当前位置:文档之家› 13-14-2信号课堂测验1及参考解答

13-14-2信号课堂测验1及参考解答

13-14-2信号课堂测验1及参考解答

学院 姓名 学号 任课老师 选课号/座位号

第 1 页 共 1页

电子科技大学二零 一 三 至二零 一 四 学年第

二 学期 课堂测验

SIGNALS AND SYSTEMS

课程考试题 卷 ( 30 分钟) 考试形式: 开卷

考试日期 20 年 月 日

1(30 points).Each of the following questions may have one or two right answers, justify your answers and write it in the blank. (1)

()()3

21

22t

t t e dt δδ+--++-=?????

( b ).

(a) 44e e -+ (b) 4e - (c) 4e (d) 0

(2) Which of the following signal has the most high frequency. ( c )

(a) []cos 15/8πn (b) cos 2n π??

???? (c) []cos 7/8πn (d) []cos 2πn

(3) Which of the following systems is not an linear system.( c ) (a) ()()()cos 1=+y t t x t (b) ()()1+=t y t e x t (c) ()()(){}cos 1=+y t t x t (d) ()()()2

1=+y t t x t

2(30 points) Determine and sketch the even part of the signal ()x t depicted in Figure 1.

(){}()()()()11211122Ev x t t u t tu t t u t ??

=++-+-- ???

3(40 points).Consider an LTI system whose response to the signal ()t x 1 in Figure 2 is the signal ()t y 1 illustrated in Figure 3. If we known the output signal of this system is ()2y t depicted in Figure 4, determine the input signal ()2x t .

()()()211211y t y t y t =-++- ()()()211211x t x t x t =-++-

t

t

Figure 1

t

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

信号与系统实验教学大纲

《信号与系统》实验教学大纲 (适用专业:电子信息工程) 开课对象:电子信息工程、通信工程二年级 先修课程:高等数学、电路分析 一、实验教学内容 实验一、仪器设备使用(验证性,4学时) 目的:熟悉掌握实验箱功能模块的操作及示波器。 内容:熟悉函数信号发生器、数字式交流毫伏表、频率计、扫频源及实验箱各功能模块的使用。 实验二、信号的分解与合成及零输入响应与零状态响应(验证性,4学时)目的:理解信号的分解与合成,学会零输入响应与零状态响应的观察方法。 内容:观察信号分解的过程及信号中包含的各次谐波;观察零输入响应和零状态响应的过程。 实验三、信号的采样与恢复及无失真系统(验证性,4学时) 目的:了解电信号的采样方法和过程及恢复方法;了解无失真传输的条件。 内容:观察抽样过程的各种信号,观察信号混叠情况;观察信号在无失真系统中的波形。 实验四、系统极点对系统频响的影响(综合性,4学时) 目的:了解极点分布对系统频响的影响,学会改变系统极点而改变系统频响的方法。 内容:用正弦信号测试两个系统的幅频特性,比较传输函数,看特殊点的变化;观察当系统的极点在不同位置时系统的输出波形。 实验五、模拟滤波器的设计(设计性,4学时) 目的:熟悉并掌握不同阶数巴特沃斯滤波器的设计过程。 内容:根据要求设计出相应的模拟滤波器,并用正弦信号测试其幅频特性。 注:实验四、实验五可任选一个,实验一不写实验报告。 二、实验目的 本课程是《信号与系统》课程的实验环节。通过本实验,使学生达到: 1、掌握《信号与系统》课程的重要原理,掌握系统测量方法,熟练正确使用 常用仪器、处理实验数据和产生实验报告。 2、加强实际操作能力,提高对实际应用系统的理解,培养工程实践能力。 3、能够独立设计简单系统。 4、获得研究信号分析和系统分析的概念和方法,同时具备进一步学习、研究 有关网络理论、通信理论、控制理论、信号处理和信号检测理论等课程

信号与测试技术实验一

实验一基本信号分析实验报告 一实验目的 1掌握基本信号的时域和频域分析方法; 2掌握信号的自相关和互相关分析,了解其应用。 二实验内容与图像结果分析 (1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波,在时域分析这些波形特征(幅值、频率(周期))。 (2)在Matlab中产生不同的非周期信号,包括随机噪声、阶跃信号、矩形脉冲。(3)对产生的信号进行Fourier变换,从频率域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽; 从图中可以看到,正弦信号基频为10rad/s,因此其Fourier变换在w=10处出现了峰值,而方波信号依据佛利叶级数展开可知是由一系列不同频率的正弦波构成,基频是w=10,基频的幅值最大,同时其他频率为基频的整数倍(不含20,40…),且幅值依次减少。

