相应的耐久性的基本要求。 5、混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第条,当受拉区主筋保护层厚度大于50mm时,应在保护层内设置直径不小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、护栏防撞等级根据《公路交通安全设施规范》(JTGD81-2006)和《公路交通安全设施设计细则》(JTG/TD81-2006)确定,中央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中列出。 7、桥涵应进行承载能力极限状态和正常使用极限状态设计,其中正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验算,并满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第条的规定。

车站设计说明

说明目录 第1章设计依据 (1) 第2章工程概况、设计原则及设计范围 (1) 2.1 工程概况 (1) 2.2 设计原则 (1) 2.3 设计范围 (1) 第3章生产、生活给水系统 (1) 3.1 用水量标准 (1) 3.2 用水量计算表 (2) 3.3 系统构成及功能 (2) 第4章排水系统 (2) 4.1 排水量标准及排水系统分类 (2) 4.2 污水系统 (2) 4.3 废水系统 (2) 4.4 雨水排水系统 (3) 第5章水消防系统及灭火器配置 (3) 5.1 消防水量及水压 (3) 5.2 系统构成、功能及设置原则 (3) 第6章循环冷却水系统 (4) 6.1 冷却水泵及冷却水处理 (4) 6.2 冷却塔的选用与布置 (4) 第7章管材、保温及其他要求 (4) 7.1 给水管材 (4) 7.2 排水管材 (4) 7.3 保温系统 (4) 7.4 水表设置及有关阀门设置 (5) 7.5 防杂散电流措施.......................................................................................................................... 5第8章给排水及水消防系统的控制要求 .. (5) 8.1 生产、生活给水系统 (5) 8.2 消防泵房 (5) 8.3 污水泵房 (5) 8.4 废水泵房 (5) 8.5 局部排水泵房 (5) 8.6 雨水排水泵房 (5) 8.7 循环冷却水系统 (5) 8.8 电保温系统 (6) 第9章10号线二期2段总体设计评审意见执行情况 (6) 第10章主要设备、器材及材料汇总表 (7)

市政桥梁设计要点

桥梁设计要点 一、结构计算要点 1、根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.6条要 求,公路桥涵结构的设计基准期为100年,市政桥涵据此采用 设计基准期100年,各类主要构件及其使用材料应保证其设计 基准期要求。 2、汽车荷载根据道路、公路等级分别采用公路-I级、公路-II级, 特殊荷载根据业主要求确定。桥梁设计安全等级根据《公路桥 涵设计通用规范》(JTG D60-2004)第1.0.9条,分为一级、二 级、三级,重要性系数根据设计安全等级确定。设计中注意按 照单孔跨径确定,对多孔不等跨径桥梁,以其中最大跨作为判 断标准,同时在设计中结构重要性系数应大于等于1.0。 3、抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值 加速度为0.05g。其他地区及有特殊要求桥梁根据《建筑抗震 设计规范》(GB 50011-2001)附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 4、环境类别根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004)第1.0.7条确定,并按照要求提出相应的耐 久性的基本要求。 5、混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土 及预应力混凝土桥涵设计规范》(JTG D62-2004)第9.1条,当

受拉区主筋保护层厚度大于50mm时,应在保护层内设置直径不 小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、护栏防撞等级根据《公路交通安全设施规范》(JTG D81-2006) 和《公路交通安全设施设计细则》(JTG/T D81-2006)确定,中 央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中 列出。 7、桥涵应进行承载能力极限状态和正常使用极限状态设计,其中 正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验 算,并满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.3条的规定。 9、普通钢筋混凝土构件和B类预应力混凝土构件,在正常使用极 限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应 影响进行验算,其宽度限制根据环境类别确定,详见《公路钢 筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第 6.4.2条。 10、T形截面梁的翼缘有效宽度和箱形截面梁在腹板两侧上下翼缘 的有效宽度应根据《公路钢筋混凝土及预应力混凝土桥涵设计 规范》(JTG D62-2004)第4.2.2条和4.2.3条进行断面折减。 各类受力筋应布置在有效宽度范围内。 11、由于日照正温差和降温反温差引起的梁截面应力,可按附录B 计算。竖向日照温差梯度曲线可按《公路桥涵设计通用规范》

