当前位置:文档之家› 土的固结压缩试验

土的固结压缩试验

土的固结压缩试验
土的固结压缩试验

土的固结压缩试验

一、实验目的

1、测定试样在侧限与轴向排水条件下的变形与压力的关系,或孔隙比与压力的关系,变形与时间的关系。

2、由测得的各关系曲线计算土的压缩系数av、压缩模量Es、压缩指数Cc、回弹指数Cs、固结系数Cv、地基的渗透系数k及土的先期固结压力Pc等,测定项目视工程需要而定。

3、利用压缩试验所得的参数计算地基基础的变形量,预估地基承载力。二、实验设备、仪器

1、压缩固结仪:由环刀、护环、透水板、加压上盖、量表架等组成;

2、加压设备:采用量程为5,10kN的杠杆式加压设备;

3、变形量测设备:百分表量程10mm,分度值为0.01mm;

4、其他:快速烘箱(300?C,350?C)、电子天平(称量1000g,感量0.01g)、测容重用环刀、刮土刀、钢丝锯、铝盒、玻璃板、秒表、凡士林、盛水盆、滤纸等。

三、试验步骤

1、按要求取原状样或制备扰动土样。

2、取环刀样,测试验前的密度与含水量。

3、取压缩仪内的环刀,内壁擦抹凡士林使其光滑少摩擦。环刀刃口向下对准制备的圆柱土样中心,慢慢垂直下压且边压边削土样,使土样成锥台形。直至土样伸出环刀顶面为止,将环刀两边余土削去修平,擦净环刀外壁。

1

4、在压缩容器内放置透水石、滤纸和下护环,将带有环刀的试样小心装入护环,然后在环刀试样上放薄滤纸、上护环、透水板和加压盖板,置于加压框架下,并对准加压杆,使加压杆与加压盖板中心凹槽对正。

5、安装百分表,为保证试样与仪器上下各部分之间接触良好,应施加1kPa的预压压力,然后调整百分表,使百分度指针归零(表的毫米指针应控制在5,10mm之间,以保证有足够的量程测定试样的压缩量)。

6、加荷。按50、100、200、

400(kpa)四级荷重加荷,每级荷载历时10分钟,即每级荷重加上10分钟时,记测微表读数一次,然后加下一级荷载,依些类推,直到第四级荷载施加完毕为止。四、注意事项

1(首先装好试样,再安装量表。在装量表的过程中,小指针需调至整数位,大指针调至零,量表杆头要有一定的伸缩范围,固定在量表架上。2(压缩容器内放置的透水石、滤纸湿度尽量与试样湿度接近。

3(加荷时,应按顺序加砝码;试验中不要震动实验台,以免指针产生移动。

五、试验数据整理

1、按下式计算试样的初始孔隙比e: 0

0,(1,0.01,)G,s0,,1e0,

式中 e—土样的初始孔隙比; 0

G—.土粒比重,本实验取Gs =2.7; s

3ρ—土样的初始密度(g/cm),由试验测定; 0

3ρ—4?C水的密度,为1 g/cm; ω

ω—土样的初始含水量(%),由试验测定。 0

2

h0h,s1,e0

2(计算试样的颗粒(骨架)净高hs式中:h —试样初始高度(mm) 0

3、计算某级压力下变形稳定后的孔隙比ei

h,,iee,,i0hs

式中: e—某级压力下土样的孔隙比; i

—某级压力下试样高度的累计变形量,mm; ,,hi

4、计算某级压力下的压缩系数a 和压缩模量Es i-i+1

,eeii,1,aii,,1p,pi,1i

,1eiE,sai,i,1

式中 P—某一级荷重值,MPa。根i

据上覆压力确定i,一般建筑物的上覆压力在100-200kPa之间,故取a来表达图1-2

的压缩系数。

5、作孔隙比e和压力p的关系曲线

以孔隙比e为纵坐标,压力p为横坐标,绘制孔隙比与压力的关系曲线。

3

试验四 侧限压缩试验

试验四侧限压缩试验 一、试验目的 本试验之目的在于测定土的沉降变形,了解土体在侧限条件下的变形与时间~压力的关系,结合其它试验指标配合计算土的压缩系数、压缩模量,确定土压缩性的高低。 试验要求:由实验室提供试样,学生在实验教师指导下制备固结试样、测定土样的压 和Es,判断该土样的压缩性,观察并缩性,绘制该土样的压缩曲线(e~p曲线)、求出 v 阐述土的变形与时间这一重要特征。 二、试验原理 侧限压缩试验又称固结试验。土体的固结是指土体在外力作用下,土体中的水和气体被逐渐排走,孔隙体积减小,土颗粒之间重新排列的现象。 土的固结试验是通过测定土样在各级垂直荷载作用下产生的变形,计算各级荷载下相应的孔隙比,用以确定土的压缩系数和压缩模量等。 三、标准固结法 1.仪器设备 (1 加压上盖组成,见图5—1; (2)环刀:高20mm,面积30cm2 (3 GB/T15406的规定。 (4)变形量测设备:量程10mm 为0.01mm的百分表或准确度为全量程 传感器。 (5)其它:开土刀、过滤纸等。 2.操作步骤 (1)试样制备:按密度试验要求取原状土或制备扰动土土样。并测定试样的含水率和密度,取切下的余土测定土粒比重。试样需要饱和时,应按规定进行抽气饱和; (2)在压密容器中放置好透水石和滤纸,将带有环刀的试样和环刀一起刃口向下小心放入护环,再在试样上放置滤纸和透水石,最后放上传压活塞,安装加压装置和百分表; (3)施加lkPa的预压力使试样与仪器上下各部件之间接触,将百分表或传感器调整到零位或测读初读数,通常将百分表测距调到大于8mm; (4)确定需要施加的各级压力,压力等级宜为12.5、25、50、100、200、400、800、1600、3200kPa。第一级压力的大小应视土的软硬程度而定,宜用12.5kPa、25kPa或50kPa。最后一级压力应大于土的自重压力与附加压力之和。只需测定压缩系数时,最大压力不小于400kPa; (5)需要确定原状土的先期固结压力时,初始段的荷重率应小于1,可采用0.5或0.25。 施加的压力应使测得的e~log p曲线下段出现直线段。对超固结土,应进行卸压、再加压来 评价其再压缩特性; (6)对于饱和试样,施加第一级压力后应立即向水槽中注水浸没试样。非饱和试样进行压缩试验时,须用湿棉纱围住加压板周围; (7)需要测定沉降速率、固结系数时,施加每一级压力后宜按下列时间顺序测记试样的高度变化。时间为6s、15s、lmin、2minl5s、4min、6minl5s、9min、12minl5s、16min、