锯齿波信号的基频为w=10,因此傅里叶级数展开同样在10出出现了峰值,而其他出现的依次是基频的整数倍,且幅值依次减少。由于随机噪声信号是随机信号,不具有规律性,因此在傅里叶变换后我们可以看到它含有各个频率的谐波。 阶跃信号的傅里叶变换为冲击函数。矩形信号为非周期信号,因此它的傅里叶变换为连续函数,频率在各处均有分布。 (4)产生复合信号:由3个不同频率、幅值的正弦信号叠加的信号,从图形上判断信号的特征; 产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;产生由正弦信号和方波叠加的信号,从图形上判断信号的特征。 (5)对(4)中的3种复合信号进行FFT计算,从图上判断信号的特征。

三种不同幅值、频率的正弦信号叠加后,在时域图上我们看不出很有规律性的东西,然而进行傅里叶变换后,放到频域图之后,我们可以很清楚的看到叠加信号的组成规律,在三个频率出现了峰值。正弦信号叠加随机噪声,我们在时域图上也看不到很明显的规律特征,进行傅里叶变换后,我们看到时域图上在一处出现了峰值,则这个频率处实际就是正弦信号的频率。正弦信号叠加方波信号在时域图中同样规律不明显,在进行傅里叶变换后,在频域图上我们看到有两处峰值,这两个频率实际就是正弦波的频率和方波的基频信号,其余较小的为方波的谐波信号。 由此可以看出,通过傅里叶变换,将时域波形变换到频域波形,更加有助于我们分析信号的本质特征,也有利于从噪声信号出提取有用的信号。

信号处理实验六报告

实验六 离散时间滤波器设计 一、 实验原理 IIR 数字滤波器设计 (一)、脉冲响应不变法变换原理 脉冲响应不变法将模拟滤波器的s 平面变换成数字滤波器的z 平面,从而将模拟滤波 器映射成数字滤波器。 IIR 滤波器的系统函数为1 z -(或z )的有理分式,即 01 ()1M k k k N k k k b z H z a z -=-== -∑∑ 一般满足N M ≤。 1、转换思路:)()()()()(z H n h nT h t h s H z a a ??→?=???→??????→?变换 时域采样 拉普拉斯逆变换 若模拟滤波器的系统函数()H s 只有单阶极点,且假定分母的阶次大于分子的阶次,表达式: 11()1k N k s T k TA H z e z -==-∑ 2、s 平面与z 平面之间的映射关系。 ? ??Ω==→=→=→?? ?Ω+==ΩT e r e e re e z s re z T T T sT ωσσσωωj j j j ] IIR 数字滤波器设计的重要环节是模拟低通滤波器的设计,典型的模拟低通滤波器有巴特沃思和切比雪夫(I 型和II 型)等滤波器。由模拟低通滤波器经过相应的复频率转换为)(s H ,由)(s H 经过脉冲响应不变法就得到所需要的IIR 数字滤波器)(z H 。 (二)、巴特沃思滤波器设计