RC弯桥截面设计

IIl结构分析和试验研究 翼板剪滞系数及有效宽度的比较表、\比较内容 均值应力最大剪滞有效分布总翼板宽有效宽度 (h伊a)系数宽度(nun)度(mm)比 方法类型、\ 上翼板一1.75106∞20400O93变分法 下翼板5.34l091378150092 上翼板一1681203209400080有限元法 下翼板50010814l0150094 上翼板一l75I133333400083试验值 下翼板534l03l加l150093从翼板的最大剪滞系数及有效分布宽度值来看,三者的剪滞系数值比较接近,其中空间有限元法值既精确,又偏于保守,可据此方法来计算翼板在不同情况的有效分布宽度,同时由试验实测结果也说明所建立的箱梁空间计算模型是可行的。 四、结束语 室内模型试验表明简支波形钢腹板组合箱梁在竖向荷载作用下,其上、下翼板均出现了典型的正剪力滞效应,即波形钢腹板与翼板交界处的混凝土翼板纵向正应力大于其他位置的正斑力。上翼板剪滞效应稍大于下翼板,但两者剪力滞系数比较接近。空间有限元分析既可由模型试验结果得到验证,同时又可依据所建立的有限元模型对模型试验梁作更大范围即更多项目的研究。 参考文献 l罗旗帜,俞建立.钢筋混凝土连续箱粱桥翼板横向裂缝问题.桥梁建设,1997(1):4l~44 2蔡千典,冉一元,波形钢腹板预应力结合箱粱结构特点的探讨,桥梁建设。1994.1 3方诗圣,胡成,吴文清.微混凝土模型材料基本性能试验研究.合肥工业大学学报,1999,22(5):76一锣一 4项贻强.箱型梁桥翼板的有效宽度及对规范的建议.中国公路学会桥梁工程学会1989年学术会议论文集。1989.10 RC弯桥截面设计的计算模型分析 张敬珍陈偕民徐岳 (长安大学公路学院) 摘要:随着立交桥数量的不断增多,弯桥也开始被广泛使用。但精确的设计理论还有待进一步完善和深入研究。弯桥的受力较直桥复杂得多,截面设计相应难度大,而弯桥的截面设

道路下穿铁路立交桥方案设计说明

目录 1 概述 (1) 1.1简述工程建设项目的概况 (1) 1.2编制依据 (1) 1.3设计范围 (1) 1.4设计内容 (1) 2 工程场地现状评价及必要性评价(如设计范围有两端引道或道路时) (2) 3 工程场地自然条件 (2) 3.1地形、地貌 (2) 3.2气象特征 (2) 3.3工程地质 (2) 3.4岩土层特征 (2) 3.5水文地质 (2) 3.6特殊性岩土 (2) 3.7场地地震效应 (2) 3.8建筑材料条件(砖、石、砂等建材) (2) 3.9施工条件(水、电、运输、场地等)4设计原则和技术标准 (2) 4设计原则和技术标准 (3) 4.1设计原则 (3) 4.2采用的规范、规程(按项目需要删减或增加) (3) 4.3主要技术标准 (3) 5 工程方案设计 (4) 5.1立交桥工程 (4) 5.1.1 道路下穿铁路立交桥方案 (4) 5.1.2立交桥施工方法简述 (4) 5.1.3 道路上跨铁路立交桥方案可行性论证 (4) 5.2立交桥附属工程 (4) 5.3引道(如为两端道路,则是道路工程)工程 (4) 5.3.1平面设计 (4) 5.3.2纵断面设计 (4) 5.3.3横断面布置 (4) 5.3.4路基支挡工程 (5) 5.3.5 路基设计 (5) 5.3.6 路面设计 (5) 5.3.7如有排水工程、照明工程、绿化工程、交通工程,则需相应增加各专业 内容。 (5) 6环境保护 (5) 6.1环境保护依据 .................................... 错误!未定义书签。 6.2主要污染物及环境保护措施 ........................ 错误!未定义书签。 6.2.1 主要污染物................................... 错误!未定义书签。 6.2.2 工程对环境的不良影响......................... 错误!未定义书签。 I / 7

