当前位置:文档之家› 高频小信号放大器实验报告

高频小信号放大器实验报告

高频小信号放大器实验报告
高频小信号放大器实验报告

基于Multisim 的通信电路仿真实验

实验一

高频小信号放大器

1.1 实验目的

1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、 熟悉谐振回路的调谐方法及测试方法。

3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验内容 1.

2.1

单调谐高频小信号放大器仿真

图1.1单调谐高频小信号放大器

1、 根据电路中选频网络参数值,计算该电路的谐振频率 3 P 。

3 p=1/(L1*C3F2=2936KHz fp= 3 p/(2*pi)=467KHz

2、 通过仿真,观察示波器中的输入输出波形,计算电压增益 Av0

下图中绿色为输入波形,蓝色为输出波形

V: 134 vV

V (峰”理]t 714艸 Vffl 效列:252 uV

-60,2 nV

1: -ZTtnA

】(有联塑)11J1

uA

T (三逹〕:305 pA

4C5 kHti

D.3S7mVpk

R5 2.2kQ

C4 zhlQOnF

V: 967 nV

V (S-i£}: 2.99 mV

1X )6 mV V (Mil ): nV LOA J (?E-i±}: a A 1(荊畫浚 4: 455 kHz

-R

IN

C 3UT

fl

[1

C1 1Q0nF

R3 lOkO

Vi 967 nV 恫*

耶):2.99 tnV 讥有

1.06 mV

118 nV

b -12.1 nA

5J9S uA

M 有 uA ifS :茨):231 fi A 尸疋:465 kHl

通频带 BW=2 f0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数 Kr0.1=(2 △ f0.1)/( 2

△ f0.7)=

(14.278GHz-9.359KHz ) /7.092MHz=2013.254

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出 电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出 f~Av

相应的图,根据图粗略计算出通频带。

Avo=Vo/Vi=1.06/0.252=4.206

3、利用软件中的波特图仪观察通频带,并计算矩形系数

j

严:::

451.519 kHr |~lZ458dB

Fo(KHz)6575

165

265365465106516652265286534654065

Uo(mV)0.6690.765

1

1.05

1.06 1.06

0.977

0.816

0.7490.6530.5740.511

Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278

2.028

5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作

用。

2次谐波

4次谐波

6次谐波

1$ 痺:5,訓

uA

冃散值::

越丽^3.67 nA

|垂SMkHZ

L

:

:w:1WrrF-

T1@S

“世空

T2-T1

g}: 2S2 LiV ::::: :26,7rW

.....................................

Hinebese__________ Channel A _________ Channel B

Se:1500re/t>v $c^e: |lmv^v gig:lmgv

Time Channd_A OumdJB

ni-ia&LK 2og.g24uv -i. U2 mv

111.136 UE 200.92^1 u¥-1.132 mV

0.000 & Q.QWV DrOOQ V

XSC1

frnebase ___________ Channel A 6amd B____________

Scale: |5Mr?册So)le; l?V/Dw Scale: 11

;:$.70 uA

S); 2.D5uA :-

t,79fi4

,Bfi MHZ

T2^T1 0-0001

Tire

222.355

us

222.35Sus

Qiamel_A -

170. TOO

u¥■170.700

u¥0.000 V

Charne<_B -

271.S69UV -

271889 L W

0.000 V

lu¥...................................... .....

駆714uV

252 LW ::::::::::::::

3L.9nV ..............................................

S5uA ;::;;;

|f)z 5.14u4 ...................................... .....

MD;Z1 九

A ::.::::::::::.

1):-150 pA

2.79 MH? ......................................................

C1 -- ——II- 懿100ftF

?a If 1- ' ■ ■ ■ ? ' 1 ''

n *1?