土力学实验

问答题 1.三轴试验中周围压力大小与工程实际荷载相适应,对吗? 答:对的,并尽可能使最大周围压力与土体的最大实际荷重大致相等,也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 2.在h-w 图中,怎么判断液限和塑限? 答:h=2mm 时,对应含水率为塑限;h=17mm 时,对应含水率为液限。 3.在液限,塑限实验中,锥体弄脏了,怎么办? 答:抹干净,涂少许凡士林即可再用。 4.环刀内壁涂一薄层凡士林,主要为了什么? 答:主要为了取出土样时避免弄脏手,使内壁更干净。次要是为了容易取出。 5.击实试验中,怎么控制喷水的质量? 答:将盛好土的盛土盘放在天平上,记录盘和土的质量,然后在天平上一边称量一边均匀喷水,直至加完所需水量。 6.实验室只有称量2000g 的天平,但现要称量3000g 的试样,怎么办? 答:将盛土盘放在两个天平上,记录盘的质量 m 0,往盘上加土,直至两个天平上读数加起来等于 m 0 +3000g 简述题 1.三轴试验的结束条件是什么? 答:当轴向量力环读数出现峰值,再剪3%~5%的垂直应变(或没有峰值时,轴向应变达到20%)后,试验结束。 2.三轴不固结不排水剪试验中怎样施加周围压力? 答:开周围压力阀,施加所需的周围压力,周围压力大小应与工程实际荷重相适应,并尽可能使最大围压与土体最大实际荷重大致相等。也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 3.UU 试验中怎么施加轴向压力? 答:剪切应变速率宜每分钟应变0.5%~1.0%启动电动机,合上离合器,开始剪切。每产生0.2%或0.5%轴向应变时,测计测力环变形和孔隙水压力,直至土样破坏或应变量进行到20%为止。 4.简述含水率试验的过程。 答:1)取代表性试样15~30g ,对于砾类土,取100g 以上试样。放入铝盒内,迅速盖好盒盖,称量m 1,准确至0.01g 。称量结果减去铝盒质量m 0,得湿土质量m m m 0 1-=

土工试验操作规程

试样制备 1.1.1 本试验方法适用于颗粒粒径小于60mm的原状土和扰动土。 1.1.2 根据力学性质试验项目要求,原状土样同一组试样间密度的允许差值为0.03g/cm3;扰动土样同一组试样的密度与要求的密度之差不得大于±0.01 g/cm3;一组试样的含水率与要求的含水率之差不得大于±1%。 1.1.3 试样制备需的主要仪器设备,应符合下列规定: 1 细筛:孔径0.5mm,2mm。 2 洗筛:孔径0.075mm。 3 台秤和天平:称量500g,最小分度值0.1g;称量200g,最小分度值0.01g。 4 环刀:不锈钢材料制成,内径61.8mm和79.8mm,高20mm;内径61.8mm,高40mm。 5 其他:包括切土刀、钢丝锯、碎土工具、烘箱、保湿缸、喷水设备等。 1.1.4 原状土试样制备,应按下列步骤进行: 1 将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样取出土样。检查土样结构,当确定土样已受扰动或取土质量不符合规定时,不应制备力学性质试验的试样。 2 根据试验要求用环刀切取试样时,应在环刀内壁涂一薄层凡士林,刃口向下放在土样上,将环刀垂直下压,并用切土刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝锯或切土刀整平环刀两端土样,擦净环刀外壁,秤环刀和土的总质量。 3 从余土中取代表性试样测定含水率,比重、颗粒分析、界限含水率等项试验的取样,应按本标准第1.1.5条2款步骤的规定进行。 4 切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述,对低塑性和高灵敏度的软土、制样时不得扰动。 1.1.5 扰动土试样的备样,应按下列步骤进行: 1 将土样从土样筒或包装袋中取出,对土样的颜色、气味、夹杂物和土类及均匀程度进行描述,并将土样切成碎块,拌和均匀,取代表性土样测定含水率。 2 对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 3 将风干或烘干的土样放在橡皮板上用橡皮锤碾散。 4 对分散后的粗粒土和细粒土,应按本标准表B.1.1的要求过筛。对含细粒土的砾质土,应先用水浸泡并充分搅拌,使粗细颗粒分离后按不同试验项目的要求进行过筛。 含水率试验 2.1.1 本试验方法适用于粗粒土、细粒土和有机质土。 2.1.2 本试验所用的主要仪器设备,符合下列规定: 1 电热烘箱:应能控制温度为105~110℃。 2 天平:称量200g,最小分度值0.01g;称量1000g,最小分度值0.1g。 2.1.3 含水率试验,应按下列步骤进行: 1 取具有代表性试样15~30g或用环刀中的试样,有机质土、砂类土和整体状构造冻土为50g,放入称量盒内,盖上盒盖,称盒加湿土质量,准确至0.01g。 2 打开盒盖,将盒置于烘箱内,在105~110℃的恒温下烘至恒量。烘干时间对粘土、粉土不得小于8h,对砂土不得小于6h,对含有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下烘至恒量。