弯桥直做折做弯做

弯桥直做、折做、弯做 弯桥直做:腹板是直线的,曲线线型又悬臂宽度调整。如1楼所说,大半径曲线梁一般可采用这种形式。 弯桥折做:腹板在中横隔梁位置有明显折角。曲线线性又腹板折角和悬臂宽度共同调整。弯桥弯做:腹板线性与曲线线性相同。悬臂等宽。小半径曲线梁的时候常用。 我只在预制T梁、预制工字梁的时候采用这种弯桥折做的形势。因为在预制的时候不可能把梁肋做成曲线吧,只能依靠悬臂来调整。而且,在预制T梁和工字梁的梁段连续处做成折的横梁还是比较好实现的。所以我一般只在这两种型式的梁的时候才会采用弯桥折做。至于弯折角度的问题我觉得主要还是看曲线半径,曲线T梁一般都有最小半径要求。 弯桥直做------桥梁所处平曲线半径较大,可以不考虑曲线影响,即可按直线桥做, 弯桥折做------桥梁所处平曲线半径较小,必须考虑曲线影响,即桥梁每跨按直线做,每跨的梁与梁之间有夹角。 使用直线来近似拟合曲线。 弯桥弯做------桥梁所处平曲线半径较小,采用现浇梁(桥梁也是弯曲的型式)处理桥梁的方式。 平行布置:全桥的所有墩台方向均一致,一般是取全桥中心处桩号的切线为基准,将此切线向右转动一个角度得到墩台轴线防线,这个角度也成为右角。此时同跨的所有梁板长度一致。而各个墩台的右角均不一致(当桥梁在曲线上时) 径向布置,每一处墩台的轴线都和本桩号的切线成固定角度,(这个角度一般为90度,

但把范围放大,把意义引申,只要角度一致也可以) 如果曲线半径大,采用径向布置,此时内外侧梁板长度差很小。 如果曲线半径小,用平行布置,这样梁板长度差异小,如果用径向布置,除非是施工工艺采用现浇。 如果桥梁跨越道路,采用平行布置,这样桥下空间和道路平行。 如果桥梁跨越河流,一般跨河处较为空旷,线型标准高,半径大,所以采用径向布置,墩台和 河流稍有不平行无伤大雅。 以上几种考虑有时候要结合在一起,再决定是平行布置还是径向布置。 受到标准、地形、地质等诸多因素的限制,使得高速公路上一些简支梁桥因受路线平面线型控制而成了曲线桥。高速公路路幅宽,平曲线内外侧孤长差值大,位于平曲线上的简支梁桥,由于上、下行桥独立设置,所以在曲线上同一桥孔内、外侧的长度差是很明显的。在设计中为了设计和施工简便,一般根据桥梁各自的具体情况(包括所在的平曲线半径、孔数、跨径等),分别按弯桥直作和弯桥折作对桥梁墩台进行布设,简化为直线桥。 合理 假定 (1)、位于平曲线 上的简支梁桥,在平面上按折线进行布设。即以路线全幅中心线上各墩台中心的连线作为桥跨轴线,将曲线桥转化为折线桥(如图1中A、B、C为各墩中心); (2)、相邻两桥墩(台)中心的曲线长度与其弦长之差忽略不计。即图1中AB和BC的曲线长分别等于AB和BC弦长; (3)、位于平曲线上桥梁的交角α为沿路线前进方向,曲线在各墩台中心处的切线与各墩台横桥向墩轴线的夹角。 1 弯桥直作 当平曲线半径较大,并且全桥范围内外孤长差值不大,中失≤20cm,可采用弯桥直作,他可分为两种方法:一种是经线法,当中失≤10cm,可以路线全幅中心线上两桥台中心的连线作为桥跨轴线,将曲线桥转化为直线桥;另一种是平分中失法,当中失>10cm,可以路线全幅中心线上两桥台中心的连线偏移1/2中失作为桥跨轴线,将曲线桥转化为直线桥。曲线线形由护栏调节。如果中失≤50cm,对通讯管道布设没影响,也可考虑弯