巴特沃思滤波器是通带、阻带都单调衰减的滤波器。 (1) 调用buttord 函数确定巴特沃思滤波器的阶数,格式 [N,Wc]=buttord(Wp,Ws,Ap,As) 其中:Wp ,Ws 为归一化通带和阻带截止频率; Ap ,As 为通带最大和最小衰减,单位为dB ; N 为滤波器阶数,Wc 为3dB 截止频率,对于带通和带阻滤波器,Wc=[W1,W2]为矩阵,W1和W2分别为通带的上下截止频率。 (2) 调用butter 函数设计巴特沃思滤波器,格式 [b,a]=butter(N,Wc,options) 其中:options=’low ’, ‘high ’, ‘bandpass ’, ‘stop ’,默认情况下,为低通和带通。 b 和a 为设计出的IIR 数字滤波器的分子多项式和分母多项式的系数。 注意,利用以上两个函数也可以设计出模拟滤波器,格式为 [N,Wc]=buttord(Wp,Ws,Ap,As,’s ’) [b,a]=butter(N,Wc,options,’s ’) 其中:Wp 、Ws 和W c 均为模拟频率。 (三)、切比雪夫I 型滤波器的设计 切比雪夫I 型滤波器为通带波纹控制器:在通带呈现纹波特性,在阻带单调衰减。 [N,Wc]=cheb1ord(Wp,Ws,Ap,As) [b,a]=cheby1(N,Ap,Wc,options) 其中的参数含义和巴特沃思的相同。 (四)、切比雪夫II 型滤波器的设计 切比雪夫II 型滤波器为阻带波纹控制器:在阻带呈现纹波特性,在通带单调衰减。 [N,Wc]=cheb2ord(Wp,Ws,Ap,As) [b,a]=cheby2(N,As,Wc,options) 其中的参数含义和巴特沃思的相同。 已知模拟滤波器,可以利用脉冲响应不变法转换函数impinvar 将其变换为数字滤波器,调用格式为 [bz,az]=impinvar(b,a,Fs) 其中b,a 分别为模拟滤波器系统函数分子、分母多项式系数;Fs 为采样频率;bz 、az 为数字滤波器系统函数的分子、分母多项式系数。 (五)、双线性变换法变换原理 为克服脉冲响应不变法产生频率响应的混叠失真,可以采用非线性频率压缩方法,使s 平面与z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,这就是双线性变换法。 1、转换思路:→)(s H 写出微分方程?? →?近似 差分方程→写出)(z H 由于双线性变换法中,s 到z 之间的变换是简单的代数关系,得到数字滤波器的系统函 数和频率响应,即 1 11111()()1z a a s c z z H z H s H c z ----=+??-== ?+?? j tan 2()(j )j tan 2a c H e H H c ω ωω??Ω= ? ??????=Ω= ? ????? 设模拟系统函数的表达式为

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

信号与系统实验二

实验二 常用信号分类与观察 一、实验目的 1、观察常用信号的波形特点及产生方法。 2、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验仪器 1、信号与系统实验箱一台(主板)。 2、20MHz 双踪示波器一台。 四、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ???><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

《信号与系统》实验指导书

《信号与系统》实验指导书 张静亚周学礼 常熟理工学院物理与电子工程学院 2009年2月

实验一常用信号的产生及一阶系统的阶跃响应 一、实验目的 1. 了解常用信号的波形和特点。 2. 了解相应信号的参数。 3. 熟悉一阶系统的无源和有源模拟电路; 4.研究一阶系统时间常数T的变化对系统性能的影响; 5.研究一阶系统的零点对系统的响应及频率特性的影响。 二、实验设备 1.TKSX-1E型信号与系统实验平台 2. 计算机1台 3. TKUSB-1型多功能USB数据采集卡 三、实验内容 1.学习使用实验系统的函数信号发生器模块,并产生如下信号: (1) 正弦信号f1(t),频率为100Hz,幅度为1;正弦信号f2(t),频率为10kHz,幅度 为2; (2) 方波信号f3(t),周期为1ms,幅度为1; (3) 锯齿波信号f4(t),周期为0.1ms,幅度为2.5; 2.学会使用虚拟示波器,通过虚拟示波器观察以上四个波形,读取信号的幅度和频率,并用坐标纸上记录信号的波形。 3.采用实验系统的数字频率计对以上周期信号进行频率测试,并将测试结果与虚拟示波器的读取值进行比较。 4.构建无零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。 5.构建有零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。

四、实验原理 1.描述信号的方法有多种,可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。对于各种信号可以分为周期信号和非周期信号;连续信号和离散信号等。 2.无零点的一阶系统 无零点一阶系统的有源和无源模拟电路图如图1-1的(a)和(b)所示。它们的传递函数均为+1G(S)= 0.2S 1 (a) (b) 图1-1 无零点一阶系统有源、无源电路图 3.有零点的一阶系统(|Z|<|P|) 图1-2的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:2++0.(S 1)G(S)= 0.2S 1 (a) (b) 图1-2 有零点(|Z|<|P|)一阶系统有源、无源电路图 4.有零点的一阶系统(|Z|>|P|) 图1-3的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:++0.1S 1G (S )= S 1

数字信号处理实验二

实验报告(本科) 学号 2015141443002 姓名柏冲 专业通信工程 日期 2017/12/4 实验题目时域采样和频域采样 一、实验目的

时域采样理论与频域采样理论是数字信号处理中重要的理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使得采样后的信号不丢失信息;要求掌握频率采样会引起时域周期化的概念,以及频域采样定理及其对频域采样点数选择的指导作用。 二、实验过程 附:源程序 (1)时域采样 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=1000; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[(xnt)] subplot(3,2,1); stem(xnt,'.'); %调用编绘图函数stem绘制序列图 box on;title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);stem(fk,abs(Xk),'.');title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); % Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=300; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M1=fix(M); Xk=T*fft(xnt,M1); %M点FFT[(xnt)] subplot(3,2,3); stem(xnt,'.'); %调用自编绘图函数stem绘制序列图 box on;title('(b) Fs=300Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,4);stem(fk,abs(Xk),'.');title('(b) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=200; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M2=fix(M);