一些土力学试验实验

实验一:密度试验(环刀法) 一、概述 土的密度ρ是指土的单位体积质量,是土的基本物理性质指标之一,其单位为g/cm3。土的密度反映了土体结构的松紧程度,是计算土的自重应力、干密度、孔隙比、孔隙度等指标的重要依据,也是挡土墙土压力计算、土坡稳定性验算、地基承载力和沉降量估算以及路基路面施工填土压实度控制的重要指标之一。土的密度一般是指土的天然密度。 二、试验方法及原理 密度试验方法有环刀法、蜡封法、灌水法和灌砂法等。对于细粒土,宜采用环刀法;对于易碎、难以切削的土,可用蜡封法,对于现场粗粒土,可用灌水法或灌砂法。环刀法就是采用一定体积环刀切取土样并称土质量的方法,环刀内土的质量与环刀体积之比即为土的密度。 1.仪器设备 (1)恒质量环刀:内径6. 18cm(面积30cm2)或内径7. 98cm(面积50cm2),高20mm,壁厚1.5mm; (2)称量500g、最小分度值0. 1g的天平; (3)切土刀、钢丝锯、毛玻璃和圆玻璃片等。 2. 操作步骤 (1) 按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。 (2) 在环刀内壁涂一薄层凡士林,将环刀的刀刃向下放在土样上面,然后用手将环刀垂直下压,边压边削,至土样上端伸出环刀为止,根据试样的软硬程度,采用钢丝锯或修土刀将两端余土削去修平,并及时在两端盖上圆玻璃片,以免水分蒸发。

(3)擦净环刀外壁,拿去圆玻璃片,然后称取环刀加土质量,准确至0. 1g。 环刀法试验应进行两次平行测定,两次测定的密度差值不得大于0.03 g/cm3.,并取其两次测值的算术平均值。 实验二:含水率试验(烘干法) 一、概述 土的含水率是指土在温度105-110℃下烘到衡量时所失去的水质量与达到恒量后干土质量的比值,以百分数表示。 二、试验方法及原理 含水率试验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内试验的标准方法。烘干法是将试样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 1.仪器设备 (1)保持温度为105110℃的自动控制电热恒温烘箱或沸水烘箱、红外烘箱、微波炉等其他能源烘箱; (2)称量200g、最小分度值0. 0lg的天平; (3)装有干燥剂的玻璃干燥缸; (4)恒质量的铝制称量盒。 2.操作步骤 (1)从土样中选取具有代表性的试样15~30g(有机质土、砂类土和整体状构造冻土为50g),放人称量盒内,立即盖上盒盖,称盒加湿土质量,准确至0. 0lg。 (2)打开盒盖,将试样和盒一起放人烘箱内,在温度105^-110℃下烘至恒量。试样烘至恒量的时间,对于粘土和粉土宜烘8~10h,对于砂土宜烘6~8h。对于有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下进行烘干。 (3)将烘干后的试样和盒从烘箱中取出,盖上盒盖,放人干燥器内冷却至室温。 (4)将试样和盒从干燥器内取出,称盒加干土质量,准确至0. 0lg。 烘干法试验应对两个试样进行平行铡定,并取两个含水率测值的算术平均值。当含水率小于40%时,允许的平行测定差值为1%;当含水率等于、大于40%时,允许的平行测定差值为2%。 实验三:土的压缩、固结试验 一、概述 标准固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后在侧限与轴向排水条件下测定土在不同荷载下的压缩变形,且试样在每级压力下的固结稳定时间为24h。 二、试验方法与原理 1. 仪器设备 (1) 固结容器。由环刀、护环、透水板、加压上盖等组成,土样面积30cm2或50cm2,高度2cm。 (2)加荷设备。可采用量程为5~l0kN的杠杆式、磅秤式或气压式等加荷设备。 (3) 变形量测设备。可采用最大量程l0mm, 最小分度值0.0lmm的百分表,也可采用一准确度为全量程0. 2%的位移传感器及数字显示仪表或计算机。