大学生桥梁设计方案

YOUR LOGO Your compa ny n ame 2 0 X X 大学生桥梁设计方案 姓名:XXX 部门:XX部

大学生桥梁设计方案 作为一个土木学子,我们的目标是成为一名优秀的土木工程师,因此我们想通过参加这样的一次结构设计大赛,提前感受下“工程师”的滋味。我们设计并制作了这座模型桥。这座桥,我们采用了悬索与斜拉结合的方式固定,使桥身更具有力度感。桥梁设计的基本要求有:安全可靠,适用耐久,经济合理,美观。桥梁设计的基本原则桥梁是铁路、公路或城市道路的重要组成部分,特别是大、中桥梁的建设对当地政治、经济、国防等都具有重要意义。因此,公路桥梁应根据所在公路的作用、性质和将来发展的需要,除应符合技术先进、安全可靠、适用耐久、经济合理的要求外,还应按照美观和有利环保的原则进行设计,并考虑因地制宜、就地取材、便于施工和养护等因素。 1安全可靠 (1) 所设计的桥梁结构在强度、稳定和耐久性方面应有足够的安全储备。 (2) 防撞栏杆应具有足够的高度和强度,人与车流之间应设防护栏,防止车辆撞人人行道或撞坏栏杆而落到桥下。 (3) 对于交通繁忙的桥梁,应设计好照明设施,并有明确的交通标志,两端引桥坡度不宜太陡,以避免发生车辆碰撞等引起的车祸。 (4) 对于河床易变迁的河道,应设计好导流设施,防止桥梁基础底部被过度冲刷;对于通行大吨位船舶的河道,除按规定加大桥孔跨径外,必要时设置防撞构筑物等。 (5) 对修建在地震区的桥梁,应按抗震要求采取防震措施;对于大跨柔性桥梁,尚应考虑风振效应。 2.适用耐久 (1) 桥面宽度能满足当前以及今后规划年限内的交通流量( 包括行人通道) 。 (2) 桥梁结构在通过设计荷载时不出现过大的变形和过宽的裂缝。 (3) 桥跨结构的下方要有利于泄洪、通航(跨河桥)或车辆( 立交桥) 和行人的通行 第2页共2页

立交方案初步设计说明(1007)

电子校-松牌路立交工程交通工程初步设计说明 一、概况 电子校—松牌路立交地处重庆市渝北区龙溪镇,是龙华大道与金龙路、松牌路相交形成的重要节点。龙华大道现状为双向六车道,中央分隔带宽1.5~2m。金龙路现状为双向四车道,无中央分隔带。两条道路在重庆电子工业学校处相交,交叉口现状为红绿灯控制的平交口。龙华大道继续向北延伸约300m与城市主干道松牌路相交。松牌路现状为双向六车道,中央分隔带宽2m,交叉口现状也为红绿灯控制的平面交叉口。两交叉口相距较近(仅有300m),相辅相成,紧密相依,所以在立交设计时将两个交叉口统筹考虑,以便更科学合理地组织交通,配置资源。 松牌路-电子校节点区位图 根据重庆市主城区快速路网规划,龙华大道南段与松牌路东段均属于快速路“四纵线”的一段。四纵线南起内环线,向北经李家湾立交、李家沱大桥、青龙咀立交、黄沙溪、嘉华大桥、李家坪、蚂蝗梁、华新分流路、龙华大道、松牌路、新牌坊、人和、赵家溪、悦来,最后接入绕城高速公路。“四纵线”跨越巴南、九龙坡、渝中、江北、渝北及北部新区,是主城核心区南北向的重要骨架,在城市路网中极为重要。华新分流路和龙华大道作为“四纵线”的一段,还是北部片区内部一条重要的南北向干道,承担了片区内部大量的交通转换功能,不仅是渝中、江北、渝北与北部新区进行交通联系的主要干道,同时对分流建新南、北路的交通压力也具有相当大的作用。而松牌路是沙坪坝区及大石坝片区去往机场的主要道路,直行交通量也比较大。 立交东南700m接华新分流道直通渝中区,西南1km邻松树桥立交与主城二横线衔接,东北0.9km邻新牌坊立交到江北机场,西北往冉家坝组团、花园新村组团、北部高新区,是重庆市道路网络中的重要节点。随着嘉华大桥工程的竣工通车,该项目所在的交叉口南北方向的交通量大大增加。根据交通量预测,到2010年,松牌路交叉口高峰小时的进入交通总量将达到6621pcu/h,电子校交叉口高峰小时的进入交通总量将达到4774pcu/h,而现状平面交叉口的通行能力约为3500 pcu/h,远远不能满足交通量增长的需要。目前两个交叉口都已成为渝北区的交通堵点,特别是在上下班的高峰时段。因此必须对原有的平面交叉口进行改造,以满足交通量增长的需求。