飓@@

ra^ri

Charnel _A

192,369 UV

192,369 UV

0,000 V

Chamd_0

-9 IB. 713 UV

-918.713 UV

0,000V

1.2.2 双调谐咼频小信号放大器

V: -22,4 mV

Vfpr-p);转.百

mV

V(nra)i 3D.DmV

V(dc>; 117 nV h

200uA l(p-p>:

759 uA l(rmi)!

uA

I (de);

1.5^ MHl

C5

IQnF03

600pF

CS C7

^,_20pF5D %

-^;KDy=B

ca O 1U H 50%

COOpF X?ey-D

1OQpF

R2

C.2KQ

4

XBF1

V(p^p)i 10.4 V

Vfftins); V

V(dc}: -271 uV I:

-4P53 讪

T(jnv> W.< P?

l(rra}; 3.?9 pA

i(de)^ 0 A

F*?a. : 1,59 MHz

0 357mVp1(

2790kHz

Tme

1.00 ms

1.040 ms

O.OOOs

Timebase

Sc*e: 500 麼砂

CharriH A.ChamH B

Scale-. imV/Div Scale: lm¥/Div

tf rvw fl■nzw 护1ft

1、通过示波器观察输入输出波形,并计算出电压增益Av0

图1.2双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0

T1

MM

T2-T1

Time

396.431 u

s

388.431 u

s 0.000 5

Channel_A -28-018 mV ?28.018 mV 0.300 V Channel_B 5.205 V - 5.205 V 0.000 V

Avo=Vo/Vi=3.68/0.02=184 2、利用软件中的波特图仪观察通频带,并计算矩形系数

Bode Plotter-XEPI

通频带 BW=2 f0.7=9.385MHz-7.66MHz=1.725MHz 矩形系数 Kr0.1=(2 △ f0.1)/( 2

△ f0.7)=

(19.932MHz-5.385MHZ /1.725MHz=8.433MHz

Timebase Scale : 500 ns/Div X pos,(Div): 0

Channel A

100 mV/Dw

Y :pcns.(piv): 0

ChannEl B 3 小:5 Y pos B (Div)s 0

Trig

Edg^

Leve

实验二高频功率放大器

2.1 实验目的

1、 掌握高频功率放大器的电路组成与基本工作原理。

2、 熟悉谐振回路的调谐方法及测试方法。

3、 掌握高频功率放大器各项主要技术指标意义及测试技能。

一、原理仿真

1、 搭建 Multisim 电路图(Q1 选用元件 Transistors 中的 BJT_NPN_VIRTUAL

2、 设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设

置。要设置起始时间与终止时间,和输出变量。(提示:单击 simulate 菜单中 中analyses 选项下的transient analysis... 命令,在弹出的对话框中设置。 在设置起始时间与终止时间不能过大,影响仿真速度。例如设起始时间为 0.03s ,终止时间设置为0.030005s 。在output variables 页中设置输出节点 变量时选择

vv3#branch 即可) _____________________________________

V o l t a g e (V )

__________ ■ _______ ■ _______ I _______ ■ _______ I _______ I _______ ■

T ransient An alysis

.氐

pw- ------------------- A-I

忖L

凸L ——-血..

p/ 血一 A

7— = k

11 99997

30.000m 30.001m

30.002m 30.003m

Time (s)

30.004m

2.2 实验内容

图2.1高频功率放大器

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

GSM900低噪声放大器设计

微波电路与系统仿真实验报告 一、实验名称:GSM900频段低噪声放大器仿真 二、实验技术指标: 1.频段:909-915MHz 2.增益:≥17dB 3.噪声系数:<0.7dB 4.输入反射系数:优于-20dB 5.输出反射系数:优于-15dB 6.芯片选择:A TF-54143或VMMK-1218 三、报告日期:2015年12月14日 四、报告页数:共7页 五、报告内容: 1.电路原理图(原理图应标明变量名称的含义,可用文字表述或画图说明) 如下图所示,a为低噪声放大器的原理框图,包括晶体管以及输出输入匹配,在图中未画出部分还有晶体管的偏置电路。对于低噪声放大器设计与最大功率传输的放大器设计不同,最大功率传输放大器的设计必须满足双共轭匹配,而这样噪声的功率也会很大,所以为了获得最小噪声系数,应选择最佳信源反射系数Гopt。此时放大器的输入匹配网络的任务是使管子端口满足如下图b中所示的要求。 (a)微波晶体管放大器原理图(b)最佳噪声匹配放大器的设计步骤为:1、选管;题目指标给出了放大器设计可选择的管子,所以本次设计选择了ATF-54143,查阅ATF-54143晶体管的模型参数,由于ATF-54143晶体管在ADS2011中没有模型,所以本文是查找网络资源下载的ATF-54143的模型文件导入到设计中的,A TF-54143模型如下图所示,左图为晶体管封装模型,右图为内部电路。2、确定工