固结试验常规法与快速法对比

固结试验常规法与快速法对比 前言 固结试验是土工试验的常规试验之一,用来测定土的压缩性指标,利用这些指标来计算基础的沉降量。由于市场的需要,拟建建筑物越建越高,现在的固结试验只做常规压缩已经不能满足工程的需要,高压是我们经常需要的做的。为了快速测定压缩性指标,提高工作效率,我们常用快速法来测定。 现在我们取20组各种不同深度土质均匀的土样,进行常规法固结试验与快速法固结试验平行对比,以确定快速法是否适用。 土的压缩 土体在压力作用下体积减小的性质,称为土的压缩性,土体体积缩小包括三个方面: (1)土颗粒本身的压缩; (2)土孔隙水中的水体及封闭在孔隙中的气泡的压缩; (3)土颗粒相对位移,土中水及气体从孔隙中向外排出,从而使土体体积减小。 由于土颗粒及孔隙水的体积压缩变形量很微小,可以忽略不计,所以可将土体压缩看做是土中孔隙体积的减小。 孔隙中水和气体向外排出要有一个时间过程。因此土的压缩亦要经过一段时间才能完成。我们把土的压缩随时间增长的过程称为土的固结。 试验室测定土的压缩性的主要装置为固结仪。试验过程大致为:用金属环刀切取原状土样,然后将土样连同环刀放入圆筒形压缩容器的刚性护环内。在土样上下各放置一块透水石,以便土样受压后排出的水流出。试样的侧向限制是由环刀和刚性护环完成的。试样装好后,逐级加荷,每一级荷载作用下将土样压至稳定得到△hi后,再加下一级荷载。 在这种仪器中进行试验,由于试样不可能产生侧向变形,只有竖向压缩。于是,我们把这种条件下的压缩试验称为单向压缩试验或侧限压缩试验。土的压缩是由于孔隙体积的减小,所以土的变形常用孔隙比e表示。 1、按下式计算初始孔隙化: 2、计算各级荷重下变形稳定后的也隙比:

土的压缩实验

四、土的压缩实验 (一)实验目的 测定试样在侧限与轴向排水条件下的压缩变形△h 和荷载P 的关系,以便计算土的压缩系数a v 、压缩指数C C 和压缩模量Es 等压缩性指标。 (二)实验原理 土的压缩性主要是由于孔隙体积减少而引起的。在饱和土中,水具有流动性,在外力作用下沿着土中孔隙排出,从而引起土体积减少而发生压缩,实验时由于金属环刀及刚性护环所限,土样在压力作用下只能在竖向产生压缩,而不可能产生侧向变形,故称为侧限压缩。(三)仪器设备 1.固结仪:仪器如图1所示,仪器结构示意图如图2所示。试样面积30/50cm 2,高2cm 。 2.量表:量程10mm ,最小分度0.01mm 。 3.其它:刮土刀、电子天平、秒表。 (四)操作步骤 (1)切取试样:用环刀切取原状土样或制备所需状态的扰动土样。 (2)测定试样密度和含水量:根据环刀中土样的质量和体积计算初始密度,取削下的余土测定含水率。 (3)安放试样:将带有环刀的试样安放在压缩容器的护环内,并在容器内顺次放上底板、湿润的滤纸和透水石各一,然后放入加压导环和传压板。 (4)检查设备:检查加压设备是否灵敏,调整杠杆使之水平。 (5)安装量表:将装好试样的压缩容器放在加压台的正中,将传压钢珠与加压横梁的凹穴相连接。然后装上量表,调节量表杆头使其可伸长的长度不小于8mm ,并检查量表是否灵活和垂直(在教学实验中,学生应先练习量表读数)。 (6)施加预压:为确保压缩仪各部位接触良好,施加1kPa 的预压荷重,然后调整量表读数至零处。 (7)加压观测: 1)荷重等级一般为50、100、200、400kPa 。 2)如系饱和试样,应在施加第一级荷重后,立即向压缩容器注满水。如系非饱和试样,需用湿棉纱围住加压盖板四周,避免水分蒸发。 3)压缩稳定标准规定为每级荷重下压缩24小时,或量表读数每小时变化不大于0.005mm 认为稳定(教学实验可另行假定稳定时间)。测记压缩稳定读数后,施加第二级荷重。依次逐级加荷至实验结束。 4)实验结束后迅速拆除仪器各部件,取出试样,必要时测定实验后的含水率。 (五)实验注意事项 1.首先装好试样,再安装量表。在装量表的过程中,小指针需调至整数位,大指针调至零,量表杆头要有一定的伸缩范围,固定在量表架上。 2.加荷时,应按顺序加砝码;实验中不要震动实验台,以免指针产生移动。 (六)计算及制图 1.按下式计算试样的初始孔隙比: 000 (1)1s G e ω ωρρ+= - 式中:G s —土粒比重; ρw —水的密度,g/cm 3; ωo —试样起始含水率,%;

(土工)固结实验(报告)

固结实验报告 专业班级学号姓名同组者姓名(写一个)实验编号实验名称固结实验 实验日期批报告日期成绩 一、实验目的 土的固结试验可测定土的压缩系数、压缩模量、体积压缩系数、压缩指数、回弹指数、竖向固结系数、水平向固结系数以及先期固结压力,为计算分析土的变形特性提供依据。 二、实验原理 土在外荷载作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。 三、实验仪器 1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm,高20mm,面积30cm2),单位面积最大压力4kg/cm2;杠杆比1:10。 2、测微表:量程10mm,精度0.01mm。 3、天平,最小分度值0.01g及0.1g各一架。 四、实验步骤 1、按工程需要选择面积为30cm2的切土环刀取土样。 2、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。 3、检查各部分连接处是否转动灵活;然后平衡加压部分。 4、横梁与球柱接触后,插入活塞杆,装上测微表,并使其上的短针正好对 R。 准6字,再将测微表上的长针调整到零,读测微表初读数0