公路桥梁设计要点分析

公路桥梁设计要点分析 发表时间:2014-10-30T11:12:31.640Z 来源:《科学与技术》2014年第9期下供稿作者:高弘滨刘涛[导读] 公路桥梁的设计是否合理,对工程的工期、质量、造价以及使用的影响非常大。 义乌市交通设计有限公司高弘滨刘涛 摘要:公路桥梁的设计是否合理,对工程的工期、质量、造价以及使用的影响非常大。本文对公路桥梁设计当中的设计要点进行了详细地分析,并针对设计当中存在的问题提出了相应的解决措施,以供同行借鉴。 【关键词】:公路桥梁设计;设计要点;断面设计 1 前言 某公路桥梁工程,路线的全长为59.3km,为双向的4车道高速公路,而设计的速度为120km/h,2012年7月建成通车。这个公路桥梁远期的规划是6车道,其路基宽度为37.3m。因为很多的控制点因素,同时结合了地形的特点,本桥梁的上部结构采用了装配式预应力混凝土连续箱梁以及现浇预应力混凝土连续箱梁。 2 桥梁设计的基本原则 安全、适用、经济、美观、有利环保。 2.1 安全要求 桥梁的安全既包括桥上车辆、行人的安全,也包括桥梁本身的安全。结构在使用年限(设计基准期:100年)以内,在各种自然情况和荷载作用下,能具有足够的承载能力,能保持适当的安全度,是对每一座桥梁的基本要求。 2.2 适用要求 桥梁的适用要求包括:能保证行车的通畅、舒适和安全;桥梁运量既能满足当前需要,也可适当照顾今后发展;对跨越线路或河流的桥梁,要求不妨碍桥下交通或通航;靠近城市、村镇等的桥梁,还当综合考虑桥头和引桥地区的环境和发展;在使用年限内,桥梁一般只需常规养护维修就可保证日常使用。 2.3 经济要求 在安全、适用的前提下,经济是衡量技术水平和作出方案选择的主要因素。桥梁设计应体现出经济特性。对于重大的桥梁工程,必须进行多方案的比较,详细研究技术上的可行性和先进性以及经济上的合理性。这样,才能对桥梁的建造消耗、施工、技术发展和今后使用等因素进行统筹考虑,得出合理的经济结论。 2.4 美观要求 在安全、适用和经济的前提下,尽可能使桥梁具有优美的外形,并与周围的环境相协调,这就是对桥梁美观的基本要求。合理的轮廓造型和布局、正确表达力的传递、以及结构风格和色彩与周围环境的和谐一致,是体现美观的主要因素。在城市和游览地区,可适当考虑桥梁建筑的艺术处理,但不应当追求浮华和繁琐的细部装饰。 3 技术的标准 结构设计的安全等级为一级;设计的洪水频率为1/100a;桥面的最大纵坡为1.4%;标准的路段桥面总的宽度以及组成为桥面的组成是0.5m的护栏+19.5m的行车道+0.5m的护栏+1m的间隔带+0.5m的护栏+19.5m的行车道+0.5m的护栏,桥面的总宽度为42m;地震的动峰值加速度为0.15gal,采用VIII度的设防措施,地震的烈度为VII度;设计的荷载为公路-I级;设计计算的行车速度为120km/h。 4 桥梁设计的要点分析 4.1 附属构件的设计 (1)桥台设置锥坡进行防护,桥台的两侧引道边坡应该设置踏步,并且应该结合路面的排水设置成为急流槽形式并且兼排水,桥台在桥下护坡上设置检修平台延伸到两侧接至踏步。 (2)墩台应该设置横桥向挡块,桥台应该增设纵向防落梁挡块,连续墩的支座之间增设防震锚栓。 (3)桥面的排水,在桥梁的桥面比较低的一侧护拦内侧应该设置泄水管。 (4)护栏,应该采用钢筋混凝土防撞式的护栏,而护栏应该按着路线的实际线型放样进行设置。 (5)伸缩缝,本桥的两个桥台处应该各设置一道伸缩缝,在过渡墩处也应该各设置一道伸缩缝,而其余过渡墩处必须各设置一道恰当的伸缩缝。 (6)桥头搭板,应该按照项目统一进行规定,本桥的桥台设置的长度应该为10m搭板,而45号桥台设置的长度应该为8m搭板。 4.2 纵断面设计 沿着道路中线竖直剖开然后展开即为道路纵断面,它反映了道路中线地面高低起伏的情况及设计路线的纵向坡度情况,从而可以看出纵向土石方工程的挖填情况。把道路的纵断面图与平面图结合起来,就能完整的表达出道路的空间位置。竖曲线是设置在纵断面上的两个坡段的转折处,为了可以便于行车,起缓和作用的一段曲线。而竖曲线的形式可以采用圆曲线或者抛物线,在使用的范围上两者基本上没有什么差别,竖曲线的各要素的计算如下。