工程信号处理实验报告

( 2011-2012 学年 第二学期) 重庆理工大学研究生课程论文 课程论文题目: 《工程信号处理实验报告》 课程名称 工程信号处理实验 课程类别 □学位课 非学位课 任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念 姓名 李文中 学 号 50110802313 提交日期 2012年4月12日

工程信号处理实验报告 姓名:李文中学号:50110802313 实验报告一 实验名称:数据信号采集及采样参数选定 1实验目的 1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。 1.2加深对采样定理的理解,掌握采样参数的选择方法 1.3了解信号采集在工程信号处理中的实际应用,及注意事项。 2 实验原理 2.1 模数转换及其控制 对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。 在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。 *注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。 2.2 信号采集的参数选择

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

信号与测试实验1时率与频率

基本信号分析 一、实验目的 1.掌握基本信号的时域和频域分析方法 2.掌握信号的自相关和互相关分析,了解其应用 二、数据处理与分析 (1)幅值为1,频率为100Hz的正弦信号,上图为时域图,下图为利用快速傅里叶变换获得的频谱图。从频谱图上看出,f=100Hz时频域的幅值最大。 (2)频域为100Hz,幅值为1的方波信号,上图为时域图,下图为借助快速傅立叶变换获得的频域图。从频谱图上看出,f=100Hz时频域的幅值最大,随着频域增大,频域的幅值逐渐衰减。

(3)频率为100Hz,幅值为1的锯齿波信号图,上图为时域图,下图为借助傅立叶变换而获得的频域图。从频域图看出,在100Hz的整数倍频率上,频域幅值都出现了峰值,随着频率的增大,峰值逐渐收敛至0. (4)平均振幅为1的噪声信号,上图为时域图,下图为通过快速傅立叶变

换得出的频谱图,从频谱图可以看出,白噪声信号的频谱杂乱无章,无明显规律。 (5)由频率为50Hz、100Hz、150Hz的正弦信号组成的复合信号,上图为时域图,下图为频域图,从图中可以看出,频谱图在50、100、150Hz处出现了峰值。 (6)频率为100Hz 的正弦信号叠加噪声信号:上图为时域信号图,下图为

通过快速傅立叶变换获得的频谱图。与没有叠加噪声信号的正弦波相比,时域波形出现了毛刺,而频谱图中除了在100Hz处有峰值外,在其他频率点处也出现了一些较低的峰值。 (7)频率为100Hz的正弦信号和频率为100Hz的方波信号进行叠加,上图为时域信号,下图为频谱图。从时域图上可以看出,正弦波形叠加方波后有了明显的畸变。从频谱图上可以看出,除了100Hz处出现峰值以外,在其他频率点也出现了一些峰值。

数字信号处理实验4-6

实验4 离散系统的变换域分析 一、实验目的 1、熟悉对离散系统的频率响应分析方法; 2、加深对零、极点分布的概念理解。 二、实验原理 离散系统的时域方程为 其变换域分析方法如下: 频域: 系统的频率响应为: Z域: 系统的转移函数为:

分解因式: , 其中和称为零、极点。 三、预习要求 1.在MATLAB中,熟悉函数tf2zp、zplane、freqz、residuez、zp2sos的使用,其中:[z, p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点;zplane(z,p)绘制零、极点分布图;h=freqz(num,den,w)求系统的单位频率响应;[r,p,k]=residuez (num,den)完成部分分式展开计算;sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 2.阅读扩展练习中的实例,学习频率分析法在MATLAB中的实现; 3.编程实现系统参数输入,绘出幅度频率响应和相位响应曲线和零、极点分布图。 四、实验内容 求系统 的零、极点和幅度频率响应和相位响应。 解析: 【代码】 num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); figure(1) zplane(num,den)

figure(2) freqz(num,den,128) 【图形】 -2 -1.5 -1 -0.500.5 1 1.5 -1.5 -1 -0.5 0.51 1.5 Real Part I m a g i n a r y P a r t 0.1 0.2 0.30.40.50.60.70.80.9 1 -800 -600-400-2000 Normalized Frequency (?π rad/sample) P h a s e (d e g r e e s ) 0.1 0.2 0.30.40.50.60.70.80.9 1 -40-2002040Normalized Frequency (?π rad/sample) M a g n i t u d e (d B ) 【结果】 零点 -1.5870 + 1.4470i