5、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0、每级荷载经10分钟记下测微表读数,读数精确到0.01mm。然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。 7、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。 五、注意事项 1、使用仪器前必须严格按程序进行操作,对仪器不清楚的地方马上问老师 2、试验过程中不能卸载,百分表也不用归零。 六、实验数据记录与处理 压缩曲线

土力学实训总结

土力学实训总结转眼间,一周的实训马上就要结束了。这才觉悟到时间如白驹过隙,过得飞快。现在想起刚学这门课的时候对什么都觉得不知道老师讲了也不是很懂。就连出去跟老师在外面的铁路线路上实习。自己也是看热闹。对于许多东西都事是而非。即便老师讲了对于初次接触的我也只是觉得好奇。根本忘了自己学习的目的。 在实训的过程中我根据任务指导书上的要求,通过查课本把自己以前没有搞懂的问题认真的全都弄明白了。在每一个细节上都很认真地完成了。尤其是缩短轨配置的计算,把自己以前老搞混淆的计算步骤现在也搞清楚了。对于自己不懂的地方我也虚心的请教同学、和老师。经过同学和老师的耐心讲解自己以前不会的也彻底懂了,自己由以前对这门课的讨厌也变得喜欢。 实习过程中我对土力学的:土的密度试验,土的界限含水率试验,土的剪切试验,土的固结试验以及土的击实试验,都有了了解。现将了解到的知识总结如下: 实验一土的含水率试验 (一)、试验目的 105—1100C下烘于恒量时所失去的水的质量和干土质量的百分比值。土在天然状态下的含水率称为土的天然含水率。所以,试验的目土的含水率指土在的:测定土的含水率。 (二)、烘干法试验 1.操作步骤 (1)取代表性试样,粘性土为15—30g,砂性土、有机质土为50g,放入质量为m ,精确至0.01g. 的称量盒内,立即盖上盒盖,称湿土加盒总质量m 1 (2)打开盒盖,将试样和盒放入烘箱,在温度105——1100C的恒温下烘干。烘干时间与土的类别及取土数量有关。粘性土不得少于8小时;砂类土不得少于6小时;对含有机质超过10%的土,应将温度控制在65——700C的恒温下烘至恒量。

(3)将烘干后的试样和盒取出,盖好盒盖放入干燥器内冷却至室温,称干土加盒质量m 为,精确至0.01g 2 实验二土的密度试验 (一)、试验目的 测定土在天然状态下单位体积的质量。 (二)、试验方法与适用范围 1、操作步骤 。 (1)测出环刀的容积V,在天平上称环刀质量m 1 (2)取直径和高度略大于环刀的原状土样或制备土样。 (3)环刀取土:在环刀内壁涂一薄层凡士林,将环刀刃口向下放在土样上,随即将环刀垂直下压,边压边削,直至土样上端伸出环刀为止。将环刀两端余土削去修平(严禁在土面上反复涂抹),然后擦净环刀外壁。 (4)将取好土样的环刀放在天平上称量,记下环刀与湿土的总质量m 2 2、计算土的密度:按下式计算 3、要求:①密度试验应进行2次平行测定,两次测定的差值不得大于 0.03g/cm3,取两次试验结果的算术平均值;②密度计算准确至0.01 g/cm3. 实验三土的界限含水率试验 (一)、试验目的 细粒土由于含水量不同,分别处于流动状态、可塑状态、半固体状态和固体状态。液限是细粒土呈可塑状态的上限含水量;塑限是细粒土呈可塑状态的下限含水量。 本试验的目的是测定细粒土的液限、塑限,计算塑性指数、给土分类定名,共设计、施工使用。 实验四土的击实试验 (一)、试验目的 本试验的目的是用标准的击实方法,测定土的密度与含水率的关系,从而确定土的最大干密度与最优含水率。 轻型击实试验适用于粒径小于5mm的粘性土,重型击实试验适用于粒径小于20mm 的土。 (二)、计算与制图 以干密度为纵坐标,含水率为横坐标,绘制干密度与含水率的关系曲线,即为击实曲线。曲线峰值点的纵、横坐标分别代表土的最大干密度和最优含水率。如果曲线不能得出峰值点,应进行补点试验。 计算数个干密度下的饱和含水率。以干密度为纵坐标,含水率为横坐标,在击实曲线的图中绘制出饱和曲线,用以校正击实曲线。 实验五土的固结试验 (一)、试验目的 本试验的目的是测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的压缩系数、压缩指数、压缩模量、固结系数及原状土的先期固结压力等。 (二)、试验方法