作电流和工作电压;查阅ATF-54143介绍资料确定Vds和Ids的值,如下图所示,可以看出工作频率为900MHz时的晶体管在不同电压电流下的增益、噪声系数、P1dB、三阶截断功率的值,根据这些值选择Vds=4V,Ids=60mA,此时的Vgg=0.58V。设置电压电流,建立晶 体管的直流偏置电路。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

实验一 高频小信号调谐放大器实验.doc

实验一高频小信号调谐放大器实验 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 1、谐振频率的调整与测定。 2、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带 BW0.7、矩形系数Kr0.1。 三、实验仪器 1、高频信号发生器1台 2、2号板小信号放大模块1块 3、频率计1台 4、双踪示波器1台 5、万用表1台 6、扫频仪(可选)1台 四、实验原理 (一)单调谐小信号放大器

图1-1 单调谐小信号放大电路图 小信号谐振放大器是接收机的前端电路,主要用于高频小信号或微弱信号的线形放大。图1-1为单调谐回路小信号谐振放大器的原理电路,实验单元电路由晶体管N1和选频回路T1组成,不仅对高频小信号放大,而且还有选频作用。其中W1,R5,R6,R7为直流偏置电阻(因与C3并联相接,所以C3仅有直流负反馈作用),同时调节W1可为放大器选择合适的静态工作点。C5为输入信号的耦合电容,E4,C3,C5为旁路滤波电容,R1为中周初级负载。C1与电感L 组成并联谐振回路,调节C1或改变中周T1磁芯的位置可以使回路谐振在信号中心频率上。本实验中单调谐小信号放大的谐振频率为fs=10.7MHz 。因此频率为10.7的小信号自C5耦合输入,经选频、放大后,中周次级将获得最大输出。 放大器各项性能指标及测量方法如下: 1、谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量;

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

利用ADS仿真设计低噪声放大器内容摘要本文给出了利用ADS仿真

利用ADS仿真设计低噪声放大器 内容摘要:本文给出了利用ADS仿真设计低噪声放大器的设计方法及步骤,同时给出了该电路的优化仿真结果及电路性能在批量生产中的合格率。通过设计方法可以看出,利用ADS进行微波电路仿真,它不但很方便的得出最佳电路设计,同时也能对微波电路的容差特性进行了仿真分析,是微波产品设计的良好工具。 关键词:S参量仿真、噪声系数、稳定性、YIELD、Y4IELD优化仿真。 1.引言: ADS软件在射频电路的仿真分析与设计方面的应用非常方便,通常对于小信号特性可以进行S参量仿真(?),可以得到电路的噪声系数、输入输出驻波比、增益及电路的稳定性。在电原理分析中可以利用仿真器YIELD进行电路的合格率分析,可以利用仿真器YIELD OPTIM进行电路最大合格率的优化分析,从而得到电路的最佳容差设计。利用ADS软件进行低噪声放大器的设计我们会采用以上的工具进行电路的设计与优化,输出一个合格率较高的产品设计,为最终产品的开发成功奠定良好的基础。 2.设计目标 在无线通信领域,为了提高接收信号的灵敏度,一般在接收机的最前端放置低噪声放大器,由于低噪声放大器的噪声系数较小,而接收系统经过合理的增益分布后,噪声系数主要由低噪声放大器决定,因此,降低低噪声放大器的噪声系数,是提高接收灵敏度的一种关键手段。本文讲述的是用PHEMT场效应管ATF34143进行电路第一级的设计方法。对于电路的第二级以及后续电路可以采用MMIC微波单片放大器完成。因此低噪声放大器的关键设计是电路的第一级。 我们利用ATF34143完成的第一级低噪声放大的设计目标是: 频率范围:1710MHZ~1980MHZ 增益:大于12dB 增益平坦度:每5MHZ带内小于0.2 dB 输入回波损耗:小于1.5 输出回波损耗:小于2.0 噪声系数:小于0.8dB (纯电路噪声系数不考虑连接损耗) 第二级对第一级呈现纯50Ω阻抗。 3.仿真设计: a)利用小信号S参量仿真A TF34143场效应管的最佳噪声系数下的源阻抗匹配及负载 阻抗匹配条件。首先我们根据器件特性选择最佳条件,我们选择V DS=3V ,I D=40mA 得到初始ATF34143的最佳噪声系数匹配条件, 图1 ATF34143最佳噪声匹配条件