武汉工程大学数字信号处理实验二时域离散系统及系统响应

实验二时域离散系统及系统响应 一、实验目的 1、掌握求解离散时间系统冲激响应和阶跃响应的方法; 2、进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法; 3、掌握离散系统的响应特点。 二、实验内容 1、请分别用impz 和dstep函数求解下面离散时间系统的冲激响应和阶跃响应。(1)系统的差分方程为:) y n n n y - = (n - + y+ x )2 .0 866 ) ( ( 8.0 64 ( )1 .0 a=[1,-0.8,0.64]; b=[0.866,0,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应 subplot(2,1,1),stem(hn,'filled'); %显示冲激响应曲线 title('系统的单位冲激响应'); ylabel('h(n)');xlabel('n'); axis([0,n,1.1*min(hn),1.1*max(hn)]); subplot(2,1,2),stem(gn,'filled'); %显示阶跃响应曲线

title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,n,1.1*min(gn),1.1*max(gn)]); 2 4 6 8 10121416 18 20 -0.4 -0.200.20.40.6 0.8系统的单位冲激响应 h (n )n 2 4 6 8 1012 14 16 18 20 11.21.4 1.6系统的单位阶跃响应 g (n ) n (2)系统的系统函数为:2 11 15.01)(---+--=z z z z H a=[1,-1,1]; b=[1,-0.5,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

测试信号分析与处理作业实验一二

王锋 实验一:利用FFT 作快速相关估计 一、实验目的 a.掌握信号处理的一般方法,了解相关估计在信号分析与处理中的作用。 b.熟悉FFT算法程序;熟练掌握用FFT作快速相关估计的算法。 c.了解快速相关估计的谱分布的情况。 二、实验内容 a.读入实验数据[1]。 b.编写一利用FFT作相关估计的程序[2]。 c.将计算结果表示成图形的形式,给出相关谱的分布情况图。 注[1]:实验数据文件名为“Qjt.dat”。 实验数据来源:三峡前期工程 “覃家沱大桥” 实测桥梁振动数据。 实验数据采样频率:50Hz。 可从数据文件中任意截取几段数据进行分析,数据长度N 自定。 注[2]:采用Matlab 编程。 三、算法讨论及分析 算法为有偏估计,利用FFT计算相关函数 Step 1: 对原序列补N个零,得新序列x2N(n) Step2: 作FFT[x2N(n)]得到X2N(k) Step 3: 取X2N(k)的共轭,得 Step 4: 作 Step 5: 调整与的错位。 四、实验结果分析 1. 该信号可以近似为平稳信号么? 可以近似为平稳信号,随机过程的统计特性不随样本的采样时刻而发生变化。取N=8192,分别取间隔m=500,m=700,m=1000,所得到的均值均为0.5366,方差为47369,与时间无关。

图1-1 自相关函数图 (上图表示的R0,下图为调整后的R0) 2. 该信号是否具有周期性,信噪比如何? >> load Qjt.dat; %加载数据 N=32768; %数据长度 i=1:1:N; %提取数据 plot(i,Qjt(i)); 抛去几个极值点,从图1-2可以看出,数据具有一定的周期性,杂音比较少,说明信噪比较高。 图1-2 数据图

工程信号处理MATLAB实验指导书v1p0_2008完全版

工程信号处理——MATLAB实验指导书—— 伍星机电工程学院KUST-HMI联合实验室 2008.02

目录 1信号分析基础 (3) 1.1实验1典型时间信号的波形图 (3) 1.2实验2信号数据文件的读取与显示 (4) 2确定信号的频谱分析 (4) 2.1实验3周期信号的傅立叶级数三角函数展开式 (4) 2.2实验4非周期信号的傅立叶变换 (4) 2.3实验5时域有限信号的周期延拓 (5) 3时域分析 (5) 3.1实验6自相关和互相关分析 (5) 4随机信号分析 (5) 4.1实验7随机信号的数字特征 (5) 4.2实验8随机信号的功率谱分析 (6) 5系统分析概述 (6) 5.1实验9线性系统的主要性质 (6) 5.2实验10测定系统特性参数的方法 (7) 6模拟信号的离散化 (7) 6.1实验11时域采样定理 (7) 6.2实验12时域截断与泄露 (7) 7离散傅立叶变换 (7) 7.1实验13离散傅立叶变换 (7) 7.2实验14用X K计算信号的频谱 (8) 8快速傅立叶变换及其工程应用 (8) 8.1实验15快速傅立叶变换 (8) 8.2实验16快速傅立叶变换的应用 (9)