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

土的压缩固结试验

试验七 固结综合试验 一、基本原理 (一) 土的压缩性 土在外荷载作用下,其孔隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土层的压缩变形,土在外力作用下体积缩小的这种特性称为土的压缩性。 土的压缩性主要有两个特点:①土的压缩主要是由于孔隙体积减少而引进的。对于饱和土,土是由颗粒和水组成的,在工程上一般的压力作用下,固体颗粒和水本身的体积压缩量都非常微小,可不予考虑,但由于土中水具有流动性,在外力作用下会沿着土中孔隙排出,从而引起土体积减少而发生压缩;②由于孔隙水的排出而引起的压缩对于饱和粘性土来说是需要时间的,土的压缩随时间增长的过程称为土的固结。 (二) 土的压缩曲线及有关指标 固结试验(亦称压缩试验)是研究土的压缩性的基本的方法。固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后置于固结仪内,在不同荷载和在完全侧限条件下测定土的压缩变形。 由固结试验可得到土的压缩变形ΔH 与荷载 p 之间的关系,并可进一步得到相应的孔隙比e 与荷载 p 之间的关系 :e--p 曲线或e--lgp 曲线。 图7-1 固结试样中土样孔隙比的变化 如图7-1所示,设土样的初始高度为H 0,初始孔隙比为e 0 ,在荷载p 作用下,土样稳定后的总压缩量为ΔH ,假设土粒体积V s =1(不变) ,根据土的孔隙比的定义e=V v / V s ,则受压前后土粒体积不变,且土样横截面积不变,所以受 ) 17(111000 ?+Δ?=+=+e H H e H e H

压前后试样中土粒所占的高度不变,因此,根据荷载作用下土样压缩稳定后的总于是有: 压缩量ΔH ,即可得到相应的孔隙比e 的计算公式: ) 27()1(00 0?+Δ? =e H H e e 1) 1(0 0?+= w s w G e 式中 ρρ ,其中,G s 为土粒比重,ω0为土样的初始含水 量,ρ0 为土样的初始密度(g/cm 3),ρw 为水的密度(g/cm 3) 。 e ,从而可绘制出土的如此,根据式(7-2)即可得到各级荷载p 下对应的孔隙比e-p 曲线及e-lgp 曲线等。 1. e-p 曲线及有关指标 图7-2 土的压缩曲线 通常将由固结试验得到的直角坐标系绘制成如图(7-2)所示以看出,由于软粘土的压缩性大,当发生压力变化Δp 时,则相应的比由e 1 减小到e 2 ,当压力e-p 关系,采用普通的e-p 曲线。 (1) 压缩系数a 从图(7-2)可孔隙比的变化Δe 也大,因而曲线就比较陡;反之,像密实砂土的压缩性小,当发生相同压力变化Δp 时,相应的孔隙比的变化 Δe 就小,因而曲线比较平缓,因此,土的压缩性的大小可用e-p 曲线的斜量来反映。 如图(7-2)所示,设压力由p 1 增至 p 2 ,相应的孔隙变化范围不大时,可将该压力范围的曲线用割线来代替,并用割线的斜量来表示土在这一段压力

固结实验报告

图6-1 固结仪示意图 1-水槽 2-护环 3-环刀 4-导环 5-透水石 6-加压上盖 7-位移计导杆 8-位移计架 9-试样 实验四 固结试验 实验人: 学号: 一、概述 土的压缩性是指土在压力作用下体积缩小的性能。在工程中所遇到的压力(通常在16kg/cm 2以内)作用下,土的压缩可以认为只是由于土中孔隙体积的缩小所致(此时孔隙中的水或气体将被部分排出),至于土粒与水两者本身的压缩性则极微小,可不考虑。 压缩试验是为了测定土的压缩性,根据试验结果绘制出孔隙比与压力的关系曲线(压缩曲线),由曲线确定土在指定荷载变化范围内的压缩系数和压缩模量。 二、仪器设备 1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm ,高20mm ,面积30cm 2),单位面积最大压力4kg/cm 2;杠杆比1:20。 2、测微表:量程10mm ,精度0.01mm 。 3、天平,最小分度值0.01g 及0.1g 各一架。 4、毛玻璃板、滤纸、钢丝锯、秒表、烘箱、削土刀、凡士林、透水石等。 三、操作步骤 1、按工程需要选择面积为30cm 2的切土环刀,环刀内壁涂上一薄层凡士林,刀口应向下放在原状土或人工制备的扰动土上,切取原状土样时应与天然状态时垂直方向一致。 2、小心边压边削,注意避免环刀偏心入土,应使整个土样进入环刀并凸出环刀为止,然后用钢丝锯或修土刀将两端余土削去修平,擦净环刀外壁。

3、测定土样密度,并在余土中取代表性土样测定其含水率,然后用圆玻璃片将环刀两端盖上,防止水分蒸发。 4、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。 5、检查各部分连接处是否转动灵活;然后平衡加压部分(此项工作由实验室代做)。即转动平衡锤,目测上杠杆水平时,将装有土样的压缩部件放到框架内上横梁下,直至压缩部件之球柱与上横梁压帽之圆弧中心微接触。 6、横梁与球柱接触后,插入活塞杆,装上测微表,使测微表表脚接触活塞杆顶面,并调节表脚,使其上的短针正好对准6字,再将测微表上的长针调整到零,读测微表初读数 R 。 7、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0kg/cm 2五级;即50、100、200、300、400Kpa (1Kpa=0.001N/mm 2)五级荷重系累计数值),如第一级荷载0.5kg/cm 2需加砝码1.5kg 以后三级依次计算准确后加入砝码,加砝码时要注意安全,防止砝码放置不稳定而受伤。 8、每级荷载经10分钟记下测微表读数,读数精确到0.01mm 。然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。 9、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。 四、成果整理 1、按下式(6-1)计算试样的初始孔隙比0e : () 1 10 00-+?= ρρw d e w s (6-1) 式中 s d —土粒比重; w ρ—水的密度,一般可取1g/cm 3; 0w —试样初始含水率; 0ρ—试样初始密度(g/cm 3)。 2、按下式(6-2)计算试样中颗粒净高s h : 00 1e h h s += (6-2) 式中 0 h —试样的起始高度,即环刀高度(mm )。