桥梁技术标准及设计规范

桥梁技术标准及设计规范 ?B.A.E.L 91 modifiées 99 ?B.P.E.L 91 ?CPC Fascicule no61,Titre II ?Fascicule 62 Guide SETRA: ?Pont àpoutres préfabriquées ?Ponts-cadres et portiques 设计中的限制性条件 ?桥梁类别:一级桥梁 ?气象区划:B 类地区(温和或干燥地区) ?环境湿度:ρh = 55% ?设计荷载:道路荷载A 和 B 系列,人行道的民事荷载 1.5 kN/m2,军用荷载Mc120、Me80 及特殊荷载D240。 主要材料 1 ) 、混凝土 ?伸缩缝:C40/50 钢纤维混凝土; ?预制预应力混凝土T 形梁:C35/45 混凝土; ?现浇混凝土桥面板:C35/45 混凝土; ?护栏底座混凝土:C30/37; ?搭板:C30/37 混凝土; 2) 、钢材 钢材的变形弹性模量采用Es = 2.0×10 5 MPa,钢材容重为γ=7850kg/m 3 ; 光圆钢筋应符合NF A35-015 标准,采用Fe E235,弹性极限强度fe=235 MPa; 螺纹钢筋应符合NF A35-016 标准,采用Fe E500-3,弹性极限强度fe=500 MPa; 焊接钢筋网应符合NF A35-016 和NF A35 -019 标准,采用Fe E500-2,弹性极限强度fe =500 MPa; ?其它板材、型钢的技术参数应符合合同规定的相应规范和标准。 3) 、预应力钢绞线 按照法国标准XP A35-045 和62 分册 2.1 章节(第二部分),采用高强低松弛的钢绞线。参数见表1 表1 预应力参数表 序号符号数值单位 标定直径Φ15.2 (Φ0.6″) mm 标定断面Ap 139 mm2 标定质量γ 1.10 Kg/m 钢绞线破裂荷载fprg 1860 MPa 0.1%形变荷载fpeg 1644 MPa 断裂荷载Fr ≥259 kN 屈服荷载Fp ≥230 kN 弹性变形模量Ep 195 GPa 1000 小时松弛损失值ρ1000 ≤2.5 %

相关主题
文本预览
相关文档 最新文档