【预备知识】 机械工程测试技术、机械控制工程、MATLAB、虚拟仪器技术等。 【资料检索方法】 1.校图书馆相关书籍。 2.校图书馆数据库:维普中文科技期刊全文数据库,万方会议论文全文库, 万方硕博论文全文库,Elsevier外文期刊数据库,国外免费学位论文全文 数据库,超星电子图书系统。 3.互联网搜索引擎:https://www.doczj.com/doc/768865001.html,,https://www.doczj.com/doc/768865001.html,,https://www.doczj.com/doc/768865001.html,。1信号分析基础 1.1实验1典型时间信号的波形图 【实验目的】 (1)熟悉MATLAB环境,掌握与信号处理相关的常用MATLAB语句和命令; (2)熟悉MATLAB生成典型信号的方法; (3)掌握MATLAB绘制信号波形图的方法; (4)掌握M脚本文件和函数文件的编制方法。 【实验内容】 (1)熟悉各种典型信号生成的关键参数,对于大多数的连续时间信号,两个 关键要素是信号的起止时间、信号的幅值、频率等; (2)编制确定信号和随机信号的M自定义函数文件,包括的典型信号如下: z确定信号 周期信号:正弦信号(MySin),三角波信号(MyTri),方波信号(MySquare)。 非周期信号:准周期信号(MyStdPeriod),矩形脉冲信号(MyImpulse),指数衰减正弦信号(MyExpSin)。 z随机信号:白噪声信号(MyWhiteNoise) (3)使用上述M函数产生如下信号: z幅值为5,频率为10Hz的正弦信号; z幅值为1,频率为8Hz的三角波信号; z幅值为2.5,频率为20Hz,占空比为50%的方波信号; z使用两个幅值为1的正弦信号构成一个准周期信号; z幅值为10,脉宽为1,时间范围0~6s的矩形脉冲信号; z幅值为5,频率为20Hz,衰减系数为-10的指数衰减正弦信号; z幅值范围为-3~3的白噪声信号。

《信号与系统》实验教案

实验一、非正弦周期信号的分解与合成 一、实验目的 1、用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较。 2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱(参考型号:TKSS —B 型) 2、双踪示波器 三、实验原理 1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦函数具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的 2、 3、 4、┅、n 等倍数分别称二次、三次、四次、┅、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3、一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图。例如,方波的频谱图如图1-2所示。 图1-1 方波 图1-2 方波频谱图 方波信号的傅里叶表达式: )9sin 9 1 7sin 715sin 513sin 31(sin 4)( +++++= t t t t t U t u m ωωωωωπ 周期信号频谱的特点:离散性、谐波性、收敛性; 奇函数只含正弦项,偶函数只含直流量和余弦项; 奇谐函数只含奇次谐波分量,偶谐函数只含偶次谐波分量、直流量; 四、实验重难点 1、本实验以方波和三角波为重点进行实验数据的观测。 2、进行本实验前应熟悉信号与系统实验箱(参考型号:TKSS -B 型)、双踪示波器等有关仪器设

备的操作。 五、实验步骤 实验装置的结构如图1-3所示。 图1-3 信号分解合成实验装置结构框图 1、打开电源总开关,检查50Hz方波信号输出;观察方波的周期和幅值。 2、将50Hz方波信号接到信号分解实验模块BPF输入端15脚(注意输入、输出地接在一起); 将1、2短接,观察直流分量的幅值; 将3,4短接,观察基波分量的频率和幅值,并记录之。 将5,6短接,观察二次谐波分量的频率和幅值,并记录之。 将7,8短接,观察三次谐波分量的频率和幅值,并记录之。 将9,10短接,观察四次谐波分量的频率和幅值,并记录之。 将11,12短接,观察五次谐波分量的频率和幅值,并记录之。 将13,14短接,观察六次谐波分量的频率和幅值,并记录之。 3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 5、分别将50Hz单相正弦半波、全波;矩形波和三角波的输出信号接至50Hz电信号分解与合成模块输入端,观测基波及各次谐波的频率和幅度,记录之。 6、将50Hz单相正弦半波、全波、矩形波、三角波的基波和谐波分量分别接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

相关主题
文本预览
相关文档 最新文档