金属的压缩实验

金属的压缩实验 一、概述 实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。 二、实验目的 1、观测低碳钢压缩时的屈服荷载F SC 2、测定铸铁压缩时的抗压强度σbC 3、观察并比较低碳钢和铸铁在压缩时的变形和破坏现象。 三、实验设备 1、液压式万能材料试验机 2、游标卡尺 四、试样的制备 按照国标GB7314-87《金属压缩试验方法》,金属材料的压缩试样多采用圆柱体,如图2-16所示。试样长度L=(2.5~3.5)d0的试样适用于测定σpc、σtc、σsc、σbc;L=(5~8)d0的试样适用于测定σpc0.01、E e;L=(1~2)d0的试样适用于测定σbc、。为了尽量使试样受轴向压力,加工试样时,必须有合理的加工工艺,以保证两端面平行,并与轴线垂直。 σpc-规定非比例压缩应力 σtc-规定总压缩应力 σsc-压缩屈服点 σbc-抗压强度 σpc0.01-规定非比例压缩应变为0.01%时的应力 E e-压缩弹性模量 五、实验原理 以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样中间部分出现显著的鼓胀,如图2-17所示。

塑性材料在压缩过程中的弹性模量、屈服点与拉伸时相同,但在到达屈服阶段时不像拉伸试验时那样明显,因此要仔细观察才能确定屈服载荷F sC。当继续加载时,试样越压越扁,由于横截面面积不断增大,试样抗压能力也随之提高,曲线持续上升,如图2-18所示。除非试样过分鼓出变形,导致柱体表面开裂,否则塑性材料将不会发生压缩破坏。因此,一般不测塑性材料的抗压强度,而通常认为抗压强度等于抗拉强度。 以铸铁为代表的脆性金属材料,由于塑性变形很小,所以尽管有端面摩擦,鼓胀效应却并不明显,而是当应力达到一定值后,试样在与轴线大约成450~550的方向上发生破裂,如图2-20所示。这是由于脆性材料的抗剪强度低于抗压强度,从而使试样被剪 断 六、实验步骤 1、用游标卡尺测量试样直径,方法是在试样原始标距中点处两个相互垂直的方向上测量直径,并取其算术平均值。 2、根据低碳钢屈服载荷和铸铁抗压强度的估计值, 选择试验机的示力盘,并调整其指针对零。 3、调整好自动绘图器。 4、准确地将试样置于试验机活动平台的支承垫板中心处。 5、调整试验机夹头间距,当试样接近上支承板时,开始缓慢、均匀加载。 6、对于低碳钢试样,将试样压成鼓形即可停止试验。对于铸铁试样,加载到试样破坏时(主针回摆150左右)立即停止试验,以免试样进一步被压碎。 金属的拉伸实验指导书 一、概述 常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。 二、实验目的 1、测定低碳钢的屈服强度R el、抗拉强度R m、断后延伸率A11.3和断面收缩率Z 2、测定铸铁的抗拉强度R m 3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线) 4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征

实验一、二 拉伸和压缩实验

实验一 拉伸和压缩实验 拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。工矿企业、 研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力 学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试 验具有工程实际意义。 不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。低碳钢和铸铁分别是典型 的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。 低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清 楚。低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而 不能被压断,无法测定其压缩强度极限bc σ值。因此,一般只对低碳钢材料进行拉伸试验而 不进行压缩试验。 铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。铸铁压缩时有明显的塑性变形, 其破坏是由切应力引起的,破坏面是沿45?~55? 的斜面。铸铁材料的抗压强度bc σ远远大 于抗拉强度b σ。通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进 行比较,可以分析不同应力状态对材料强度、塑性的影响。 一、 实验目的 1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截 面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。 2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分 析力与变形之间的关系,即P —L ?曲线的特征。 3.掌握材料试验机等实验设备和工具的使用方法。 二、 实验设备和工具 1. 液压摆式万能材料试验机。 2. 游标卡尺(0.02mm)。 三、 拉伸和压缩试件 材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此, 必须把所测试的材料加工成能被拉伸或压缩的试件。 试验表明,试件的尺寸和形状对试验结果有一定影响。为了减少这种影响和便于使各种 材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸 试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB / T7314—1987《金属压缩试验方法》进行加工。拉伸试件分为比例的和非比例的两种。比例 试件应符合如下的关系 00A k l =

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、直尺、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0 /d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。 图

四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件 的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试 样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S = σ 屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值 P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b = σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 %1000 1?-= l l l δ 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 01 100%ψA -A = ?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。

土的压缩试验

土的压缩试验 一、目的和要求 测定土体的压缩变形与荷载的关系。 二、实验原理 1.室外观测法(观测沉降) 2.实验室测试法 三、实验装置 1.DGY—ZH 1.0型杠杆式压缩仪,杠杆比为1∶12 a.压缩容器:环刀,截面积F=302 cm,直径 =61.8mm,高H=20mm。 b.百分表。 c.砝码:0.125,0.313,0.625,1.25,2.5,5,10。 d.台架主体:杠杆装置,加压框架。 图3-1 杠杆式压缩仪 2.天平:称量500g,感量0.01g。 3.其它设备:秒表,削土刀,浅盘,铝盒等。 四、实验步骤 1. 试验前准备工作 a. 试样制备:取代表土样风干、碾碎、过2mm筛,然后称料0.5Kg,加水拌和并焖料24小时。称取环刀质量 m。 1 b. 击样:用击样法将拌制好的土样制成试样。 c. 取样:用环刀在试样上进行取样,刀口向下,边削边压,使土体充满环刀并削去多