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

低噪声放大器的仿真设计

一、实验目的 1、了解低噪声放大器的工作原理及设计方法。 2、学习使用ADS软件进行微波有源电路的设计,优化,仿真。 3掌握低噪声放大器的制作及调试方法。 二、设计思想 LNA 是射频接收机前端的主要部分,它主要有四个特点。首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。放大器在工作频段内应该是稳定的。其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。第三,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。第四,应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器,所以必须LNA的指标进行综合折中考虑。 三、理论分析 1、S参数,也就是散射参数。是微波传输中的一个重要参数。S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。、 2、纹波指通带内信号的平坦度,即通带内最大衰减与最小衰减之间的差值,习惯上转换为用dB表示。 3、插入损耗:在理想情况下,射频电路中的理想滤波器在通带内是没有任何功率损耗的,然而在实际的工程设计中,不可能完全消除滤波器固有的一些功率损耗。滤波器插入损耗及描述了通带内的功率损耗大小,其表达式为 IL=-10log(Pin/Pl) 对于一般的双端口网络而言,插入损耗A定义为:网络输出端接匹配负载时,网络输入端的入射功率Pin和负载吸收功率Pl之比。即 A=Pin/Pl=1/|S21|2. 因此,滤波器的插入损耗也可以用散射参数S21来定义: IL=-10log(Pin/Pl)A=Pin/Pl=1/|S21|2=-10log|S21|2 所以经计算要使4GHz插入损耗大于20dB即4GHz处S21<-20dB. 4、在输入输出端口要端接特性阻抗为50Ω的SMA或SMB端子,保证输入输出阻抗50Ω。

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

低噪声放大器的设计制作与调试报告

微波电路CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 图1 BJT Curve仿真原理图

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理

()f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67 ()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 120 100 90 80 64 39 28 24 20 18 (/) u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.20 78910111213141516 25 50 75 100 125 1 50 f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

(完整版)低噪声放大器设计仿真及优化毕业设计

低噪声放大器设计仿真及优化 摘要 快速发展的无线通信对微波射频电路如低噪声放大器提出更高的性能。低噪声放大器(LNA)广泛应用于微波接收系统中,是重要器件之一,它作为射频接收机前端的主要部分,其主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据。它的噪声性能直接决定着整机的性能,进而决定接收机的灵敏度和动态工作范围。而近年来由于无线通信的迅猛发展也对其提出了新的要求,主要为:低噪声、低功耗、低成本、高性能和高集成度。所以本论文针对这一需求,完成了一个2.45GHz无线射频前端接收电路的低功耗低噪声放大器的设计。 本文从偏置电路、噪声优化、线性增益及输入阻抗匹配等角度分析了电路的设计方法,借助 ADS 仿真软件的强大功能对晶体管进行建模仿真,在这个基础上对晶体管的稳定性进行了分析,结合 Smith 圆图,对输入输出阻抗匹配电路进行了仿真优化设计,设计了一个中心频率为2.45GHz、带宽为100MHz、输入输出驻波比小于1.5、噪声系数小于2dB和增益大于15dB的低噪声放大器。 关键词:微波;低噪声放大器;噪声系数;匹配电路;ADS仿真

ABSTRACT Rapid growth of wireless data communications Microwave communication system receiver, as the main part of the RF front-end receiver, the function of the low noise amplifier is amplifying the faint signal which incepted from air by the antenna. It can reduce the noise jamming, so as to demodulate right information for the system. The noise performance of the LNA will affect the performance of the whole system directly, and then deciding the sensitivity and dynamic working scope of the receiver. From the aspect of bias circuit, noise optimization, linear gain, impedance match, and the design methodology for LNA is analyzed, This article carries on the modelling simulation with the aid of the ADS simulation software's powerful function to the transistor, the analysis in this foundation to transistor's stability, the simulation optimization design. a radio frequency power amplifier is designed, which 1.5, Noise coefficient less than 2dB and Wattandgain 15dB. Key Words:microwave;low-noise amplifier; noise figure; matching circuit; ADS simulation

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

相关主题
文本预览
相关文档 最新文档