余土样,称环刀及土样的总质量2m 。 e. 计算初始密度V m m 1 20-=ρ,测量剩余土样的初始含水量0ω。 f. 调整仪器平衡锤,使杠杆保持平衡。 2. 试验操作步骤 a. 在压缩容器内依次放入护环、透水石乙、定位环、滤纸、透水石甲、传压活塞。 b. 拉上加压框架,调节横梁上接触螺钉,使之与传压活塞接触(不要压紧),装上百分表,并使测杆压缩5mm ,预加1.0KPa ,使压缩仪各部分紧密接触,将百分表调零。 c. 去掉预压荷载,立即加第一级荷载,加砝码时,立即启动秒表。 d. 加荷等级一般为5级,依次加载。每级荷载加上后,每隔30分钟记录百分表读书 一次(读红色读数精确至0.01mm )。若两次读数变化小于0.01mm 时,可认为沉降稳定,允许加次级荷载。按此步骤逐级加压,直至试验结束。荷载等级如荷载等级 表所示。 e. 试验结束后,迅速卸下砝码,小心拆除仪器并擦净,需要时,测压缩后土样的含水量和密度。 五、试验结果整理及分析 1. 初始孔隙比0e 的计算:1) 01.01(0 00-+= ρωρs e (s ρ=2.72g/3m ) 2. 单位沉降量i s 的计算:i s =3 010??∑h h i (∑?i h 为百分表读数,表示在 该级荷载下的仪器变形量,0h =20mm ) 3. 各级荷载下试样变形稳定后的孔隙比i e 的计算:1000 )1(00i i s e e e +- = 4. 某一级荷载范围内的压缩系数α的计算:i i i i p p e e --=++11α (1 -KPa ) 5. 某一级荷载压缩范围内的压缩模量s E 的计算:3 101?+=α e E s (KPa ) 6. 作空隙比i e 和压力i p 关系曲线。 附表: 荷载等级表

土力学实验报告(最终版)

《土力学与基础工程》 土 工 实 验 报 告 书 学院:环资学院 班级:地质1301班 姓名:郑 学号:20131140 时间:2015.11.24

目录 实验一侧限压缩实验 (3) 1实验目的 (3) 2实验原理 (3) 3仪器设备 (3) 4操作步骤 (3) 5实验数据整理 (4) 实验二直接剪切实验 (7) 1土的抗剪强度及实验方法 (7) 1.1 土的抗剪强度 (7) 1.2实验目的 (7) 1.3实验原理 (7) 2 直接剪切实验步骤 (7) 2.1 仪器设备 (7) 2.2 操作步骤 (7) 2.3 实验数据整理 (8) 三、三轴压缩实验 (10) 1实验目的 (10) 2实验原理 (10) 3实验设备 (10) 4实验步骤 (10) 5计算与绘图 (10) 6实验记录 (12) 四、实验总结 (12)

实验一 侧限压缩实验 1实验目的 通过测定变形和压力的关系或者孔隙比与压力的关系、变形和时间的关系,进而计算单位沉降量 i s 、压缩系数 v 、压缩指数c C 、压缩模量s E 。 2实验原理 实验基于构成土骨架的矿物颗粒在土体变形过程中保持刚性且竖向变形是连续的假设前提。 3仪器设备 (1)固结仪:试样面积302 cm ,高为2cm ; (2)加压设备:称量500kg~1000kg 。感量为0.2kg~0.5kg 的磅秤。 (3)百分表:量程10mm ,分度值为0.01mm ; (4)其它:钢丝锯、天平、环刀、刮土刀等。 4操作步骤 (1)制备式样:取面积为302 cm 的环刀抹上适量的凡士林并称量,记录读数为42.9g ,取原状土按一定的含水量制备试样,用环刀切取土样并用天平称量,记录数据为162.0g ; (2)土样装入固结仪器中:先装入下透水石,再将带有环刀的试样小心装入护环,在装入固结仪容器内,然后放上透水石和加压盖板,至于加压框下,对准加压框架的正中,安装量表。(透水石的湿度应尽量与试样保持一致); (3)为保证试样与仪器上下各部件之间接触良好,应施加1KPa 预压荷载,然后调整量表归零; (4)对试样施加压力,加压等级分别为50.0、100、200、300、400、1600KPa ; (5)需要确定原状土的先期固结压力时,加压率应小于1,可采用0.5或0.25倍。最后一级压力应大于1000KPa ; (6)第一级压力的大小取决于土的软硬程度,此次实验采取50KPa ; (7)加荷后按下列时间顺序计量表读数:6”、15”、1’、2’15”、4’、6’15”、9’、12’15”、16’、20’15”、25’、30’15”、36’、42’15”、49’、64’、100’、200’、400’、23h 和24h ,至稳定为止。(中间加压等级只读数0’’、60’’即可); (8)固结稳定标准规定为每级压力下压缩24h ; (9)整理设备,清理实验仪器。

相关主题
文本预览
相关文档 最新文档